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ABSTRACT Wind power is one of the most efficient renewable resources without emissions. Nonetheless,
it is difficult to exactly forecast wind power generation given historical power and wind speed information,
the failure of which may cost the risk of large-scale outages. This article takes a close look at the
artificial recurrent neural network framework in the application of wind power forecasting. More intelligent
mechanisms using attention to capture spatial-temporal patterns within historical data are emphasized in this
work and are shown to be state-of-the-art for short-term wind power forecasting. Our experiments at a wind
farm in southeast Australia using only the historical wind power generation and wind speed records from
ambient weather stations show that, e.g., 7.4750% inmean absolute error (MAE) and 0.3345 in the coefficient
of variation in the root mean squared error (CV-RMSE) for half-hour-ahead prediction. To interpret how the
three models under consideration—the long- and short-term time-series network (LSTNet), the temporal
pattern attention-based long short-term memory (TPA-LSTM) and the dual-stage attention-based recurrent
neural network (DA-RNN)—work, we visualize and analyze the details of the models so that further
improvement can be made by combining the advantageous components of the models.

INDEX TERMS Wind power forecast, time-series forecast, recurrent neural network, attention, deep
learning, DA-RNN, LSTNet, TPA-LSTM.

I. INTRODUCTION
As one of the most promising renewable resources of power
without emissions, wind power has gained enormous atten-
tion from investors and governments around the world.
Despite the unpredictable impacts of COVID-19 on the global
energy market, the Global Wind Energy Council (GWEC)
expects that over 355 GW of new wind power capacity will
be added worldwide before 2025, which is more than half of
the 651 GW installed capacity by the end of 2019 [1]. The
growing permeability of highly volatile renewable resources
poses challenges to the flexibility of power grids, with the
large-scale outage on 9 August 2019 in the UK striking a
wake-up call to us [2]. Techniques such as intelligent control
provide potential solutions to the issue, where strategies of
accurately forecasting wind power generation are among the
key difficulties.

Nevertheless, our knowledge of efficient and reliable wind
power forecasting techniques is still limited compared to the
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rapid expansion of the global wind power market. Unlike
other renewable resources with strong seasonal patterns such
as solar energy, trends and fluctuations in generated wind
power are notoriously elusive to grasp. Traditionally, physical
approaches using power curves provided by the turbine man-
ufacturer to convert wind speed to power suffer severely from
ambient noise and outliers [3]–[5], and accurately forecasting
the exact wind speed at the desired location and turbine hub
height is usually an intractable task.

Data-driven methods, especially methods derived from
advanced artificial intelligence techniques, have become
much more powerful alternatives to address this problem.
In particular, recurrent neural networks (RNNs) [6], having
prevailed in the field of natural language processing (NLP)
due to their deep recurrent design to learn highly nonlinear
temporal dynamics from sequences, can be readily implanted
to time-series forecasting tasks [7]–[10]. Abundant works
to improve the overall performance of RNN conditioned
on various application settings contribute to the boom in
the field, including the two popular RNN variants, namely,
the long short-termmemory (LSTM) [11] and gated recurrent

40432

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021

https://orcid.org/0000-0001-7937-8476
https://orcid.org/0000-0001-8100-1475
https://orcid.org/0000-0003-1819-0132
https://orcid.org/0000-0002-0779-8727


B. Huang et al.: Wind Power Forecasting Using Attention-Based RNNs: Comparative Study

unit (GRU) [12], among others. These variants can cap-
ture temporal patterns of relatively longer-term as well as
short-term dependencies in the input signals.

Drawbacks of applying LSTM and GRU directly to wind
power forecasting, however, lie in their limited capacity to
learn complicated temporal and spatial patterns from mul-
tivariate time series as a whole. Indeed, along the temporal
axis, very long-term dependencies may be easily lost due
to vanishing gradient [13]; along the spatial axis, historical
wind speed measurements from surrounding meteorological
stations interplay with the power generated by the targeted
wind farm chaotically and should be modeled effectively.
Both temporary and spatial patterns can be captured more
intelligently with the aid of a so-called attention mechanism
[14], [15] to be elaborated in this article. We shall review the
wind power forecasting literature in greater length in the next
subsection.

