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ABSTRACT This article proposes a method for identifying potential self-adequate sub-networks in the
existing power distribution grid. These sub-networks can be equipped with control and protection schemes
to formmicrogrids capable of sustaining local loads during power systems contingencies, thereby mitigating
disasters. Towards identifying the best microgrid candidates, this work formulates a chance-constrained
optimal distribution network partitioning (ODNP) problem addressing uncertainties in load and distributed
energy resources; and presents a solution methodology using the sample average approximation (SAA)
technique. Practical constraints like ensuring network radiality and availability of grid-forming generators
are considered. Quality of the obtained solution is evaluated by comparison with- a) an upper bound on the
probability that the identified microgrids are supply-deficient, and b) a lower bound on the objective value
for the true optimization problem. Performance of the ODNP formulation is illustrated through case-studies
on a modified IEEE 37-bus feeder. It is shown that the network flexibility is well utilized; the partitioning
changes with risk budget; and that the SAA method is able to yield good quality solutions with modest
computation cost.

INDEX TERMS Chance-constrained optimization, microgrid, grid-forming generators, radiality, resilience.

NOMENCLATURE
Unless specified otherwise, boldface symbols represent vec-
tors and matrices, while calligraphic symbols denote sets.
A non-exhaustive list of main symbols follows.

(x, ξ ) Decision variables and uncertain parameters
ε Tunable risk parameter
GN Power distribution network graph
(VN , EN ) Vertex and edge set for GN
G Subgraph of GN that omits substation vertex
(V, E) Vertex and edge set for G
ei,j Edge connecting vertices i and j

(ξ
dp
i , ξ

dq
i ) Active/reactive power demand at bus i

(ξ
gp
i , ξ

gq
i ) Active/reactive generation capacity at bus i

vi Voltage magnitude at bus i
(pi, qi) Active/reactive power injection at bus i
bni Binary on/off status of bus i
beij Binary on/off status of line eij
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(Pij,Qij) Active/reactive power flow on line eij
Pmaxij Active power flow limit on line eij
Qmaxij Reactive power flow limit on line eij
(pgi , q

g
i ) Active/reactive generation at bus i

(pdi , q
d
i ) Active/reactive demand at bus i

(rij, xij) Resistance/reactance of line eij
(Ã,A) Full/reduced branch-bus incidence matrix
(f, f′) Virtual line flows
θ Binary indicator on edge set
Vs Set of buses with grid-forming capabilities
ψ1 Set of variables that are fixed across scenar-

ios
ψ2 Set of scenario-dependent variables
γ Risk level for the SAA problem
q(x) Probability of chance constraint violation

I. INTRODUCTION
In recent years, the adoption of renewable energy based dis-
tributed energy resources (DERs) has increased due to the
recognition of their economic and environmental benefits.
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A primary advantage of DERs is their ability to sustain local
loads if the main grid is lost, possibly due to natural disasters.
DERs and loads may be clustered together to formmicrogrids
which supply essential loads and aid service restoration dur-
ing and after outages, thereby boosting grid resilience [1].
According to the IEEE 1547.4-2011 standard, microgrids:
1) have DERs and load; 2) can operate in both grid-connected
and islanded modes; and 3) are intentionally planned [2].
Historically, industrial customers have used diesel gener-

ators (DGs) to ensure emergency power supply. However,
other DER options such as solar generators can also provide
efficient, onsite energy [3]. Similarly, combined heat and
power plants (CHP) can alleviate grid stress and reduce the
energy cost at industrial sites [4]. As CHPs are ‘always-
on’ units primarily run to serve industrial needs, they can
be quickly deployed to provide grid-support during stressed
conditions. The energy storage capacity of modern elec-
tric vehicles (EVs) may also be exploited to enhance grid
resilience [5]. Reference [6] suggests that EVs can be encour-
aged to interact with the grid through incentivized charging
schemes offered by public parking lots. Such parking lots
often have a large number of EVs parked at a time. Thus,
under a suitable policy framework, utilities may tap into their
stored energy during emergencies. A promising direction
for using electric buses as mobile energy storage units is
explored in [7]. As larger EVs like buses and trucks have
very high storage capacity, they can be proactively dispatched
as back-up generators to aid areas facing natural disasters.
Hence, fixed and mobile DERs provide multiple avenues
to boost grid resilience, and effective strategies should be
designed to utilize them.

