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ABSTRACT Static deadlock analyses might be able to verify the absence of deadlock. However, they are
usually not able to detect its presence. Moreover, when a potential deadlock is detected, they provide little
(and often no) information that can help the user in finding the source of the anomalous behaviour. This paper
proposes a testing methodology that combines static analysis and symbolic execution for effective deadlock
detection in asynchronous programs. When the program features a deadlock, our testing methodology
provides an effective technique to catch deadlock traces. While if the program does not have deadlock,
but the static deadlock analysis inaccurately spotted it, our approach is able to prove deadlock freedom (up
to the limit of the performed symbolic exploration).

INDEX TERMS Deadlock analysis, deadlock detection, symbolic execution, testing, test case generation,
verification.

I. INTRODUCTION
A deadlock occurs when a concurrent program reaches a
state in which a set of processes or tasks are waiting for
some event or condition and they are all unable to change
the state, hence do not allowing the program to make any
progress. Together with data-races, deadlocks are one of the
most important sources of bugs in concurrent programming.
A main challenge of verification and static analysis tools
is thus proving deadlock freedom, and, conversely, a main
challenge of testing tools is performing deadlock detection.
We consider a general-purpose concurrent language, with
distributed locations, asynchronous communication among
them by means of asynchronous method calls which create
the corresponding task at the specified location, with no
shared memory among the different locations, and with an
operation for blocking synchronization with the termination
of asynchronous calls. This provides the foundations for the
concurrencymodel of languages used in industry, e.g.,Erlang
and Scala, and libraries used in mainstream languages, e.g.,
Akka.

Also, we consider a setting where a task cannot be inter-
rupted until its end, except if it explicitly blocks waiting for
the termination of another task, i.e., we have cooperative
scheduling. In this context, when a location finishes the exe-
cution of a task, it chooses any of the other available tasks
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in the location and starts its execution. Hence, in order not
to lose any possible behavior of the program, in particular
deadlocks, all possible combinations of task interleavings
must be considered.

Static analysis and testing usually follow two different
approaches when it comes to reason about deadlocks. The
approaches can often complement each other and thus it
seems quite natural to combine them. Static analysis usually
evaluates an application by examining all possible execution
paths and variable values but without executing it. Hence,
it might be able to prove deadlock freedom and also to catch
deadlocks that could not show up until days or even weeks
after releasing the application. This feature is especially rel-
evant in security assurance where the attackers often attempt
to exercise an application in unpredictable ways. However,
due to the use of approximations, most static analyses are
not able to verify the presence of deadlocks, being able to
verify only its absence. In other words, most static analy-
ses can produce false positives. Moreover, when a potential
deadlock is detected, state-of-the-art analysis tools [1]–[4]
provide little (and often no) information on the source of the
deadlock. In particular, for complex deadlocks caused by the
interactions of possibly many different locations and tasks,
it might be very important to know the concrete deadlock
trace, i.e., the locations that are involved, and, the exact
sequence of task interleavings that cause the deadlock. This
can be an essential information to allow the programmer
identifying and fixing the problem.
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In contrast, testing consists in executing the application.
In dynamic testing, the application is executed for concrete
input values, while in static testing it is executed symbolically
(i.e., without any knowledge on the concrete inputs). Most
errors in concurrent programs, including deadlocks, may
manifest only on specific sequences of task interleavings.
Hence, in principle, in order not to lose any possible behavior
of the program, the testing process must systematically con-
sider all possible ways in which the different tasks can inter-
leave their execution. Applying systematic testing [5]–[7]
for deadlock detection allows obtaining detailed traces for the
deadlocks that are found. This is one of the main advantages
of testing techniques w.r.t static deadlock analysis since it can
help the user in finding the source of the deadlock. However,
there are two main complications: (1) Even applying aggres-
sive Partial Order Reduction (POR) techniques [8]–[11]
to avoid the exploration of redundant executions, there is
usually a state-explosion problem. This is a general threat to
the application of systematic testing on concurrent programs.
(2) It is well known that dynamic testing can only verify the
presence of errors, but not their absence. Hence, deadlock
freedom can only be guaranteed for terminating programs
with a concrete set of inputs. Instead, in static testing, dead-
lock freedom can be ensured for a program with unknown
inputs. However, as soon as there is a loop in the program
whose termination depends on unknown data, it is required
to use a termination criterion in order to guarantee finiteness
of the process. E.g, a classical termination criterion consists
in limiting the number of iterations of each program loop.
Hence, in this context, deadlock freedom can only be ensured
for the particular termination criterion used.

This article proposes a testing methodology that com-
bines static analysis and symbolic/systematic execution for
effective deadlock detection. Essentially, we firstly invoke an
existing static deadlock analysis [1] in order to get abstract
descriptions of potential deadlock cycles. Such abstract dead-
lock cycles are used in a second step to steer the symbolic exe-
cution in order to find associated deadlock traces (or discard
them), avoiding as much as possible the exploration of paths
that do not lead to these deadlock cycles. When the program
features a deadlock, our combined use of analysis and sym-
bolic/systematic execution provides an effective technique to
catch deadlock traces. The development of such combined
framework requires: (1) pruning, as soon as possible, those
paths that are guaranteed to be deadlock free, while keeping
the exploration in order to find deadlock paths (if there are),
and (2) handling, together with the path constraints that arise
during symbolic execution, the constraints describing the
potential deadlock cycles.

This article is a revised and extended version of a confer-
ence paper that appeared in the proceedings of iFM’16 [12].
The fundamental contribution w.r.t. [12] is the extension,
implementation and experimental evaluation of our deadlock-
guided approach to the static testing setting with symbolic
execution. This allows applying our approach to find dead-
lock traces to contexts where the input data is unknown.

In contrast, [12] is defined for dynamic testing which requires
full knowledge of the input data. This has a clear theoretical
interest as it generalizes the previous work to a static setting.
Besides, the practical impact of such extension is important
as now we can use it to prove deadlock freeness, i.e., if we
are able to symbolically execute the whole program without
finding any deadlock trace, nor termination problem, then
the program is proven to be deadlock free. Also, this allows
applying our approach for performing test-case generation
via symbolic execution [13], [14].

The original research was part of the Master thesis of one
of the authors [15] where we explored a proof-of-concept
of the approach in the Constraint Logic Programming
setting.

II. ASYNCHRONOUS PROGRAMS: SYNTAX
AND SEMANTICS
We formalize our approach for the ABS concurrent objects
language [16]. It is based on a distributed programming
model with explicit locations. This concurrency model is
in fact quite general since it subsumes both rendez-vous
synchronization as in Ada [17]; actor-based asynchronous
message passing [18] (see e.g., Erlang [19] and Akka [20],
[21]); fork/join parallelism [22]; futures [23] in Argus [24]
andMultiLisp [25] and in active-object languages and frame-
works such as ConcurrentSmalltalk [26], ABCL [27], Eiffel
Parallel [28], CJava [29], and ProActive [30].

Locations model computation entities each of which
contains a call stack, a local storage (or heap) and a
buffer of scheduled tasks (initially empty). Locations select
non-deterministically tasks from their buffer for execution.
A task hence executes on its own location being able to
access its own local storage, schedule asynchronously tasks
to other locations or on its own location, and synchronize
with the completion of other tasks. Locations hence behave
as concurrent objects. Future variables [31] are used for
synchronizing program execution with the termination of
asynchronous tasks. A future variable acts as a proxy for a
result that is initially unknown, usually because the compu-
tation of its value is yet incomplete. When the future vari-
able is ready, the result can be retrieved. We use the syntax
f = x ! m(z) to denote an asynchronous call of task or
method m(z), which is sent to location x and whose result
is associated with future variable f. Instruction r = f.get
allows blocking the execution until the task executing m that
is associated to f terminates, and it retrieves the result in r. The
declaration of a future variable f is written Fut<T> f, where
T is the type of the result r. When the execution of a task in a
location finishes, the location selects (non-deterministically)
from its buffer another task for execution. The number of
distributed locations does not need to be known statically. The
instruction new allows to dynamically create new locations.
For instance, the instruction b = new Location(); creates
a distributed location of type Location which is referenced
by b. The program consists of a set of classes that define the
types of locations.