A. RELATED WORKS
The development of wind power forecasting has witnessed
an increasingly important role played by big data theories and
techniques within recent decades. Methods inspired by statis-
tical learning and data mining dominated the field in the first
ten years of the 21st century, successfully breaking through
the paradigm of the autoregressive integrated moving average
model (ARIMA), which is powerful in exploiting autoco-
variance information but depends highly on the stationary,
linear and homoscedastic assumptions of the time series.
Machine learning algorithms such as support vector regres-
sion (SVR) [16]–[18], multilayer perceptron (MLP) [16],
[19], artificial neural network (ANN) [20], [21], random for-
est (RF) [17], [22], [23] and extreme learningmachine (ELM)
[24]–[27] are demonstrated to be among the most efficient
models selected. However, these algorithms were originally
created for general regression problems, and the tempo-
ral/ordinal nature inherent in the time-series data is therefore
neglected.

Apart from the options of modern machine learning
algorithms equipped with the capability of learning non-
linear, complex interdependencies within the data, adaptive
strategies are shown to be equally crucial for elevating the
prediction accuracy even more. One of the major purposes
of these adaptions, in summary, is to encode as much of the
spatial-temporal information from the historical wind power
and exogenous (typically wind speed andwind direction) data
as possible while at the same time excluding any random
noise or disturbance (see, e.g., [24], [25]).

One classical routine for achieving this end is to decom-
pose the historical time series into additive subseries of
different frequencies. Various forecasting algorithms can
then be applied to the denoised subseries separately, and
the final prediction is obtained by summing these results.
The rationale behind the decomposition-based approach rests
on the simpler seasonal patterns of the subseries that can
be modeled by regression algorithms with less difficulty.
Wavelet decomposition (WD) [28], [29], empirical mode

decomposition (EMD) [30], [31] and variational mode
decomposition (VMD) [25], [32] are popular decomposition
approaches. For a thorough discussion of decomposition-
based hybrid models for wind power forecasting, we refer
interested readers to [33].

Additionally, feature selection, or feature engineering in
machine learning jargon, is a stage of data preprocessing
commonly used along with the decomposition stage in hybrid
models for wind power forecasting. It either filters out unre-
lated features or maps the original input into a subspace
before training. The most straightforward method of select-
ing a proper time window from historical data is via a
(partial) autocorrelation function (PACF, ACF). Other meth-
ods derived from unsupervised learning, such as principal
component analysis (PCA) and Gram-Schmidt orthogonal-
ization (GSO) [24], [34], can be used to select both temporal
and spatial features but still encode only linear relationships
within the inputs. The mean impact value (MIV) [35] method
can dynamically optimize the selected feature set according
to some objective function and hence is a widely used non-
linear criterion. However, the hard thresholds of the feature
selection procedure may be less flexible than soft thresholds
used in attention-based methods.

The application of deep learning methods and techniques
initiates a new paradigm for wind power forecasting. Recur-
rent neural networks are designed specifically for learning
temporal representations of a series, which differs greatly
from the classical regression algorithms borrowed from the
statistical learning and data mining community. In recent
years, researchers have started employing an echo state net-
work (ESN), an instance of RNN with a sparsely connected
hidden layer and randomly assigned weights, to improve
the accuracy of wind power forecasting [36], [37]. Long
short-term memory (LSTM) is also favored by an increasing
number of researchers [38]–[40], and quite a few works are
devoted to combining it with existing wind power forecast-
ing strategies such as VMD [41], [42], Gaussian mixture
model [43] and ESN [37].

Deep neural networks also offer brand new methods for
encoding spatial-temporal information from historical wind
data. In fact, when adopting an encoder-decoder model of
RNN, a better representation of raw input is inferred in the
encoding stage, whereas the decoding stage mainly focuses
on the regression job. Researchers from machine translation
are among the first to notice that encoding a sentence to a
fixed-length vector representation often causes information
loss when dealing with long texts. The attention mechanism,
proposed in [15] and [14], solves this problem by assigning
different weights to the intermediate hidden states according
to their relevance to the specific target states. Combining the
weighted hidden states yields the context vectors of the target
states to be fed into the decoder. The attention mechanism
is embedded in the deep neural architecture so that it can be
learned along with other parameters in the entire network.

Although it originated in machine learning, the atten-
tion mechanism has been adopted by time-series analysts.
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TABLE 1. Summary of wind power forecasting paradigm transition with methods for capturing spatial-temporal patterns.

FIGURE 1. Map of Boco Rock Wind Farm (blue circle) in New South Wales, Australia and 6 nearest weather stations (yellow circles).