Note that isolated DERs cannot supply local loads if
they lack adequate protection and control capabilities. When
DERs are inadvertently separated from the grid (a condi-
tion called unintentional islanding), electric utilities cannot
regulate the voltage and frequency in the unplanned islands.
Voltage and/or frequency excursions outside prescribed limits
may severely damage system loads and also pose safety
concerns. Hence, several measures to detect and avoid unin-
tentional islanding have been developed [8]. On the other
hand, the generation capacity of DERs may be exploited to
mitigate outages if they can be designed to operate safely
in islanded conditions. Therefore, utilities are interested in
identifying potential candidates within existing active distri-
bution networks that can be converted to microgrids via eco-
nomically viable retrofitting. Microgrids need to be equipped
with adequate switching, protection and control mechanisms
prior to any expected outage. Thus, optimally splitting a net-
work intomicrogrids constitutes a pertinent planning problem
[9]–[15].

This optimal distribution network partitioning (ODNP)
task seeks to identify potential self-adequate sub-networks
that can survive the loss of themain grid as islands. Both exact
[9]–[11] and heuristic [12]–[15] methods have been proposed
in literature to address the ODNP problem. Self-adequacy
in the objective function has been surrogated by either

expected load-generation imbalance within microgrids
[13]–[15], or expected power flowon boundary lines [9]–[12].
Some works additionally suggest dynamic identification of
boundary lines in response to faults [16], [17]. However, since
distribution networks are only served by a limited number
of switching devices at present, implementing these sugges-
tions may be difficult in practice. A method for determining
self-sufficient islands in transmission networks is described
in [18], but cannot be directly extended to ODNP without
including distribution system specific constraints.

Distribution networks are usually operated in a radial fash-
ion for protection coordination, and this radiality needs to be
maintained in microgrids as well. In [11], [13]–[15], ODNP
is demonstrated on an already radial feeder and radiality
conditions are not explicitly enforced. This approach ignores
the presence of normally open switches that allow network
reconfiguration, thereby under-utilizing grid flexibility. Radi-
ality is considered in [10], but another restrictive condition
is imposed- eacha microgrid is assigned exactly one DER.
This single DER constraint is also present in [16]. In this
approach, the number of partitions are predetermined, lead-
ing to sub-optimal solutions. A radiality constraint without
specifying the number of microgrids was recently presented
in [9], and the formulation in the current work builds upon
this approach.

A critical aspect that has been overlooked in the
existing microgrid planning literature is the requirement
of grid-forming generators in viable islands. The IEEE
1547.4-2011 standard mandates that an island should have
at least one generator that provides voltage and frequency
support during a system disturbance, or has black-start capa-
bilities [2]. An exhaustive path search based method for
checking connectivity to black-start generators has been
proposed in [19]. Another multiple commodity flow based
approach outlined in [20] separately checks nodes for their
connectivity to black-start nodes. Both these approaches
become computationally prohibitive for large meshed net-
works. The ODNP formulation put forth in the present work
guarantees that all nodes in each microgrid will be connected
to at least one grid-forming generator. The formulation is
somewhat similar to the single commodity flow model of
[20] but uses fewer constraints and shows faster performance
(empirically observed to be 10 to 20% faster).

ODNP is further complicated by the fact that power
demands and renewable energy generation are stochastic
in nature. In [11], [13]–[15], [17], the uncertainty in load
and generation is addressed by constructing typical daily
profiles, over which optimization is performed. However,
the quality of solution obtained is not evaluated. The present
work formulates a chance-constrained ODNP (cc-ODNP) to
identify optimal microgrids in the planning stage. This is
computationally challenging as the underlying deterministic
optimization problem is combinatorial, and is formulated as a
non-convex mixed integer linear program (MILP). To ensure
computational tractability, a sampling and integer program-
ming based strategy has been used to solve an approximation
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of the cc-ODNP, and the quality of the solution obtained is
rigorously evaluated using statistical tools [21].