46034 VOLUME 9, 2021



M. Gómez-Zamalloa, M. Isabel: Deadlock-Guided Testing

FIGURE 1. Macro-step semantics rule of asynchronous programs.

Each of them defines a set of fields and methods of the
form M::=T m(T x){s}, where statements s take the form
s::=s; s | x=e | if e then s else s | while e do s | return x; |
b=new | f = x ! m(z) | x = f.get. All methods must return
something, hence void methods are by-default expressed as
int methods returning 0. The syntax of expressions e and
types T is deliberately left open for generality.

A. SEMANTICS OF ASYNCHRONOUS PROGRAMS
States of our asynchronous programs are defined as a set
of locations and future variables loc0 · · · locn · fut0 · · · futm.
Locations are represented as terms of the form loc(o, tk, h,Q)
where o is the unique identifier of the location, tk is the
unique identifier of the task which is currently executing,
which is said to hold the location’s lock. We write ⊥ if the
location is currently not executing any task, i.e., the lock of
the location is currently free. h denotes the location’s local
storage (or heap), and Q the location’s buffer of scheduled
tasks. Future variables are represented as terms of the form
fut(id, o, tk,m, r) where id is a unique identifier, o is the
identifier of the location which is executing the task tk whose
termination is synchronized via the future variable, m is the
program point where tk starts and r is the value which is
returned by tk , or ⊥ if the execution of tk is not completed.
Tasks are represented as terms of the form tsk(tk,m, l, s)
where tk is the task identifier, m is the name of the method
associated with the task, l maps local variables to their asso-
ciated current values, and s is the sequence of instructions to
be executed. We consider the initial entry of the program is
the main method which is included in the Main class.

We define the semantics of our asynchronous programs via
macro-step semantics [7]. This is possible because locations
do not share anything of their states and because the execution
of tasks can not be interrupted. The transition rule ‘‘−→’’
denotes the sequential execution (without interleavings) of
all instructions of a task until it reaches a return or a get
statement.

The semantics rule for ‘‘−→’’, referred to as MSTEP, is
shown in Figure 1, and selects non-deterministically an avail-
able task from one active location in the state (i.e., a location
with a non-empty task buffer). The micro-step transitions
 define the evaluation of the statements within a given
location. The micro-step transition rules for the different
statements of the language are standard and are thus omitted.
They can be found in [12].

We define a derivation or execution E ≡ S0−→ · · · −→
Sn as a sequence of macro-steps (applications of rule MSTEP).
If S0 is the initial state and @ Sn+1 6= Sn such that Sn−→ Sn+1
we say that the derivation is complete. Due to undeterminism,
there can be different derivations from a given state. We use

exec(S) to denote the set of all possible complete derivations
starting at a given state S. Transitions are sometimes labeled
with o · tk , being o and tk the names of the selected location
and task in ruleMSTEP. The systematic exploration of exec(S)
thus corresponds to the standard systematic testing setting in
which all possible explorations are performed without elimi-
nating any redundancy. The semantics will be exemplified in
the next two sections.

III. MOTIVATING EXAMPLE
Our running example simulates a simple communication pro-
tocol among a database and n workers. Our implementation
in Figure 2 has three classes, a Main class which includes the
main method, and classes Worker and DB implementing the
workers and the database, respectively. The main method just
calls method simulate with the number of workers to create
in its parameter (in this case 1). Method simulate creates the
database and the n workers, and spawns tasks register and
work on each of them, respectively. A worker executing task
work simply requires the access to the data stored by the
database (spawning a task getData) and thus, it gets blocked
awaiting for the result until the data are returned by the
database and stored in its own data field. Method getData of
the database checks if the caller worker has been previously
registered as its client, in which case it returns the value of its
data field. Otherwise, it returns null. The register method of
the database registers the provided worker reference adding it
to its clients list field. In case checkOn is true, before adding
the worker, it makes sure that the worker is online. This is
done by spawning a task ping with a concrete value and
blocking until it gets the result with the same value.

We can observe different scenarios depending on the
sequence of interleavings among the different tasks involved
in the communication protocol:
• (I) As one would expect, i.e., with w.data=db.data,
• (II) with w.data=null, or,
• (III) in a deadlock.

Scenario (I) happens when the database has registered the
worker as its own client (assignment at line 25) before it exe-
cutes task getData. Scenario (II) happens when the database
executes task getData before the assignment at line 25. In sce-
nario (III), we can find a deadlock situation. It happens if both
tasks register and work start executing before tasks getData
and ping.

IV. SYMBOLIC EXECUTION
Symbolic execution [14], [32]–[36] is a well-known static
testing technique which is able to execute a program without
knowledge of its inputs. It hence allows to statically test
fragments of a program independently. The execution is per-
formed using constraint variables, that represent symbolic
values, rather than concrete values. As a result, symbolic exe-
cution produces a set of equivalence classes of inputs, which
are often called path conditions. A path condition essentially
consists of the constraints or conditions on the input data
that make the program to traverse the corresponding program
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FIGURE 2. Communication protocol among a DB and n workers.

path. Path conditions also include relations between the input
and output of the program. For instance, let us consider this
function

int abs(int n){ if (n<0) return −n; else return n; }

The following two path conditions are obtained:
{〈N < 0, Z=−N〉, 〈N≥0,Z=N〉} where Z denotes the return
value of the function. The first equivalence class charac-
terizes program executions taking the then branch, with
input condition N<0 and with relation Z=−N for the output.
The second characterizes executions of the else branch with
input conditionN≥0 and relation Z=N for the output. Note the
use of uppercase letters on constraint variables to distinguish
them from ordinary program variables.
Example 1: Consider a context in which there is a location

dbwhose buffer contains a task getData. The input parameter
of the task is a constraint variable W, and its local heap is
mapped to constraint variables as follows: {data 7→D, clients
7→ Cls, checkOn 7→ CO}.We obtain three different derivations
with the following path conditions:

1) 〈Cls=[], Ret= null〉, i.e., the task returns null if the
clients list does not contain any client,

2) 〈Cls=[X], X6=W, Ret= null〉, i.e., if the worker W is not
in the list it returns null,

3) 〈Cls=W::Cls’,Ret=D〉, i.e., the task returns the stored
data D if worker W is in the head of the clients list.

The symbolic execution of function contains produces infi-
nite lists of increasing length with and without worker W at
every possible position of the list. This fact can be observed
in the third path condition where the new constraint variable
Cls’ appears.
Symbolic execution is in general unbounded since there

can be infinite derivations as soon as there is a loop in
the program whose termination depends on unknown data.
It is hence required to use a termination criterion in order
to guarantee finiteness of the process. It is also desirable to

use a criterion which is meaningful in terms of the coverage
which is achieved by the symbolic execution, and ideally,
which is related to well-known test adequacy criteria (branch
coverage, path coverage, etc.). Therefore, such a criterion is
often refer to as a termination/coverage criterion. A classical
criterion to guarantee termination is the loop-k criterion,
which establishes a limit on the number of loop iterations
which are allowed. E.g., in the above example, with k=1, the
symbolic execution produces the three derivations shown and
stops. However, in presence of concurrency, program termi-
nation is not guaranteed if we simply rely on this criterion
for the symbolic execution of all programs tasks. As shown
in [13], in the context of concurrent programs, there are more
factors that can threaten termination. Specifically, in sym-
bolic execution of concurrent programs, (1) there can be an
unbounded number of task switches, and, (2) there can be an
unbounded number of location creations. This is further stud-
ied in [13]. In this article the criteria defined in [13] are simply
adopted.
Example 2: Figure 3 shows the symbolic/systematic exe-

cution tree computed for the simulate method with an
unknown input parameter N and loop-k with k=1 as ter-
mination/coverage criterion. Derivations with dotted nodes
and edges are not deadlock, whereas those ending with a
squared node are deadlock. We can observe that seven com-
plete derivations are explored. The leftmost branch produces
the path-condition 〈N≤0〉. Its final state does not contain any
worker and the database does not execute any task along
the derivation. The remaining branches finish with the con-
dition 〈N=1〉 and correspond to the scenarios described in
Section III. Namely, the second and third branches finish with
the expected output state (scenario I), the fourth and fifth
derivations lead to deadlock states (scenario III). Finally,
the sixth and seventh branches refer to scenario II. Let us
notice the dashed branch is pruned since the loop limit is
k = 1, then branches with 〈N > 1〉 must not be explored.
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FIGURE 3. Symbolic/systematic execution tree from an initial context
with task simulate(N).