The most successful examples that incorporate attention into
the framework of recurrent neural networks have been pro-
posed in recent years, including LSTNet [13], TPA-LSTM
[44] and DA-RNN [45]. We delay the theoretical elabora-
tion of these models to section II. Table 1 summarizes the
paradigm transition in the wind power forecasting literature,
along with working methods to capture temporal and spatial
patterns, as we discussed above.

B. OUR CONTRIBUTIONS
We dedicate this article to the investigation of three state-of-
the-art recurrent neural network variants using an attention
mechanism to forecast wind power generation: LSTNet [13],
TPA-LSTM [44] andDA-RNN [45]. To the best of our knowl-
edge, this work is the first to fill the gap between the wind
power forecasting community and the rapidly developing
attention-based RNN among time-series analysts. We test the
models on a wind farm in New South Wales, Australia. The
wind power data along with the meteorological observations
in the surrounding weather stations are collected for training
and inference. Fig. 1 shows the geographical distribution of
the wind farm andweather stations. Based on our comprehen-
sive experiments, an in-depth analysis of how attention helps

to capture temporal and spatial patterns from the raw inputs
is performed in this article.

The article is organized as follows. The architecture
and mathematical foundations of LSTNet, TPA-LSTM and
DA-RNN are introduced in section II. We present thorough
experimental results in section III and delay the visualization
and interpretation of the attention mechanisms of the models
to section IV. Section V concludes the entire study with a
discussion on the pros and cons of the three models so that
future improvement could be made upon our work.

II. ATTENTION-BASED RECURRENT NEURAL NETWORKS
A. BUILDING BLOCKS
Before addressing the abstraction of the wind power fore-
casting problem, we remind our audience of the most basic
components in the deep learning library here. By assembling
these following components as needed, we can build the three
state-of-the-art attention-based RNNs.

1) RNN AND RECURRENT SKIP
Consider a sequence {x1, x2, . . . , xT }, where xt can be a scalar
or vector according to the setting of the specific problem.
A recurrent neural network calculates hidden states ht based
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on a recurrent function as follows:

ht = RNN (ht−1, xt ). (1)

The hidden states encode the information in the passing
input entries that is most relevant to producing the targeted
outputs. The parameters of the recurrent function are shared
along the sequence indexed by t and can be trained using
backpropagation. However, since conventional RNN cells are
incapable of learning very long-term interdependency due to
gradient vanishing, one can use the recurrent skip to leverage
the periodic pattern within the input data:

ht = RNN (ht−p, xt ), (2)

where the period value p is determined by the input data
as prior knowledge. Here, we adopted the formulation of
recurrent skip in [13]. Note that RNN represents a mapping
that can be embodied by either LSTM or GRU, which are to
be defined explicitly next.

2) LSTM
Proposed in [11], the long short-term memory (LSTM) cell is
a popular instance of RNN. Its recurrent function is realized
as follows:

ft = σ (Wf [ht−1; xt ]+ bf ) (3a)

it = σ (Wi[ht−1; xt ]+ bi) (3b)

ot = σ (Wo[ht−1; xt ]+ bo) (3c)

st = ft � st−1 + it � tanh(Ws[ht−1; xt ]+ bs) (3d)

ht = ot � tanh(st ), (3e)

where� denotes the elementwise multiplication and σ is the
logistic function defined elementwise by

σ (x) =
1

1+ e−x
, (4)

and the hyperbolic tangent function tanh is also applied
elementwise to its inputs:

tanh(x) =
ex − e−x

ex + e−x
. (5)

Notation [ht−1; xt ] is the concatenation of the previous
hidden state and the current input vector. Wf ,Wi,Wo are
matrices, and bf , bi, bo are vectors of corresponding shapes
that should be clear in context.

The key innovation of LSTM involves the cell state st .
Compared to the rapid change in the hidden state ht , the cell
state can memorize a relatively longer history. Its memory is
controlled by the forget gate ft , whereas it is the input gate that
selectively memorizes the current information. The hidden
state ht is obtained from st through an output gate.