The main contributions of this work are stated next.
• First, a deterministic ODNP problem for identify-

ing optimal microgrids given real-time load-generation
values is formulated. This formulation comprehensively
addresses operational constraints, including: a) maintaining
network radiality, and b) ensuring every microgrid includes
a grid-forming generator, without any pre-assignment.
The requirement of grid-forming generators has not been
addressed in the existing work on microgrid planning.
• Second, the ODNP formulation is extended to a prob-

abilistic setup, and solved using a computationally tractable
sample average approximation (SAA) method. Quality of an
obtained solution is evaluated considering: a) an upper bound
on the probability that the candidate microgrids are supply-
deficient, and b) a lower bound on the objective value for the
probabilistic optimization problem.
• Third, the ODNP formulation is evaluated through exten-

sive numerical tests on a modified IEEE 37-bus feeder. It is
shown that the SAA approach is able to efficiently utilize
network flexibility, and outperforms a robust clustering based
method in terms of objective cost.

The remainder of the article is organized as follows.
Section II briefly examines how the present work quantita-
tively enhances power systems resilience. Section III intro-
duces somemathematical preliminaries. Section IV describes
the ODNP formulation. The underlying deterministic prob-
lem is established first, and then probabilistic constraints
arising from the uncertainty in load an generation are added.
Section V discusses the mathematical tools used to assess the
quality of the obtained ODNP solution. Section VI details the
numerical experiments conducted to validate the performance
of the ODNP formulation. Section VII concludes the article
and outlines future research directions.

II. POWER SYSTEMS RESILIENCE
Resilience may be defined as the ability of a system to pre-
pare for, respond to and recover from natural and man-made
disasters. Recent natural disasters have exposed vulnera-
bilities in the power systems infrastructure, necessitating
strategies to enhance its resilience. However, to evaluate
the effectiveness of competing strategies, some quantita-
tive measure for capturing the rather conceptual idea of
resilience is required. Several recent research efforts have
sought to describe resilience in quantitative terms and model
the inter-dependencies between power systems and other
critical infrastructure sectors [22]–[24].

A popular approach to quantify resilience builds around the
multi-phase resilience trapezoid that depicts system behavior
during a disaster; see fig. 1. Consider a disruptive event that
starts at time te. This first phase (t ∈ [te, td ]) of event progress
is characterized by an ongoing deterioration in system perfor-
mance from its pre-disturbance levels. In the second phase
(t ∈ [td , tr ]), the system operates in a diminished capac-
ity for some time before restoration steps can be initiated.

FIGURE 1. Multi-phase resilience trapezoid, adapted from [22].

During the third phase (t ∈ [tr , tn]), actions are taken to
restore the system to its pre-event performance levels. The
transitions between system states in fig. 1 are linear only for
expository convenience. In practice, these may be non-linear,
depending on system characteristics, prevalent conditions and
the nature of the disaster.

Note that in fig. 1, the y-axis represents a generic system
function as its performance measure. Different quantities
have been used to convey system performance, for example,
reference [23] considers the power supplied to critical loads
weighted by their criticality. The formulation presented in this
article considers the total load served by microgrids once the
main grid is lost. Maximizing microgrid service will in turn
reduce load interruptions and boost traditional grid reliabil-
ity measures such as SAIDI (System Average Interruption
Duration Index), SAIFI (System Average Interruption Fre-
quency Index) and MAIFI (Momentary Average Interruption
Frequency Index) [25].