Let us explain in detail the explored derivations. Symbolic
execution starts with a free constraint variable N. In line 7
a new database location is created. Then, in line 8, since
variable N is unknown, symbolic execution branches. In the
first branch the path constraint N<=0 is added and hence
the execution does not enter the while loop and finishes with
such a path constraint and a database location. In the second
branch the path constraintN>0 is added, the execution enters
the loop, a worker location is created and tasks register and
work are scheduled on the database and worker locations
respectively. It then adds the constraint N2=N−1, evaluates
the loop guard and branches again. This time, in the first
branch we get the constraint N2<=0 (hence implying N=1),
the execution exits the loop and reaches the return at line 14.
It then proceeds to pick an available task for execution. In the
other branch the constraint N2>0 is added (hence implying
N>1), the execution attempts to enter again the loop but the
loop-k limit stops it. Let us continue with the derivation with
N=1 assuming that task register is selected. In the second
macro-step task register is hence executed on location db.
It then gets blocked awaiting for the termination of ping, but
only temporarily until task ping finishes. Similarly, location
w also gets temporarily blocked in the get instruction at
line 38, but will resume as soon as task getData finishes.
The third branch is similar to the previous one, the only
difference is the order of execution of tasks work and register
, since in the former, there is a state where both locations
are temporarily blocked, whereas in the latter, task register
finishes its execution before location w gets blocked because
of task work. Indeed, both branches can be considered as
equivalent according to the partial order reduction theory.
However, in the fourth derivation, task register is executed
(and location db gets blocked awaiting for the execution of
task ping), and then task work is also executed (blocking

location w waiting for task getData to be executed). The
future variable waited by the get instruction at line 38 will
never be ready since it is bound to a task to be executed by a
blocked location. This is therefore a deadlock state. Finally,
the fifth, the sixth, and the seventh derivations are analogous
to the fourth, the second, and the third branches, respectively.
Let us outline four states of the fourth derivation:

S0 ≡ loc(0, 0, .., {tsk(1, simulate, ..)}) 0,1
−→

S2 ≡ loc(0, 0, . . .)·loc(db,⊥, hdb, {tsk(2, reg, ..)})·

loc(w,⊥, hw, {tsk(3,wo, ..)}) db,2
−→

S3 ≡ loc(db, 2, .., {tsk(2, reg, f4.get)})·
fut(f4,w, 4, 41,⊥)·..·

loc(w,⊥, .., {tsk(4,ping, ..), ..})· w,3
−→

S5 ≡ loc(w, 3, ..,{tsk(3,work, f5.get), ..})·
fut(f5,db, 5, 29,⊥)·..·

loc(db, 2, .., {tsk(5,getData, ..), ..})

The second state S2 is obtained after executing task
simulate when the value of input parameter N is 1. The first
macro-step creates two new locations at lines 7 and 9 respec-
tively. It also spawns two tasks at lines 10 and 11 respectively
in their corresponding buffers. Observe that each location
and task receives a unique identifier (numbers are assigned as
task identifiers, whereas locations receive short names, e.g.,
reg for register). At state 3, the location db has executed the
task register and adds the future variable created at line 24 to
the new state. At state S5, the location w executes task work
and a new future variable is added to the state. As we will
see in Section V, the resulting state is deadlock. For clarity,
along the examples of this paper, we use location and task
names instead of numeric identifiers.

V. DEADLOCK-GUIDED TESTING
This section presents our testing methodology that combines
systematic/symbolic execution and static analysis for effec-
tive deadlock detection. As alreadymentioned, the systematic
exploration of all different task interleavings poses scalability
problems, even if we apply leading-edge POR technology to
detect redundancies (see Section VII). This problem is aggra-
vated in the case of symbolic execution due to its inherent
non-determinism produced in branching statements involving
unknown data.

In our working example (see Figure 3) POR technology is
at best able to detect that the third and fifth derivations are
redundant, hence saving the exploration of a total of 8 states.
The main goal of our deadlock-guided technique is however
to detect and stop, as soon as possible, derivations that will not
lead to deadlock. Namely, in our working example, the goal,
and the challenge, is to stop the second and third, and also
the fourth and fifth derivations at states 4 and 8 respectively,
hence saving the exploration of a total of 16 states.

In Section V-A, we first propose an extension of the
language semantics and program state to carry out the
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scheduling of the current execution and the status of tasks.
Then, in Section V-B, we present deadlock-guided testing,
our new methodology to guide the exploration towards dead-
lock traces. This methodology relies on the above informa-
tion, on the data reported by a static deadlock analyzer, and
on a symbolic/systematic execution engine.

This way we extend the technique presented in [12] to
the context of symbolic execution. This allows applying our
approach to find deadlock traces or to ensure deadlock free-
ness in contexts where the input data is possibly unknown.
Instead, in [12] it is required to have full knowledge of the
input data (i.e. the execution must start from a main method
that creates a concrete initial state). As a consequence, the
applicability of the methodology presented in [12] is much
more limited. Besides, we have re-formalized certain aspects
of our methodology in [12], on one hand, improving the
overall clarity of the presentation, and also, allowing it to be
applied for different deadlock-based testing adequacy criteria
(see Section V-C). Finally, we have also added a soundness
proof of our methodology (see Section V-B3).

A. THE INTERLEAVINGS TABLE AND
ENHANCED SEMANTICS
The interleavings table stores all scheduling decisions among
the tasks involved in the execution.When an execution is fully
explored, we can use this table to recover the exact ordering
of the performed macro-steps. Specifically, the interleavings
table IT is a mapping with entries of the form to,tk,pp 7→
〈n, ρ〉, where:
• to,tk,pp is a macro-step identifier, or time identifier.
It includes the identifiers of the location o and task tk
that have been selected in the macro-step. Finally, pp
indicates the program point of the first instruction that
the current macro-step executes;

• n is an integer that indicates the clock-time when the
current macro-step starts its execution;

• ρ is the status of the current task and the cause of the stop
of the macro-step. It can take two different values: (i) pp
:f.get when the macro-step finished at program point pp
on a get instruction on a future variable f which is not
ready; or (ii) return when the task has already finished.

As notation, the relation t ∈ IT denotes the existence of an
entry t 7→ 〈n, ρ〉 ∈ IT .
Example 3: In Figure 4, we show the interleavings table

computed for the fourth execution in Figure 3 of Section III.
This table has as many entries as macro-steps in the execu-
tion. Thanks to the time values assigned to each time identi-
fier, we can know the scheduling decisions that lead to such
an execution. Finally, we show in the right column the future
variables appearing in each state. These variables store not
only the location and task they are bound to, but also the
return information (⊥ in both cases, since their associated
tasks have not finished).

1) ENHANCED SEMANTICS FOR DEADLOCK DETECTION
The semantics of our asynchronous language is extended
by updating rule MSTEP as in Figure 5. Function clock(n)

FIGURE 4. Interleavings table for Example 3.

FIGURE 5. MSTEP2 rule for deadlock-guided testing.

represents a clock, starting at 0, which is increased by
one in every call to function clock , and returns the current
value n.

For now, we should ignore function checkC. It will be
defined in Section V-B2. Essentially, there are two new
aspects: (1) We extend the state with the status ρ, attached by
means of the symbol �. Its initial value, written ρ∅, is a fresh
variable that annotates the value pp:f.get when the task being
executed stops because of a get instruction, awaiting for the
termination of the task bound to f, or the value return when
the current task has completely finished. (2) Every program
state is extended with the interleavings table IT . In case there
has been progress in the execution, i.e., S ′′ 6= S; and we also
add a new entry to,tk,pp 7→ 〈n, ρ〉 to IT , where o and tk are
the current location and task identifiers, respectively, chosen
by function selectTask; pp is the first instruction executed by
the current macrostep; n is the current clock time. Finally, ρ
stores the cause of the end of the current macrostep.