3) GRU
The gated recurrent unit (GRU) was created 17 years later
than LSTM in [12] but is quickly accepted by the academic

and industrial communities due to its computational effi-
ciency. Its recurrent function is updated as follows:

rt = σ (Wr [ht−1; xt ]+ br ) (6a)

ut = σ (Wu[ht−1; xt ]+ bu) (6b)

st = RELU (Ws[rt � ht−1; xt ]+ bs) (6c)

ht = (1− ut )� ht−1 + ut � st . (6d)

Most of the notations are exactly the same as in the case
of LSTM, except that here we use the rectified linear
unit (ReLU) to activate the current information for empirical
reasons [13]. The key improvement of GRU is that it reduces
the 3 gates in LSTM to only 2 gates. In fact, the forgetting
and selective memory are controlled simultaneously by one
update unit ut . The unit rt is used to reset the previous hidden
state.

4) CNN
A convolutional neural network (CNN) [46], [47] is a special
kind of artificial network inspired by linear filters in the signal
processing domain. A kernel C whose size is small compared
to the input matrix X slides across the whole X to produce a
hidden matrix:

H = RELU (C ? X + B), (7)

where ? denotes the convolution operation (with flipped ker-
nel):

[C ? X ]i,j =
∑
m

∑
n

Cm,n × Xi+m,j+n. (8)

Instead of usingmultiple different weight matrices to produce
one hidden matrix, it is advantageous to share parameters
among them in a convolutional layer. The basic assumption
supporting the usage of CNN is that a similar pattern should
be shared throughout the input X regardless of the position of
its occurrence. That is why the most well-known application
of CNN rests in the field of computer vision. For time-series
input, nonetheless, CNN is still helpful for capturing temporal
or local motifs. Moreover, multiple kernels are usually used
in one layer to learn different motifs, yielding a hidden tensor
with multiple channels.

5) ATTENTION MECHANISM
Emerging as recently as 2014, the attention mechanism
inevitably has multiple different types and forms, most of
which were created to address very specific engineering
problems. In this article, it is sufficient to consider Bah-
danau attention [15] as our basic framework, whereas using
the score functions proposed in Luong attention [14] for
complement.

The context vector

ci =
∑
j

αijhj (9)
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FIGURE 2. LSTNet.

is a weighted sum of existing hidden states, where the weights
obtained by the softmax function

αij =
exp(eij)∑
k exp(eik )

(10)

or sigmoid logistic

αij =
exp(eij)

1+ exp(eij)
(11)

are called attention weights, determined by

eij = score(si, hj). (12)

Here, si is some sequence from the decoder side as in the orig-
inal machine translation setting under the encoder-decoder
architecture [15]. The attention mechanism is therein used
to match the decoder sequences si with the most relevant
encoder sequences hj, where the relevance is measured by a
score function. Borrowing terminology from the information
retrieval domain, si can be seen as the queries, whereas in the
above framework, hj are considered both keys and values [48].
The context vector ci compresses the information from all the
previous hj sequences that are most needed by the decoder.
In practice, si and hj can be replaced with other queries, keys
and values according to the application.

Luong et al. [14] proposed several different score
functions:

score(si, hj) =


s>i hj
s>i Whj
v>tanh(W [si; hj]+ b)

(13)

namely, the dot, general and concat functions.

B. PROBLEM FORMULATION
We are now ready to address the specific time-series context.
Our wind power forecast problem can be formulated as a
nonlinear autoregressive exogenous model (NARX) as fol-
lows. An input sample is a T -length time window given by n
exogenous/driving series X and a target series y:

X = (x1, x2, . . . , xn)> = (x1, x2, . . . , xT ) ∈ Rn×T , (14a)

y = (y1, y2, . . . , yT ) ∈ RT , (14b)

where xk ∈ RT is a driving series, and xt ∈ Rn denotes the
n driving series at time step t . The problem is to predict the
value of the target series in the h time horizon:

ŷT+h = F(X, y). (15)

Our job is to learn the function F(·) from historical wind data
and then test this a learned function for inference accuracy on
the test dataset.

C. LSTNET
Proposed in [13], the long- and short-term time-series
network (LSTNet) is dedicated to forecasting multivari-
ate time series, and therefore, its framework is slightly
different from our NARX problem. Instead of predicting
ŷT+h immediately, it regards the concatenated matrix X̃ =
[X; y] as a whole and is designed to predict x̃T+h =
(x1T+h, x

2
T+h, . . . , x

n
T+h, yT+h)

>. In other words, driving fea-
tures such as wind speed from ambient weather stations as
well as the wind power will be predicted altogether in the
LSTNet model, and the targeted value can be immediately
seen from the output vector.