The resilience trapezoid describes - a) the rate and extent
of performance drop when a disruptive event strikes, b) how
long the system resides in a degraded state, and c) how
fast it recovers to the pre-disturbance state. A metric that
combines these measures and quantifies the resilience of a
system is the area under the curve (AUC) of the trapezoid.
Any resilience enhancement strategy attempts to maximize
this AUC. Figure 1 shows how ODNP proposes to increase
the AUC of the resilience trapezoid. As shown by the dotted
line, if a distribution network is not equippedwithmicrogrids,
a loss of the grid may result in a drastic decrease in load
served despite installed DER capacity. By optimally planning
microgrids with existing DERs, the system behavior can be
changed to the solid line shown in fig. 1. The proposed
ODNP formulation maximizes the load served during the
degraded state of second phase. Thus, the shaded portion
shown in the second phase of the resilience trapezoid is
evidently maximized, thereby increasing the AUC. Further,
by improving system performance in the degraded state, one
can anticipate a faster recovery (from t ′n to tn in fig. 1), further
increasing the AUC. Of course, the recovery time will depend
on multiple factors such as time and nature of disturbance,
pre-event system operating state etc. Nevertheless, the ODNP
formulation provides a general methodology for enhancing
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distribution network resilience, that can be adapted to
incorporate different DER technologies.

III. PRELIMINARIES
In this section, some mathematical preliminaries are revisited
before expounding on the problem formulation. Standard
mathematical notations are used, calligraphic symbols rep-
resent sets, lower (upper) case bold letters represent column
vectors (matrices). All zero and all one vectors and matrices
of appropriate size are denoted by 0 and 1 respectively.

A. GRAPH THEORY
A graph G := (V, E) consists of a vertex set V and an edge
set E , where an edge is an unordered pair of distinct vertices
of G. Edge eij ∈ E is denoted by its incident vertices (i, j),
such that i, j ∈ V . If eij ∈ E , then vertices i and j are
adjacent. Two edges are adjacent if they have a common
vertex. A subgraph of G is a graph H := (X ,Y) such that
X ⊆ V andY ⊆ E . IfX = V , thenH is a spanning subgraph
of G. H is an induced subgraph of G if vertices in X are
adjacent inH if and only if they are adjacent in G.
A path from i to j is a sequence of distinct vertices starting

at i and ending at j such that consecutive vertices are adjacent.
If there is a path between all pairs of vertices of a graph
G, then G is connected; else G is disconnected. An induced
subgraph of G that is maximal, subject to being connected,
is called a connected component of G. A cycle is a sequence
of adjacent edges without repetition that starts and ends at the
same node. A graph with no cycles is called acyclic. A con-
nected and acyclic graph is a tree. A spanning tree subgraph
of G is a tree that covers all vertices in G. An acyclic graph
with multiple connected components is a forest. A spanning
forest subgraph of G is a forest that covers all vertices in G.
Spanning forests may include connected components with a
single node. For further reference, a review of graph theory
fundamentals is available in [26].

B. CHANCE-CONSTRAINED OPTIMIZATION
Stochastic optimization refers to a collection of methods
for solving an optimization problem with uncertain param-
eters. For many real-world applications operating in uncer-
tain environments, ensuring 100% reliability is physically
and economically impractical. This difficulty is often dealt
with by designing systems that assure a minimum reliability
level with high probability. Mathematical models of such
reliability-constrained systems involve the use of probabilis-
tic or chance constraints [21]. A generic chance-constrained
optimization (CCO) problem is of the form:

min
x∈X

f (x) (P1)

s. to h(x) ≤ 0 (C1)

Pr{g(x, ξ ) ≤ 0} ≥ 1− ε (C2)

Here, x is the vector of decision variables, whose feasible
region is given by X ⊂ Rn. The objective function to be
minimized is f : Rn

→ R. Vector ξ stacks the uncertain

parameters with known probability distribution, and ε ∈
(0, 1) is a tunable risk parameter. Problem P1 seeks to find
an optimal decision vector x∗ that minimizes f (x), such that
the hard constraints C1 are always satisfied, while the chance
constraint C2 is satisfied with probability at least 1− ε.
In power systems literature, CCO has been previously used

to address security constrained economic dispatch and unit
commitment problems [27]. This class of problems is difficult
to solve, due to two main reasons:
• Given a candidate solution x̄ ∈ X , accurately comput-

ing Pr{g(x̄, ξ ) ≤ 0} can be very difficult, making it hard to
check if constraint C2 is satisfied.
• The feasibility region defined by a chance constraint

is usually not convex [21]. This makes finding an opti-
mal solution difficult even when the feasibility of x̄ can be
checked.