B. GUIDING TESTING USING STATIC DEADLOCK ANALYSIS
In this section we present our new methodology, a combi-
nation of static analysis and systematic/symbolic execution
for effective deadlock detection that works as follows. First,
we run a state-of-the-art deadlock analyzer [1]. This analyzer
reports a set of abstract deadlock cycles. If this set does not
contain any cycle, then the analyzer is able to prove deadlock
freedom. Otherwise, we use these abstract cycles to perform
a systematic/symbolic execution which is steered towards
executions that might lead to deadlock, discarding as soon
as possible executions leading to a deadlock-free final state.
This process has the following two goals: (1) finding concrete
deadlock traces related to the abstract cycles, and, (2) discard-
ing spurious abstract cycles, produced by the loss of precision
of the analysis. In case we are able to discard all cycles,
we prove deadlock freedom up to the limits imposed on the
symbolic execution to ensure termination (e.g., number of the
loop iterations). The experimental evaluation in Section VI
shows that this methodology is able to significantly reduce
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the search space compared to the full exploration performed
by the standard systematic/symbolic execution.

1) DEADLOCK ANALYSIS AND ABSTRACT DEADLOCK
CYCLES
Given a program state S, its dependency graph GS is for-
malized in [1]. If there exists a cycle in GS , then S is a
deadlock state. The abstraction of this graph is called abstract
dependency graph G.
Definition 1 (Abstract Dependency Graph G): Let L and

T be the set of abstract locations and abstract tasks, respec-
tively. The abstract dependency graph is a directed graph G,
whose nodes are L and T , and whose edges are:
1) Location-Task: l

pp:tk
−−→ tk ′ iff there is a location l ∈ L

and there are tasks tk, tk ′ ∈ T such that l is blocked
in an instruction pp: x=y.get of tk awaiting for the
termination of tk ′.

2) Task-Task: tk
pp:tk
−−→ tk ′ iff there are tasks tk, tk ′ ∈ T

such that tk is awaiting in an instruction pp: x=y.get
for the termination of task tk ′.

3) Task-Location: tk
pp:tk
−−→ l iff there is a task tk ∈ T and

a location l ∈ L such that tk is awaiting to be executed
by location l, where pp is the entry program point of
task tk.

If G does not contain any abstract deadlock cycle, then the
program is deadlock-free. Otherwise, the deadlock analysis
of [1] returns a set of abstract deadlock cycles in G. Each
cycle is of the form e1

p1:tk1
−−−→ e2

p2:tk2
−−−→ . . .

pn:tkn
−−−→ e1, where

p1, . . . , pn are program points, tk1, . . . , tkn are task abstrac-
tions, and nodes e1, . . . , en are either location abstractions or

task abstractions. Each arrow e
p:tk
−−→ e′ should be interpreted

like ‘‘location or task e is waiting for the termination of
location or task e′ due to a get instruction at program point
p of task tk’’. We can distinguish three kinds of arrows:
(1) task-task, a task is blocked waiting for the termination
of another one; (2) task-location, a task is awaiting to be
executed by a (possibly) blocked location; and (3) location-
task, the location is blocked in a get instruction awaiting
for the termination of the task. Let us notice that location-
location arrows do not happen using the analyzer in [1].
This analyzer allows us to perform both task and location

abstractions at different levels of accuracy. For the sake of
simplicity, we assume a simple abstraction for our formal-
ization: a concrete location o created at program point pp is
abstracted by opp, and each task is abstracted by the corre-
sponding method name. Such a simple abstraction could be
rather imprecise as soon as there are loops which create many
locations at the same program point and invoke the same
method on the different locations. The analyzer uses points-to
analysis as the basis to infer such abstractions. Much more
clever abstractions could be used during the points-to anal-
ysis making the deadlock analysis, and consequently, our
deadlock-guided testing approach potentially more accurate.
Example 4: In our working example we have two abstract

locations: o7, which represents a concrete location database

created at program point 7; and o9, which represents the
n concrete locations worker, created in the loop at pro-
gram point 9. We also have four abstract tasks: register,
getData, work and ping. The deadlock analysis reports the

following cycle: o7
25:register
−−−−−−→ ping

41:ping
−−−−→ o9

38:work
−−−−→

getData
29:getData
−−−−−−→ o7. The first arrow indicates that the

location created at program point 7 is blocked awaiting for
task ping to be executed because of the get instruction at
program point 25 of task register. Also, the second arrow
means that task ping is awaiting to be executed on the (pos-
sibly) blocked location o9. The deadlock analysis produces
as a result a set of this kind of abstract deadlock cycles.
It can be seen, however, that such information can be rather
insufficient for a user to figure out how these dependencies
may arise, and, more importantly, the scheduling decisions
that are causing the deadlock.

Let function α denote a mapping from concrete cycles in
the dependency graph to their corresponding cycles in the
abstract dependency graph.
Definition 2 (Representative of an Abstract Deadlock

Cycle c): An extended state (S, IT ) is a representative of an
abstract deadlock cycle c if ∃γ ∈ GS such that α(γ ) = c.

We say that every derivation leading to a state which is
a representative of an abstract deadlock cycle is a deadlock
trace.

2) GUIDING TESTING TOWARDS DEADLOCK CYCLES
This section presents a novel technique to improve the per-
formance of the symbolic execution guiding it towards exe-
cutions that might lead to a representative of a given abstract
deadlock cycle, by discarding as soon as possible derivations
that cannot be a representative. This novel technique works
as follows: (1) we generate deadlock-cycle constraints using
a given abstract deadlock cycle c reported by the analyzer.
Each of these constraints must hold in all states of derivations
whose final state is a representative of c. (2) The execution
semantics is extended to support these constraints, with the
aim of avoiding the exploration of the remaining executions
as soon as one of these constraints is not satisfied.

Before going into the formalization and technical details
of the generation of the deadlock-cycle constraints and the
semantics extension, let us illustrate the main intuitions
through our working example.

a: AN ILLUSTRATIVE EXAMPLE
The first two arrows of the deadlock cycle in Example 4
indicate that, in order to reach a deadlock, a task register and
a task ping must arise at some state during the computation
(or must already be present), so that register blocks waiting
for ping, and ping has not yet finished. Similarly, the last two
arrows of the cycle indicate that a taskwork and a task getData
must also arise at some state during the computation (or must
already be present), so that work blocks waiting for getData,
and getData has not yet finished either. All this information
will be encoded in our deadlock-cycle constraints. Therefore,
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if we are interested only in deadlock executions, as soon as
we can infer that (i) at least one of such tasks cannot arise
from an state, i.e. it is not reachable, we can safely stop the
exploration. Also, we can stop the exploration if (ii) at some
state, (iia) we already have some of such tasks, (iib) we can
infer that no more representatives of them can arise, and,
(iic) either task ping or getData has finished. Our extended
semantics check that such constraints hold at every state
stopping the execution otherwise.