We illustrate the working flow of LSTNet in Fig. 2.
The inference procedure of the model is summarized as

follows:
1) Feed the input multivariate series X̃ into the first layer

of LSTNet: the convolutional layer aimed at extracting
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TABLE 2. Comparison of the three state-of-the-art models, based on the way spatial-temporal information is extracted and how the final prediction is
made.

FIGURE 3. TPA-LSTM.

interdependencies among different spatial variables as
well as ultrashort-term temporal patterns.

2) The output of the convolutional layer is put into the
recurrent component and the recurrent-skip compo-
nent simultaneously. The recurrent layer uses GRU as
proposed in [13]. The value p in the recurrent com-
ponents can be determined beforehand or tuned in
validation.

3) A dense layer is added to combine p+1 values, namely,
the last hidden state of the recurrent component and all
the hidden states of the recurrent-skip component from
the last period.

4) In parallel to the neural network, an autoregressive
(AR) component is applied directly to the input series
to predict the linear part.

5) The final prediction is the combination of both the
neural network and AR results.

The recurrent-skip mechanism is shown to outperform
conventional machine learning models in [13], as long as
the periodic behavior of the time series is evident enough.
In other words, LSTNet relies on step 2) to capture temporal
seasons. However, the convolutional component of step 1)
extracts different spatial patterns among the input variables,
as well as some ultrashort-term temporal patterns, depending
on the width of the kernels. Table 2 summarizes and compares
how the spatial-temporal information is derived in the three
models.

D. TPA-LSTM
The temporal pattern attention-based long short-term
memory (TPA-LSTM) model proposed in [44] is another
simple yet powerful framework for multivariate time-series
forecasting equipped with the capability of recognizing
spatial-temporal patterns within the data. Similar to LSTNet,
it was originally dedicated to predicting x̃T+h as a whole, yet
we can easily obtain the targeted prediction from its output
vector. The procedure is illustrated in Fig. 3 and summarized
as follows:

1) The first layer is an LSTM network, producing a series
of hidden states.

2) Given the hidden states from the first layer, we detect
the temporal patterns using a convolutional layer.
Specifically, kernels of shape 1× (T −1) are applied to
the hidden matrix excluding the hidden state at the last
time step.

3) Next, an attention mechanism is used to select rele-
vant spatial variables from the output matrix of the
convolutional layer. The rows of the output matrix
correspond to the keys/values, and the query vector
is the hidden state at the last time step. The attention
mechanism produces a context vector that encodes both
temporal and spatial information related to the last time
step.

4) Finally, a dense layer is applied to the concatenation of
the last hidden state and the context vector.
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FIGURE 4. DA-RNN.

In contrast to LSTNet, where the seasonal behavior on
the temporal axis is emphasized, TPA-LSTM was created
to outperform classical attention by focusing on the spatial
variable interdependencies. The idea is to distinguish more
significant variables for forecasting from less significant vari-
ables in step 3). The temporal features are encapsulated by
convolutional kernels in step 2). Please refer to Table 2 for a
summary of the way spatial-temporal patterns are encoded in
TPA-LSTM.

E. DA-RNN
The dual-stage attention-based recurrent neural network
(DA-RNN) is slightly more complicated than the previous
two models. Inspired by the two-stage mechanism of human
attention, the model encompasses an encoder to adaptively
select the elementary stimulus features in the driving series
and then a decoder to select relevant encoder hidden states
across all time steps. Despite its complexity, DA-RNN was
invented to solve NARX problems directly and hence should
be more pertinent to our wind power forecasting task than
LSTNet and TPA-LSTM.

The working procedure is illustrated in Fig. 4. To be
elaborate

1) Given the exogenous input seriesX, an LSTM network
is used to obtain encoder hidden states. At any time
step, the input vector xt is preprocessed by an atten-
tion mechanism described in step 2) before being fed
into the LSTM. The hidden states of LSTM are thus
obtained iteratively.

2) Using the encoder cell state joined with the hidden state
at time step t − 1 as the query vector, the attention
weights correspond to the query’s interdependency on
the multiple driving sequences. Instead of calculating a
context vector as in classical attention, we only rescale
the current input xt by the attention weights.

3) The decoding process takes the encoder hidden states
as input and applies another LSTM network. This time,
at any time step t , a context vector ct−1 derived from
step 4) along with the value of target series yt−1 are fed
into the decoder LSTM to compute the hidden state h′t .