These difficulties may be overcome by considering a sam-
ple average approximation (SAA) of the original problem
where the true distribution of ξ is replaced by an empir-
ical distribution with discrete support. The SAA is still a
chance-constrained stochastic problem, but with a different
distribution for ξ , andmay be solved via integer programming
[21]. This method has been shown to yield good candidate
solutions if the sampling is ample and rich. In this work,
the SAA approach will be incorporated to solve a probabilis-
tic ODNP and the solution obtained will be further analyzed
to verify howwell it solves the original optimization problem.

IV. PROBLEM FORMULATION
Given a distribution network with DERs, planners would like
to optimally constructmicrogrids, such that theDERs are able
to sustain internal loads if supply from the main grid is lost.
Load served is to be maximized. Both load and generation
vary with the weather and assuring self-adequacy for the
worst case may lead to very conservative solutions. Hence,
a solution that works well for most operating conditions
might be preferable. Thus microgrids may be designed to be
self-adequate with probability at least (1− ε) across all pos-
sible operating scenarios, where ε is a tunable risk parameter.
The value of ε may be chosen based on several factors such
as available storage resources. Once optimal microgrids are
identified, they need to be equipped with control capabilities
and boundary line switches. It must be noted that depending
on the generation capacity of installed DERs, all load in a
network may not be served by microgrids.

Our mathematical formulation is put forth in three steps.
First, a deterministic version of the problem, d-ODNP is
presented where the load served is maximized for a given sce-
nario of demands and generation. Next, the chance constraints
arising from the randomness in generation and demands are
added. Finally, a SAA based algorithm is proposed that can
tractably solve the probabilistic ODNP.

A. DISTRIBUTION NETWORK MODEL
A single-phase distribution network may be represented by
a connected directed graph GN := (VN , EN ), where vertices
denote buses and edges denote lines. The substation node is
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indexed by 0; and the set of all other nodes is denoted by
V := VN \ {0}. Each edge ei,j ∈ EN is assigned an arbitrary
direction from node i to j. If ei,j ∈ EN , then ej,i /∈ EN .
The task at hand considers that the main grid is unavailable,
hence partitioning needs to be carried out on G := (V, E),
the induced subgraph of GN on vertex set V . In the present
setup all lines are considered switchable. Any non-switchable
edge coinciding with a microgrid boundary would need to be
retrofitted with a switch. Moreover, graph edges include lines
with existing normally open and normally closed switches,
and hence G is not necessarily radial.

Each node has an associated demand (ξ
dp
i + jξ

dq
i ) and

generation capacity (ξ
gp
i + jξ

gq
i ). The demand and generation

capacities are not precisely known at the planning stage and
only a probability distribution, possibly empirical, may be
available. Let vi be the voltagemagnitude at bus i and (pi+jqi)
be the complex power injection. Bus voltages, demand, gen-
eration capacity, and complex power injections are respec-
tively stacked into vectors v, ξdp + jξdp , ξgp + jξgq ,p + jq.
All quantities are in per units.

Let us introduce binary variables bni and beij that respec-
tively dictate if vertex i ∈ V and edge eij ∈ E are energized.
The end nodes i and j of an energized edge eij shall be
energized, requiring

bni + b
n
j ≥ 2beij ∀eij ∈ E . (1)

The ANSI standards mandate that voltages at energized buses
should be within ±5% p.u. of the nominal value [28]. Thus,

0.95 bn ≤ v ≤ 1.05 bn. (2)

Let the power flow on line eij ∈ E be Pij + jQij. The line
capacity constraints may be formulated as follows.