Let us outline the exploration performed by our deadlock-
guided testing scheme on our working example (see
Figure 3). At state 0 only task simulate is scheduled. Looking
at its code we observe that tasks register and work are reach-
able, and from them also tasks ping and getData. At state 2
tasks register and work are scheduled, and from them we still
see that tasks ping and getData may arise. At state 3, we have
that register is blocked waiting for task ping, and ping has
not yet finished. This information is obtained from the state’s
interleavings table (see S3 in Figure 4). At state 4 we have that
task ping has already finished. Also, we can infer that nomore
register nor ping tasks may arise from that state. We therefore
have the situation (ii) above and the exploration can be safely
stopped at this point. A similar situation happens at state 8,
in this case with tasks work and getData. �

In the following, we define deadlock-cycle constraints
and the associated generation procedure. Let us notice that
we represent incomplete information in these constraints by
using variables in uppercase letters.
Definition 3 (Deadlock-Cycle Constraints): Given an

extended state (S, IT ), a deadlock-cycle constraint takes one
of the following two forms:

1) ∃tL,T ,PP 7→ 〈N , ρ〉, that requires the existence (at some
point) of a table entry of this form in IT (time con-
straint)

2) ∃fut(F,L,Tk, p,⊥), that requires the existence
(at some point) of a future variable of this form in
S, whose bound task Tk cannot have finished (fut
constraint)

Given an abstract deadlock cycle c, function φ(c) computes
the set of deadlock-cycle constraints associated to c.
Definition 4 (Generation of Deadlock-Cycle Constraints):

Given an abstract deadlock cycle e1
p1:tk1
−−−→ e2

p2:tk2
−−−→

. . .
pn:tkn
−−−→ e1, and two fresh variables Li,Tk i, φ is defined

as φ(ei
pi:tk i
−−−→ ej

pj:tk j
−−−→ . . . ,Li,Tk i) =

{∃tLi,Tk i,_ 7→〈_, pi:Fi.get〉, ∃fut(Fi,Lj,Tk j, pj,⊥)} ∪

φ(ej
pj:tk j
−−−→ . . . ,Lj,Tk j) if ej=tk j

φ(ej
pj:tk j
−−−→ . . . ,Li,Tk j) if ej= `

Uppercase letters appearing for the first time in the con-
straints are fresh variables. This function has two different
cases depending if ej is an abstract task or an abstract loca-
tion. The former handles location-task and task-task arrows,
whereas the latter handles task-location arrows. Note the

following observations: (1) We do not use the abstract loca-
tion and task identifiers of the deadlock cycle to generate
the deadlock-cycle constraints, since they refer to concrete
identifiers. Even if the same identifier is contained on two
different nodes or arrows of the cycle, the corresponding
variables in the constraints cannot be bound (i.e., the same
variables cannot be used) since they could refer to different
concrete identifiers. (2) The information contained by the
cycle about the program points (pi and pj) is employed to
generate both time and fut constraints. (3) Location and task
identifier variables of fut constraints and subsequent time or
pending constraints are bound (i.e., the same variables are
used). We achieve that by using the 2nd and 3rd parameters
of function φ. (4) In the second case, we use a fresh variable
Tk j since the location executing Tk i can be blocked due
to a (possibly) different task. Intuitively, these constraints
characterize all possible deadlock traces representing the
input cycle. By abuse of notation, we use φ(c) as φ(c,L,T ),
where c is an abstract deadlock-cycle and L and T are fresh
variables.
Example 5: Let us see the deadlock-cycle constraints that

function φ computes for cycle c in Example 4:

{∃ tL1,Tk1,_ 7→ 〈_, 25:F1.get〉, ∃ fut(F1,L2,Tk2, 41,⊥),
∃ tL2,Tk2,_ 7→ 〈_, 38:F2.get〉, ∃ fut(F2,L3,Tk3, 29,⊥)}

We show these constraints according to the order in which φ
computes them. The first two constraints require the existence
of a concrete time in IT in which some blocked database is
awaiting while executing task register at line 25 for a certain
worker to obtain the result of task ping at line 41. Notice that
the worker has not executed ping because the future variable
has the value ⊥.
Moreover, the last two constraints require IT to contain a

concrete time in which the this worker is blocked awaiting
at line 38. It will not resume its execution until the reception
of the data stored by some database at line 29. These data
cannot be returned because the future variable has the value
⊥. The constraints correspond to the intuition given above
in the illustrative example of Section V-B2.a. It is important
to highlight that, to preserve completeness, we do not bind
the former and the latter databases. In a general example
with several databases, there could be a deadlock in which a
database waits for a worker which in turn waits for another
database and worker, so that the last one waits to get the data
stored by the first database. In case these two databases share
the same variable name during the computation of function φ,
we would not find the previous deadlock. That is, a deadlock
trace can traverse several times an abstract deadlock cycle
and still be one of its representatives.

Now, we use the deadlock-cycle constraints computed by
φ for the given cycle to monitor and guide the systemat-
ic/symbolic execution, stopping derivations as soon as we
explore a program state where one of these constraints is not
satisfied. Boolean function checkC checks the satisfiability of
the constraints at a given state.
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Definition 5: Given a set of deadlock-cycle constraints C,
and an extended state (S, IT ), function check holds, written
checkC(S, IT ), if:

∀{tLi,Tk i,P 7→〈N , pi:Fi.get)〉, fut(Fi,Lj,Tk j, pj,⊥)} ∈ C

one of the following conditions holds:
1) reachable(tLi,Tk i,pi , S)
2) ∃ toi,tk i,p 7→ 〈n, pi:fi.get)〉 ∈ IT ∧

fut(fi, oj, tk j, pj,⊥) ∈ S
Function reachable checks whether a given task might

be spawned in subsequent states from state S. This is syn-
tactically over-approximated by computing the transitive call
relations from all tasks in the buffers of all locations in S. The
use of more advanced analyses can improve the precision of
the reachability of these tasks.

Intuitively, function check returns false if there is at least a
time constraint so that: (i) its time identifier is not reachable,
and, (ii) for every entry in IT matching the time constraint,
there is a related fut constraint which is violated, i.e., its
bound task has already finished in S (the return value is
different from ⊥). Condition (i) guarantees that there cannot
be more representatives of the given cycle in future states.
Consequently, if the execution can lead to deadlock, the inter-
leavings table must already contain the time identifiers of the
tasks involved in the abstract cycle. Condition (ii) guarantees
that the current state cannot lead to deadlock since, at least
one of the future variables which are being awaited by a
blocked task is ready, and thus, such a task can resume its
execution. Therefore, the current explored state cannot lead
to a deadlock execution for the given cycle, and we can stop
the derivation to avoid its exploration.

Given an extended state (S0, IT0), execc(S0, IT0) denotes
the set of all complete derivations starting at (S0, IT0)
using our enhanced semantics of Section V-A for cycle c.
That includes finished derivations, deadlock derivations and
derivations stopped by the check function. Formally, given the
abstract deadlock-cycle c and a derivation d ≡ (S0, IT0)−→
· · · −→ (Sn, ITn), we say d ∈ execc(S0, IT0) if (S0, IT0)
is the extended initial state and one of the following holds:
(1) @ Sn+1 6= Sn such that (Sn, ITn) −→ (Sn+1, ITn+1)
(Sn is a deadlock final state or the buffer of every location
in Sn is empty), or (2) function checkφ(c) does not hold in
(Sn, ITn) (the execution cannot lead to a deadlock state since
a deadlock-cycle constraint does not hold). Let us also define
function deadlockc(S, IT ) that checks if the extended state
(S, IT ) is a representative of the abstract deadlock cycle c.
Definition 6 ( Deadlock-Cycle Guided-Testing (DCGTc)):

Consider an abstract deadlock cycle c and an extended initial
state (S0, IT0). We define DCGTc, as the set {d : d ∈
execc(S0, IT0),deadlockc(Sd , ITd )}, where (Sd , ITd ) is the
last state in derivation d. Let us also denote with DCGTsearchc
the exploration that is performed by DCGTc until the first
representative of the abstract deadlock cycle c is found.

Intuitively, DCGTc computes all derivations leading to
a representative of the abstract deadlock cycle c, possibly
pruning (by means of the check function) derivations that do

not lead to it. Instead, DCGTsearchc stops the exploration as
soon as the first representative of c is found, hence its result
can only be an unitary set or an empty set. Note that, DCGTc,
and also DCGTsearchc , can yield the empty set which means
that the abstract cycle c obtained by the static analysis is a
false positive.
Example 6: Let us consider the deadlock-cycle c of

Example 4, and thus, the deadlock-cycle constraints φ(c)
of Example 5. We apply DCGTc to find all the dead-
lock traces that are representatives of cycle c. The
interleavings table in the fourth state of the second
derivation contains the entries t0,simulate,6 7→〈0, return〉,
tdb,register,22 7→〈1, 25:f0.get〉 and tw,ping,41 7→〈2, return〉.
Constraints {∃tL1,Tk1,_ 7→〈_, 25:F1.get〉, ∃fut(F1,L2,Tk2,
41,⊥)} are not satisfiable (task ping has already finished at
this point, as we can see in the interleavings table). checkC
does not hold since tL1,Tk1,25 is not reachable anymore and
thus, the derivation is pruned because there is no deadlock
state reachable from this state. At state 8, the seventh deriva-
tion is similarly stopped. Also, the 4th and 5th derivations
are deadlock executions which represent the abstract cycle c.
These two executions are the deadlock traces obtained apply-
ing DCGTc. Our methodology therefore explores 9 states
instead of the 25 explored by the full symbolic/systematic
execution. DCGT searchc stops the exploration of the first two
executions at states 1 and 4, respectively. Finally, it detects
state 5 as a representative of c and thus, the exploration is
finished.