4) To compute a context vector ct , use the decoder cell
state and hidden state at t − 1 as query vector, and the
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TABLE 3. Time-series division.

encoder hidden states throughout all the time steps are
the keys/values to address.

5) Finally, a fully connected layer converts the last
decoder hidden state h′T+1 along with the last context
vector from the temporal attention cT+1 to the value of
the targeted prediction.

The original DA-RNN was created for the prediction in
one time step only. However, it is not hard to expand the
forecasting horizon to multiple time steps, just as how this
is implemented in LSTNet and TPA-LSTM using the hidden
states and contexts from the last time step or input period.
As demonstrated in Table 2, DA-RNN extracts both tempo-
ral and spatial information adaptively using attention-based
LSTM instead of the less dynamic convolutional components
that appeared in the other two models.

III. EXPERIMENTAL DETAILS
A. DATA PREPROCESSING
Our collected data are composed of two parts: the amount of
power generated by all the dispatchable units interconnected
to the entire Australian Electricity Grid in 2018, exported
from the Aneroid Energy database via [49] that were orig-
inally provided by the Australian Energy Market Operator
(AEMO), and the detailed meteorological data received upon
request from the Australian Bureau of Meteorology [50]
during the same time period. For the sake of our comparative
study for wind power forecasting, we only focus on the Boco
Rock Wind Farm in New South Wales, Australia, which has
113 MW of total registered capacity of electricity. Since
weather observations at the exact location of the turbines
are unavailable, we choose to use the data from the six
nearest weather stations surrounding the targeted wind farm,
as shown in Fig. 1.

The raw data are preprocessed to fit the NARX framework
of our wind power forecasting problem. The time steps are set
to be half hour separated, yielding a 17,520-length series for
the entire year of 2018. The target series y is the wind power
in MW, and the n = 6 exogenous series X are the wind speed
measured in the ambient weather stations in m/s. Instead of
determining a specific time window T now, we choose to
experiment on different values and then pick up the best one
by validation. We also test over various time horizons h for
the accuracy of the models in various short-term forecasting
tasks.

Following the standard statistical learning practice,
we divide the entire time series into training, validation and
testing subseries in chronological order, according to Table 3.
We normalize the seven series separately to the range of

TABLE 4. Prepared datasets.

[0, 1] in the training data and then apply the trained scaler
to validation and testing subseries.

To train our deep neural networks, as in any data-driven
regression models, we prepare pairs of normalized input
(X, y) and output yT+h, obtained by moving one time step at
a time across the entire series. Therefore, the actual number
of training samples depends in part on the values of T and h.
The samples for validation and testing immediately follow
their training counterparts in time order, and hence, the sizes
of the prepared datasets are settled in Table 4.

B. TRAINING DETAILS
1) PERFORMANCE EVALUATION
We use three assessment criteria to evaluate the performance
of our models of interest, namely, the root mean squared error
(RMSE), the mean absolute error (MAE) and the coefficient
of variation in the root mean squared error (CV-RMSE). For
ease of notation, consider the N samples in validation or test-
ing sets, whose real outputs are denoted as yi and are predicted
by the trainedmodels to be ŷi. The evaluationmetricsmeasure
the deviation of ŷi from yi, where i = 1, 2 . . . ,N . The three
criteria are defined as follows:

RMSE =

√∑N
i=1(ŷi − yi)2

N
(16a)

MAE =

∑N
i=1 |ŷi − yi|

N
(16b)

CV − RMSE =
RMSE
mean(yi)

. (16c)

2) TRAINING METHODS
To train the parameters in an attention-based RNN, we use
iterative algorithms based on gradients to optimize a loss
function that measures how well the model predicts the
training samples. Backpropagation (BP) is widely used in
deep neural networks to compute gradients and is realized by
transmitting partial gradients from the output layer back to the
input layer following the computational graph of the network.
Various adaptive alternatives to accelerate the convergence of
gradient-based iterative algorithms are proposed in the liter-
ature, and here, we choose to use the Adam algorithm [51].
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TABLE 5. Ranges of hyperparameters for selection. The best combinations validated via a grid search are in boldface.

TABLE 6. Comparison of different forecasting models measured by three metrics. The best (smallest) value of each criterion is in boldface.

We also use techniques such as learning rate reduction, early
stopping and dropout to facilitate the training.