−beijP
max
ij ≤ Pij ≤ b

e
ijP

max
ij ∀eij ∈ E (3a)

−beijQ
max
ij ≤ Qij ≤ b

e
ijQ

max
ij ∀eij ∈ E (3b)

Flow constraints of the form P2ij + Q2
ij ≤ S2ij (where S

denotes apparent power) are not used here to avoid quadratic
constraints. A polytopic approximation of this constraint
proposed in [29] could also be used.

B. POWER FLOW MODEL
DER units plausible in a low/medium voltage distribu-
tion network setup include photo-voltaic (PV) generators,
diesel generators (DGs) and combined heat and power plants
(CHPs). The active power generation capacity of these units
maybe stochastic; for instance PV generation is dictated by
solar irradiance levels, and CHP generation is affected by
local heating demands. Non-utility scale PV generators are
usually not dispatchable, while some DER units like CHPs
may be dispatchable limited by their stochastic generation
capacity. DG units are usually dispatchable and their maxi-
mum generation capacity may be fixed based on the machine
rating. Loads are assumed to be inelastic.

The power generations by dispatchable units are governed
by the following equations:

0 ≤ pgi ≤ b
n
i ξ

gp
i ∀i ∈ VD (4a)

−bni ξ
gq
i ≤ q

g
i ≤ b

n
i ξ

gq
i ∀i ∈ VD. (4b)

Here, constraints (4a)-(4b) bound the generator outputs
pgi , q

g
i at bus i. Set VD comprises of all nodes with a dispatch-

able generator. Given the limit on active power, a correspond-
ing limit on reactive power generation can be obtained based
on the generator apparent power ratings. Non-dispatchable
generators are incorporated into the formulation as shown
below.

pgi = bni ξ
gp
i ∀i ∈ V \ VD (5a)

qgi = bni ξ
gq
i ∀i ∈ V \ VD (5b)

Constraints (5a)-(5b) state that the power output by an ener-
gized non-dispatchable DER is equal to its stochastic gener-
ation capacity. For inelastic loads, the constraints for power
consumption become:

pdi = bni ξ
dp
i ∀i ∈ V (6a)

qdi = bni ξ
dq
i ∀i ∈ V (6b)

Constraints (6a)-(6b) state that consumption at bus i is equal
to its demand; if energized. Thus the net power injections are:

pi = pgi − p
d
i ∀i ∈ V (7a)

qi = qgi − q
d
i ∀i ∈ V (7b)

For power flow calculations, the linearized distribution
flow (LDF)model proposed in [30] is followed. Despite being
an approximation for the full AC power flow model, LDF
has been used extensively and shown to perform well in
literature [31]. Now, ignoring line losses, the power balance
at each node entails:∑

eij∈E
Pij −

∑
ejk∈E

Pjk = pj ∀j ∈ V (8a)

∑
eij∈E

Qij −
∑
ejk∈E

Qjk = qj ∀j ∈ V (8b)

Let rij + jxij be the impedance of line eij ∈ E . Then,
the relationship between voltages and power injections may
be linearized as: v2i − v

2
j = 2(rijPij+ xijQij). Assuming small

voltage deviations, the squared terms may be approximated
as v2i ' 2vi − 1. Using these results,

beij(vi − vj − rijPij − xijQij) = 0, ∀eij ∈ E (9)

Here, the indicator beij is multiplied to enforce the voltage drop
relation only for energized lines. For computational ease,
bilinear terms like beijvi in (9) can be handled by McCormick
linearization, where the product terms are replaced by their
linear convex envelopes to yield a relaxation of the original
non-convex feasible set [32]. If at most one of the variables
is continuous and the rest are binary, this relaxation is exact.
For illustration, let us consider a term z = xy, where x is
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FIGURE 2. Components ({A,B,C}, {AB,BC}), ({D,E, F }, {DE, DF }) and
({G}, {}) form a spanning forest. Adding edges BD and DG creates a
spanning tree.

binary and y is a continuous variable bounded in y ∈ [y, y].
Here, z = xy may be equivalently expressed as four linear
inequality constraints.

xy ≤ z ≤ xy (10a)

y+ (x − 1)y ≤ z ≤ y+ (x − 1)y (10b)

Note that putting x = 0 in equations (10a)-(10b) yields z = 0.
Similarly, putting x = 1 yields z = y. All such bilinear terms
appearing henceforth in this work will be treated similarly.