3) PROOF OF SOUNDNESS
The next theorem claims the soundness of the approach. Intu-
itively, if the symbolic/systematic execution explores a dead-
lock trace d which is a representative of an abstract cycle c,
then DCGTc will also explore d .
Theorem 1 (Soundness of DCGTc): Given an extended

initial state (S0, IT0) and an abstract cycle c, ∀d ∈

exec(S0, IT0), d ≡ (S0, IT0) −→
∗ (Sn, ITn),

∃γ ∈ GSn such that α(γ ) = c H⇒ d ∈ execc(S0, IT0)

Proof: By contradiction, let us suppose that ∃d ∈
exec(S0, IT0) and d 6∈ execc(S0, IT0). Hence, ∃(Si, ITi) ∈ d
such that checkφ(c)(Si, ITi) returns false and, consequently,
the derivation (S0, IT0) −→

∗ (Si, ITi) stops. Therefore,
at (Si, ITi), there exists a set of deadlock-cycle constraints
{tLi,Tk i,PP 7→ 〈N , pi : Fi.get〉, fut(Fi,Lj,Tk j, pj,⊥)} ⊆ φ(c)
that do not hold neither (1) nor (2) in Definition 5. However,
this situation cannot occur, since function φ(c) requires nec-
essary constraints for the existence of some representative of
c andGSn contains a cycle that is a representative of c, then (1)
or (2) must be fulfilled in every state of d and, in particular,
in (Si, ITi). As a result, we get a contradiction. �

C. DEADLOCK-BASED TESTING CRITERIA
In the application of testing for deadlock detection, and in
a general setting where there could occur different potential
deadlock cycles, the following practical questions arise: do
we need to obtain all deadlock traces? or are we rather
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interested in just finding the first deadlock trace? For the
purpose of the programmer to identify and fix the sources of
the deadlock error(s), it could be instead more useful to find
a deadlock trace per abstract deadlock cycle.

Let us define the following tree deadlock-based testing
adequacy criteria:
• all−deadlocks, which requires the exploration of all exe-
cutions leading to a final deadlock state;

• first−deadlock, which requires the exploration of a dead-
lock execution; and,

• deadlock−per−cycle, which, for each deadlock cycle
reported by the analyzer, requires the exploration of
a deadlock execution representing the given deadlock
cycle (if it exists).

We have implemented the corresponding concrete testing
schemes for each of the above criteria relying on our DCGT
methodology.

1) DEADLOCK-GUIDED TESTING FOR THE all−deadlocks
CRITERION
Let us define a deadlock-guided testing scheme for the all−
deadlocks criterion, written DGT all , as follows:

DGT all =
⋃
c∈0

DCGTc

where 0 is the set of abstract deadlock cycles returned by the
deadlock analysis. Let us observe that in this case DCGTc
is invoked for each abstract cycle c. It is important to notice
that we can run each DCGTc in parallel, as these processes
are independent with each other. One can also set a time-limit
per DCGTc to avoid that the state explosion on a DCGTc for
a certain cycle affects the performance of the whole process.
Example 7: Let us consider an initial context in which

the location main contains the tasks 1:simulate(N1) and 2:
simulate(N2). The deadlock analysis for such an initial con-
text returns two abstract deadlock cycles, c1 and c2, which are
both analogous to cycle c in Example 4, but with their abstract
nodes containing not only the program point where they were
created but also the identifier of their corresponding creator
task. This information is obtained thanks to the points-to
analysis used as the basis to infer the abstractions of the
deadlock analysis. DGTall invokes DCGTc1 and DCGTc2 ,
possibly in parallel, and explores a total of 14 deadlock traces
instead of the 49 derivations that would be explored by a full
systematic/symbolic execution.

2) DEADLOCK-GUIDED TESTING FOR THE first−deadlock
CRITERION
Let us define a deadlock-guided testing scheme for the first
−deadlock criterion, written DGT first , algorithmically as fol-
lows:

function DGT first =
for each (c ∈ 0)
let d = DCGTsearchc ;
if (d 6= ∅) then break;

return d;

where 0 is again the set of abstract deadlock cycles returned
by the deadlock analysis.
Example 8: Let us consider the same context as in Exam-

ple 7. DGT first would start invoking DCGTsearchc1 resulting in
a unitary set with a derivation analogous to the derivation
ending at state 5 in Figure 3. The process then finishes
returning such set.

3) DEADLOCK-GUIDED TESTING FOR THE
deadlock−per−cycle CRITERION
Let us finally define a deadlock-guided testing scheme
for the deadlock−per−cycle criterion, written DGT d−p−c,
as follows:

DGT d−p−c =
⋃
c∈0

DCGT searchc

where 0 is the set of abstract deadlock cycles returned by the
deadlock analysis. Let us observe that in this case DCGTsearchc
is invoked for each abstract cycle c. Again, it is important to
observe that we can run each DCGTsearchc in parallel since
they are completely independent. For practical reasons, we
have set a time-limit per DCGTsearchc to prevent that the state
explosion on a DCGTc for a certain cycle c downgrades the
performance of DGTd−p−c.
Example 9: Let us consider again the same context as in

Example 7. DGT d−p−c invokes DCGTsearchc1 and DCGTsearchc2 ,
possibly in parallel, obtaining for them two unitary sets, each
with the corresponding derivation analogous to the deriva-
tion ending at state 5 in Figure 3. The union of the two sets
is hence produced by DGT d−p−c. Therefore DGT d−p−c only
needs to explore two deadlock traces, each of them covering
one of the abstract deadlock cycles, instead of the 49 possible
derivations that would be explored by a full systematic/sym-
bolic execution.

VI. EXPERIMENTAL EVALUATION
All the techniques developed throughout the paper have been
integrated within the tool SYCO/aPET [37], [38]. The tool
is able to perform both dynamic and static testing for the
ABS concurrent objects language [16]. It also incorporates
techniques based on partial-order reduction [8], [9] to reduce
the number of executions considered during the testing pro-
cess by identifying and avoiding redundancies. The web site
http://costa.fdi.ucm.es/syco contains a user-friendly interface
to use SYCO online. Most of the benchmarks used in the
experimental evaluation can also be found at the web site.

A. THE ABS LANGUAGE
In the ABS language, concurrent objects communicate with
each other by means of asynchronousmethod calls. Each call
spawns a new task to be executed by the receiving concurrent
object. The synchronization between two tasks is performed
by the use of future variables and two different kind of
synchronization instructions. The blocking instruction f.get
retains the processor of the executing concurrent object until
the task related to the future variable f has finished. On the
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other hand, the non-blocking instruction await f? releases the
processor if the task related to f has not finished. Conse-
quently, other tasks can be executed while the future variable
f gets ready. In the proposed framework, handling the await
instruction does not add any technical complication and our
implementation includes support for it. However, for the sake
of simplicity, we have not included this formalization.

B. GOALS OF THE EXPERIMENTAL EVALUATION
In this section, we show our experimental evaluation whose
goals are the following:
G1 Show that systematic/symbolic execution based test-

ing complements static deadlock analysis. We consider
these two sub-goals:
G1a In cases where there are deadlocks, show that the

testing engine allows obtaining concrete deadlock
traces, i.e., the locations that are involved, and,
the exact sequence of task interleavings that cause
the deadlock.

G1b Discard possible false positives obtained by the
static analysis.

G2 Study the effectiveness of the exploration reduction of
our deadlock-guided methodology over the standard
systematic/symbolic execution, and show its improve-
ment in terms of scalability.