The loss function used in the experiment is the squared loss
(L2-loss). Therefore, the objective of the training process is
the following optimization problem:

min
θ

Ntrain∑
i=1

(ŷi − yi)2 (17)

where θ denotes the trainable parameters of the model
F(X, y), and the squared loss is summed over all training
samples.

3) HYPERPARAMETER TUNING
There are several hyperparameters within each of the three
models whose value impacts the overall performance to a
considerable extent. We conduct a grid search on the hyper-
parameter ranges using the validation set and determine the
best combination of the hyperparameters that minimizes the
validation L2-loss. The ranges and the best candidates of the
hyperparameters are shown in Table 5. It can be summarized
from the table that 48 time steps (24 hours) are typically
sufficient for inferring a good forecast. Additionally, LSTNet
and TPA-LSTM usually require a large number of kernels in
their CNN components.

C. COMPARISON WITH OTHER MODELS
After successfully tuning the hyperparameters, we summa-
rize the experimental results of the three models using the
three metrics defined in section III-B1. The metrics are cal-
culated based on the test dataset to eliminate biases. Shown
in Table 6 are the reports of the related models making
multiple short-term horizons ahead predictions. The effec-
tiveness of the attention-based RNNmodels is compared with
other established algorithms in the wind power forecasting
literature.

The key points summarized from the comparison are the
following:

1) Since the support vector regression (SVR), extreme
learning machine (ELM) and radial basis net-
work (RBN) models only accept a vector or a
single-variate sequence as input, we only use 48 steps
of historical wind power for prediction. The hyperpa-
rameters are tuned by a grid search on the validation
set. It is shown that the SVR performs the best among
the three simple machine learning models, but its pre-
diction error grows faster with the horizon h than the
other two models.

2) The EMD-WT-SVRmodel attempts to capture the sea-
sonal patterns within the wind power signal using a
fixed number of denoised (by wavelet transformation)
intrinsic mode functions (IMF, decomposed from the
raw sequence using empirical mode decomposition).
Multiple SVRs are trained independently for the mul-
tiple IMFs corresponding to the different intrinsic fre-
quencies. To predict a test sample, the input sequence is
decomposed into the same number of IMFs as required
in the training process and denoised, and then their
SVR results are combined to yield the final output.
This model performs poorly overall, which may be due
to the lack of clear periodic behavior within the wind
power signal, illustrated via its autocorrelation function
in Fig. 5, in contrast to the less fuzzy wind speed
autocorrelation functions. Indeed, some of the most
successful decomposition-based projects are dedicated
to wind speed forecasting; see, e.g., [52], [53].

3) Both the vanilla LSTM and the attention-LSTM allow
multivariate time series as input. The vanilla LSTM
network is among the most effective models in our
experiment and even achieves the best outcome when
h = 6. The attention-LSTM is implemented by stack-
ing a standard attention layer on top of a bidirectional
layer and then another LSTM layer upon it. However,
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FIGURE 5. Autocorrelation functions (ACF) of the wind power and speed series.

FIGURE 6. Illustration of the spatial attention mechanism of DA-RNN.

it is less efficient than the vanilla LSTMand grows even
worse when the horizon increases. It is thus clear that
adding a simple attention layer on top of an RNN is not

sufficient for capturing complicated spatial-temporal
information innate in the wind power forecasting
task and may even jeopardize it. More complicated
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FIGURE 7. The average temporal kernel from the learned TPA-LSTM for 3-step ahead forecasting. The lighter the
color, the higher the attention weight is allocated.

FIGURE 8. The temporal attention weights (at the last time step in each sample) tested from the first 6 hours of a
day in December 2018 using the decoder of the learned 3-step ahead DA-RNN. The lighter the color, the higher the
attention weight is allocated.

attention mechanisms deliberately designed for
time-series forecasting are needed to improve the
vanilla LSTM.

4) All three targeted models, namely, LSTNet,
TPA-LSTM and DA-RNN, are among the best when
forecasting shorter-term wind power. In particular,
LSTNet is superior to the other models in the L2 cri-
teria, whereas DA-RNN is the best in the L1 metrics.
However, DA-RNNgrowsworse quickly as the horizon
reaches 6, which can be the nature of themodel because
DA-RNN was originally designed for 1-step ahead
prediction only. In addition, LSTNet and TPA-LSTM
cannot outperform the vanilla LSTM for longer-term
forecasting.