G3 Evaluate the possible overhead that our technique may
introduce. In particular, it is interesting to observe how
our methodology performs in a worst-case scenario
where we are not able to effectively guide the explo-
ration towards deadlocks.

G4 Show and compare the different testing schemes for
the different deadlock-based criteria of Section V-C,
and evaluate the potential impact of parallelizing the
different DCGT processes.

C. DESCRIPTION OF THE EXPERIMENTS
We have used two sets of benchmarks. The first one contains
classical concurrency programs with executions leading to
deadlock. Benchmark DBW is a communication protocol
between several workers requesting access to the data stored
by a database; benchmark F is a distributed implementation
of the factorial of a natural number; benchmark PP is a
solution for the pairing problem; benchmark UF contains
a loop that creates several concurrent objects and spawns
asynchronous tasks on them; benchmark HB is a solution for
the classical hungry birds problem; benchmark SB is a gener-
alization of the sleeping barber problem with several barbers
and clients. Finally, benchmark TF (borrowed from [1]) is
a work protocol between several workers in a factory, which
have been slightly adapted so that it produces deadlock execu-
tions. The second set of benchmarks contains deadlock-free
versions of some of the previous benchmarks. We use fP to
denote the P program for which the deadlock analyzer is not
able to prove deadlock freedom and returns a set of abstract
deadlock cycles. Finally, each of these benchmarks contains a
classMain and a method main with several input parameters.

Table 1 shows the results of the experimental evaluation.
It compares the performance of our deadlock guided testing
(DGT) methodology both for the deadlock−per−cycle and
all−deadlocks criteria (columns d-p-c and all, respectively),
against the performance of the standard symbolic execution.
In order to observe how the gain of DGT evolves with bigger
explorations, we execute each benchmark with two different
limits on the number of loop iterations (column k). These
limits are chosen differently for each benchmark accord-
ing to its complexity. We measure the number of complete
executions and the total time taken for both the systemat-
ic/symbolic execution and the DGT with the all−deadlocks
criterion (columns Ans and T). On the other hand, for the
DGT with the deadlock−per−cycle criterion we measure the
‘‘number of deadlock executions’’/‘‘number of unfeasible
cycles’’/‘‘number of abstract cycles inferred by the deadlock
analysis’’ (column D/U/C). Let us notice that the DCGTs
for each cycle could be performed in parallel. Consequently,
we also show the maximum time among the different DCGTs
(column Tmax) to show the best performance we could get if
the support for such parallelism would be implemented (goal
G4). We have imposed a timeout of 180 seconds and show∞
when the timeout is reached.

For instance, for the HB benchmark with limit k = 4,
we have that the standard systematic/symbolic execution is
not able to scale and reaches the timeout. However, our DGT
is able to find 1145 deadlock executions in 2847 ms. Also,
the columns for the deadlock−per−cycle criterion shows us
that the deadlock analysis finds five different abstract dead-
lock cycles, but three of them were false positives. For the
other two, we are able to find at least one feasible dead-
lock execution. The total time needed is 6912 ms. If we
assume an ideal parallel setting with 5 processors, one per
deadlock cycle, the total time could potentially be 2337 ms.
Note that this time also includes the time of the deadlock
analyzer.

We show the gains in time (columns in the group Speedup)
of deadlock-guided testing both for deadlock−per−cycle
(columns Tgain and Tmax

gain) and all−deadlocks (column
Tall
gain) over the standard systematic/symbolic execution. In the

case of the deadlock−per−cycle criterion, the gains are pro-
vided both (1) assuming a sequential setting, hence we con-
sider value T of DGT (column Tgain), and (2) an ideal
parallel setting, therefore considering Tmax (column Tmax

gain).
We compute these gains as X/Y , where X is the measure
of the systematic/symbolic execution and Y is that of the
corresponding DGT.

The experimental results are obtained on an Intel(R)
Core(TM) i7 CPU at 2.3GHz with 8GB of RAM, running
Mac OS X 10.8.5. Times are in milliseconds. We have
imposed a timeout of 180 seconds. If the timeout is reached
by DGT, we use >X to denote that we have obtained X units
for the considered measure right in the timeout. In the case
of the speedups, >X indicates that the speedup would be X
if DGT finishes in the timeout, and hence the real speedup is
guaranteed to be greater than X .
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TABLE 1. Experimental evaluation.

D. ANALYSIS OF THE RESULTS
To the light of the experimental results, we can confirm that
deadlock analysis and systematic/symbolic execution based
testing can complement each other (goal G1). For the first
set of benchmarks, concrete test cases (including input data,
full execution traces and scheduling decisions) for feasible
deadlock cycles are obtained. This information can help to
understand the cause of the deadlock and fix it (goal G1a).
For the second set of benchmarks, for which the analyzer is
imprecise and produce false positives, all potential deadlocks
are discarded and therefore we are able to prove deadlock
freedommodulo the termination limit that we have to impose
to guarantee the termination of the symbolic execution
(goal G1b).

As regards goal G2, our results also show that the pro-
posed technique is effective and that we can obtain a notable
reduction of the search space over the standard systemat-
ic/symbolic execution. The gains of DGT are huge (in many
cases, more than three orders of magnitude) both in time
and in number of explored states. It is also important to
notice that these gains are much larger in the first set of
benchmarks (namely, in DBW(3), F(4), F(10), PP(9), UF(3)).
The reason is that, in general, the generated constraints for
unfeasible cycles are usually less effective in guiding the
execution towards the deadlock (e.g. in HB(4)). Indeed, con-
sidering HB(5), we are not able to prove that one of the
abstract cycles is a false positive but neither we can find a
representative execution for it. Even in these cases, system-
atic/symbolic execution is outperformed by deadlock-guided
testing.

On the other hand, we can observe that the reductions of
DGT over the systematic/symbolic execution are less notable
in the second set of benchmarks. The two main reasons are
that (1) neither of the deadlock cycles is feasible, and, (2) each
DCGT cannot stop until all potential deadlock executions
have been considered. The most notable evidence that DGT
improves in terms of scalability over the standard systemat-
ic/symbolic execution (second part of goal G2), is the fact
that DGT is able to successfully finish the exploration for all
our experiments in reasonable time whereas in many cases
the standard systematic/symbolic execution blows-up (see the
∞’s in the fourth column).
Benchmark TF exposes a situation that can be consid-

ered close to the worst-case scenario for our methodology.
Namely, there is no information that allows us to detect
non-deadlock executions until the very end, and, therefore,
we are not able to effectively guide the exploration towards
deadlocks. This benchmark hence allows us to study goal G3.
In particular, we can observe that even without being able to
effectively guide the exploration, we still get a slight gain
in Tall

gain (1.2 for TF(4)) which indicates that the overhead
introduced by our technique remains quite low (less than the
time which is saved by the few prunings that are produced in
this case).

Regarding goal G4, as expected, the potential impact of
parallelizing the different DCGT processes is notable. This
can be seen by comparing the values of the T and Tmax
columns of the DGT (d-p-c) group and also the correspond-
ing gains (columns Tgain and Tmax

gain), which are clearly much
larger when considering a parallel setting.
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All in all, our experimental results show that our pro-
posed technique complements deadlock analysis. It discards
unfeasible abstract deadlock cycles, and we explore dead-
lock executions with a notable reduction on the number of
explored states and time. Thus, DGT is very effective for
programs containing deadlocks, but it can also be used to
prove deadlock freedom for many cases in which the analyzer
produce false positives.

VII. RELATED WORK
Deadlock detection is a deep research area. Since ourmethod-
ology is a combination of both static and dynamic techniques,
and the individual methods can be employed for various
goals, our related work covers a wide range of existing
approaches that we organize as follows.

A. DEADLOCK ANALYSIS
Even though there are numerous dynamic approaches, most
of the techniques for deadlock detection in the literature are
based on static analysis both for thread-based programs [39],
[40] and for asynchronous programs [1], [41]. These analyses
are able to ensure deadlock freedom, however the loss of
precision (due to approximations) might lead to a ‘‘don’t
know’’ answer. This is especially usual in the context of
pointer aliasing.