It can be seen from the experimental results that the
existing attention-based RNN models can indeed achieve
state-of-the-art wind power forecasting performance when
the time horizon is small but become less competitive when
h increases. In the next section, we interpret and analyze the
ways these models propose to improve time-series forecast-
ing using attention and other mechanisms via visualization
and then suggest the reasons for their good and bad per-
formance so that adjustments can be made to the existing
models.

IV. SPATIAL-TEMPORAL PATTERNS: VISUALIZATION
Generally, all three attention-based RNNmodels extract tem-
poral and spatial patterns in a separatemanner, as summarized
in Table 2. We analyze the way these mechanisms are oper-
ated by revealing the attention weights and kernels from the
trained models.

A. SPATIAL PATTERNS
In contrast to the less dynamic convolutional kernels used
in LSTNet and the LSTM layer (where the attention is
based on the LSTM hidden space and is therefore even less
interpretable) of TPA-LSTM, we find that the encoder of

DA-RNN is worth noting for its flexible spatial attention
mechanism. To understand how it works, the first fact we
notice is that given one test sample, the spatial attention
weights along the 48 time steps are almost invariant. There-
fore, to observe how the weights change along the sliding
samples, we can visualize their values at only the last time
steps within the samples, as in the testing week: 2018-12-01
00:00 to 2018-12-07 23:30 of Fig. 6(a). There are apparent
peaks and valleys along most curves, with some wind speed
observations (purple, green, blue) beingmore significant than
others in general. However, the physical rules behind the
attention patterns are still unclear, even with the aid of the
wind roses at each weather station in Fig. 6(b).

B. TEMPORAL PATTERNS
In terms of temporal patterns, we observe an interesting dis-
agreement on the periodic effect of the wind series between
the LSTNet model and the other two. Since the best hyperpa-
rameter combination of LSTNet confirms the superiority of
the 24-skip RNN to its 16-skip counterparts, one may expect
similar periodic patterns embodied in the convolutional ker-
nels of TPA-LSTM and the decoder attention weights of
DA-RNN. However, the 100 temporal kernels in TPA-LSTM
are averaged to what can be seen in Fig. 7, without a clear
24-time step recurrence. For the decoder phase of DA-RNN,
we find that usually in a consecutive period of time, testing
samples will attend to the information of some fixed time
steps in the historical series, yielding the sliding temporal
attention weight vectors exemplified in Fig. 8. Other striking
patterns are seen throughout the testing set, including versa-
tile highest-attention intervals (17 time steps in this example)
and diminishing attention on the beginning 1 to 3 time steps.

V. DISCUSSION AND CONCLUSION
We study and apply three state-of-the-art RNNmodels featur-
ing attention mechanisms and other components to forecast
short-term wind power generation. Overall, empirical results
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enhance our confidence in applying the three attention-based
RNN models to more complicated wind power forecasting
tasks, especially under circumstances where exact wind speed
prediction is not available and has to be inferred from the
spatial-temporal information of the historical series.

In this article, the models are analyzed from the viewpoint
of spatial-temporal pattern extraction and are tested on a wind
farm in southeast Australia, when only limited wind speed
information is gathered in the ambient weather stations of
the targeted farm. The three models prove to exceed other
competitors when the time horizon is small. Apart from
that, by uncovering the attention weights and convolutional
kernels of the models, some additional findings are learned
so that quite a few heuristic adjustments can be made upon
the existing models for the wind power forecasting task in
particular.

First, although DA-RNN yields the best results in terms of
MAE, we find that there can be considerable redundancy in
the attention weights because they are compulsory at each of
the time steps along the timewindow of a single input sample,
even though they are almost equivalent. Second, the convolu-
tional components of LSTNet and TPA-LSTM usually need
many more kernels than the dimension of the input vector
space to address the complicated nature of the time-series
data when no dynamic mechanisms such as attention are
involved.

To overcome these drawbacks, it may be wise to combine
beneficial aspects of the three models, for instance, skipping
some time steps in the spatial and temporal attentions of DA-
RNN, as borrowed from the skip-RNN of LSTNet and involv-
ing temporal attentions into the TPA-LSTM, to leap beyond
the CNN-only method of capturing temporal patterns. After
all, the design of new variants of attention-based RNN mod-
els aimed at wind power forecasting deserves several other
full-length papers, and we encourage our fellow researchers
to consider this topic on another level in the near future.
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