The technique proposed in this work can help the static
analysis techniques to prove deadlock freedom in cases
where the analysis is unable to do it by itself. Deadlock-guided
testing uses the static information reported by a deadlock
analysis to guide the exploration towards deadlock states.
We have used the information reported by [1] to guide the
exploration, but we could also use the output of other static
analyzers (e.g., [41]). We would only need to change the
function φ to make use of the new reported information to
generate our deadlock-cycle constraints.

In [3], a deadlock analysis is proposed for programs with
threads and lock-reentrancy, that is, programs where a thread
may acquire several times the same lock. This is achieved
thanks to the use of program abstractions called lams, which
are basic recursive models collecting the dependencies and
feature recursion inside the program. The program is dead-
lock free if there is not a circularity in the lam models of
the program. We could use the information within the lams
associated to circularities to guide the execution. Similarly,
in [3] a new behavioral type system is proposed to prove
deadlock freedom in Java-like programs using shared objects
and coordination primitives like wait, notify and notifyAll.
These behavioral types are called usages and may be encoded
as a class of Petri net. This work reduces deadlock freedom
of a program to check a reachability problem in these nets.
One of the drawbacks of this approach is that the number of
acquisitions for each shared object must be known, which is
not always available.

Finally, [2] presents a novel notion of dependency an
deadlock for condition synchronization, (await statement
for boolean conditions), and a sound deadlock analysis that
extends [1]. It integrates a theorem prover into the deadlock

analysis to handle unbounded data types and recursion with-
out performance loss. However, this analysis still produces
false positives. Our approach could discard these ones using
the information reported by this new analysis.

B. SYMBOLIC EXECUTION, VERIFICATION, MODEL
CHECKING, TESTING
The symbolic execution engine of our framework is the one
presented in [13]. We could directly use this component to
perform (non-guided) deadlock detection. This engine can
also be used to detect other types of errors (e.g., critical
states that can produce a malfunction of the program). Model
checking, among other verification techniques, uses sym-
bolic execution to automatically verify correctness proper-
ties. Indeed, deadlock detection has been deeply studied in
this context [42]. Both static and dynamic testing aim at
finding bugs, among them deadlocks (see, e.g., [6], [43]–
[47]). Indeed, static testing systems use symbolic execution
as the core of their engines, and in particular, as it is the case
for our aPET [48] tool. The specification of more general
properties has been widely studied in the area of property-
based testing [49], [50] and, thus, we believe that it can
be helpful to automatically generate constraints leading the
execution towards other specific properties of interest.

In the context of the packet switching networks and Net-
works on Chip, the work in [51] proposes a new classifi-
cation of different types of deadlock and uses a symbolic
model-checker, called nuXmv, to check deadlock freedom for
each of such type of deadlock. In this context, a deadlock
happens when a message is stuck in a channel, and it will
never be processed or received by the target of the channel.
Specifically, three kinds of deadlocks are defined: global,
local and weak deadlocks. It is important to highlight that this
deadlock classification could also be used in our framework
by considering the different dependencies produced by the
use of non-blocking synchronization.

In the context of concurrent programs, a main target of
ongoing research on testing is to avoid the exploration of
redundant derivations. Two derivations are considered redun-
dant or equivalent if we can swap the execution of indepen-
dent processes to obtain one from the other according to the
Partial Order Reduction theory (POR) [11]. Dynamic POR
[52], [53] is a successful approach to avoid the exploration
of such redundancies. We can use the POR theory within our
framework to guide even more the execution towards dead-
lock derivations. Thus, both lines of research are orthogonal.

C. HYBRID APPROACHES
Hybrid approaches usually employ information reported by
static analysis to improve the performance of testing for
deadlock detection, namely [54] and [55]. As regards [54],
it applies dynamic testing over a trace program that only
contains the relevant instructions for deadlock detection after
applying a transformation over the original program. Because
of this transformation, it could detect deadlocks that appear
in the trace program but cannot occur in the original program.
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This work differs from ours in that, we test the original
program andwe always detect real deadlock traces that can be
later reproduced by the programmers. Besides, our approach
considers any unknown parameters thanks to the use of sym-
bolic execution.

As regards [55], it detects potential abstract deadlock
cycles and accelerates the process thanks to the information
reported by a type system. The main similarity with our work
is that both use static information reported by an analysis
to improve the performance and guide the exploration of
the testing tool. However, it differs from our approach in
two important aspects: first, our technique works on a gen-
eral characterization of deadlock of asynchronous programs.
Their work captures deadlocks in thread-based programs
caused by the use of locks, but not other deadlocks caused
by more general mechanisms like wait-notify instructions.
Second, they use a type inference algorithm to infer deadlock
types that must be understood by the checking algorithm to
take advantage of them. Our work is based on a deadlock
analysis which report descriptions of deadlock cycles and
our semantics is extended to interpret them and guide the
exploration.

D. GENERATION OF INITIAL CONTEXTS
Static testing generally assumes no knowledge on the inputs
of the system under test. In the context of distributed and
concurrent programs, a set of locations and their connections
is usually provided, denoted as an initial configuration or
initial context. E.g. we could consider a main location with a
simulate task on our motivating example as an initial context.
The framework presented in this work is able to symbolically
execute a system without assuming an initial context [56].
Consequently, our method is able to automatically generate
initial contexts in order to detect deadlocks and, systemat-
ically, discard those contexts in which a deadlock cannot
occur. Following with our motivating example, our frame-
work could generate a context with a database location that
must execute a register task and a worker location, whose
buffer contains a work task. However, also many other con-
texts that can never lead to deadlock. This introduces a new
combinatorial explosion on the number of initial contexts to
be considered, most of which will be deadlock-free. Interest-
ingly, we can use the information reported by the deadlock
analysis to detect the conflicting task interactions that can
lead to deadlock, only generating initial contexts that contain
such tasks.

VIII. CONCLUSION AND FUTURE WORK
Deadlocks are one of the most usual problems in concurrent
programs. Static analyses can prove the absence of deadlocks
but due to the use of approximations can usually produce false
positives. Moreover, they are usually not able to provide pre-
cise information that can help the user in finding the source of
the problem. On the other hand, systematic/symbolic testing
can be used for detecting the presence of deadlocks providing
precise information about the source of the problem, namely,

producing a concrete execution trace where the deadlock
occurs. However, the state space, even without redundancies
(which could be detected relying on POR techniques) can be
intractable.

This paper proposes a hybrid approach that combines
static deadlock analysis and systematic/symbolic testing for
effective deadlock detection. Specifically, our methodology
consists in using the abstract information about potential
deadlocks obtained by the deadlock analysis in order to
steer the systematic/symbolic execution towards paths that
can lead to deadlock, trying to discard as soon as possible
deadlock-free paths.

The experimental evaluation carried out supports our claim
that this methodology improves significantly in terms of scal-
ability over the standard, non-guided, systematic/symbolic
execution. Also, in cases where static deadlock analysis is
imprecise and produce false positives, our methodology is
able to discard all potential deadlock traces, and therefore,
it is able to prove deadlock freedom (modulo the termination/-
coverage criterion of the symbolic execution). Our technique
hence improves over static deadlock analysis in accuracy but
at the same time inherits the main inadequacy of systemat-
ic/symbolic execution, namely its scalability issues due to
the state explosion problem, although, as our experiments
demonstrate, scalability gets considerably alleviated thanks
to our guided search.

Unlike the original scheme in [12], which can only be
applied in dynamic settings with full knowledge of the pro-
gram inputs and initial states (usually the testing process must
start from a mainmethod that creates a concrete initial state),
our new methodology based on symbolic execution is able
find deadlock traces or to ensure deadlock freeness in static
contexts where the input data is possibly unknown, hence
notably boosting its potential applicability. It is also important
to highlight that our technique can benefit from the most
advanced POR techniques in the literature.

As lines for future research, besides the integration of such
most advanced POR techniques, we plan to study guiding the
exploration towards other properties of interest. For instance,
for symbolic test case generation, it could be interesting to
guide the symbolic execution towards concurrency-based test
adequacy criteria.
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