C. RADIALITY CONSTRAINTS
Network radiality is essential for distribution system opera-
tions. Some prior approaches proposed for enforcing radiality
are cycle elimination [19] and virtual commodity flow [9],
[33]. The ODNP task needs to identify G′ = (V, E ′), a span-
ning subgraph of G, such that every connected component,
or simply component, of G′ is a tree, i.e. G′ is a forest.
A spanning forest may include isolated nodes, i.e. it may have
components with a single vertex and no edges.

As discussed in section I, the radiality formulation outlined
in this article has the following advantages: a) the optimal
number of microgrids and their topologies are determined
in a single-shot, and b) DERs need not be pre-assigned to
microgrids like in [10], [16]. The radiality constraints will be
formulated using the following proposition.
Proposition 1 [9]: Given a spanning forest subgraphF :=

(V, EF ) of a connected graph G := (V, E), there exists at least
one spanning tree subgraph of G, expressed as T := (V, ET ),
such that EF ⊆ ET ⊆ E .

In other words, some edges may be removed from a span-
ning tree to obtain a spanning forest. This idea is illustrated
in fig. 2. The solid lines show edges in a spanning forest
and the addition of dashed edges creates a spanning tree.
Hence, the radiality of G′ := (V, E ′) holds true if there
exists a fictitious spanning tree subgraph T := (V, ET ) of
G such that E ′ ⊆ ET . Let us first establish a condition to
select a spanning tree, and then extract the required spanning
forest from it. The base topology of G may be captured by a
branch-bus incidence matrix Ã of dimension |E |× (|V|), with
the following entries:

Ãeij,k :=


1, k = i
−1, k = j
0, otherwise

(11)

The first column a1 of Ã may be separated as Ã = [a1 A].
This yields the reduced branch-bus incidence matrix A of G.

An efficient model for imposing graph connectivity put forth
in [33] posits that a graph with vertex set V and reduced
branch-bus incidence matrix A, is connected if and only if
there exists a vector f ∈ R|E |, such that AT f = 1. For proof,
see [33].

For a physical interpretation, consider every vertex in
V \ {1} injects unit virtual commodity into the network repre-
sented by the graph. Then, f denotes the flow of commodities
on the edges. If this flow setup is feasible, then there must be
a withdrawal of |V| − 1 units at vertex 1, and every vertex in
V \ {1} must have a path to reach vertex 1. Vertex 1 may be
arbitrarily chosen.

Stating a well-known result from graph theory, a tree with
n vertices has exactly n − 1 edges. Hence, the radiality
constraints are stated as:

AT f = 1 (12a)

−(|V| − 1)θ ≤ f ≤ (|V| − 1)θ , (12b)

θ ∈ {0, 1}|E | (12c)

1T θ = |V| − 1 (12d)

be ≤ θ (12e)

Constraints (12a)-(12d) ensure that auxiliary binary indicator
variables θ on the edge-set of the base graph describe a
spanning tree. Then, (12e) states that the edges selected via
the binary variables be are a subset of this spanning tree; and
hence form a spanning forest structure as per Proposition 1.
As the radiality constraints are thus posed, the number of
components in G′ need not be pre-assigned.

D. CONNECTION TO GRID-FORMING GENERATORS
As stated in Section I, the IEEE 1547 standard mandates that
every viable microgrid should have a grid-forming genera-
tor that provides voltage and frequency support when iso-
lated from the main grid. In practice, such a unit could be
a CHP, a DG, or an inverter-interfaced PV generator with
storage.

In the ODNP formulation described in this work, it is guar-
anteed that every energized bus in the network is connected to
a grid-forming generator, or alternatively every microgrid has
at least one grid-forming unit. Let Vs be the set of buses with
grid-forming capabilities. Then, the connectivity constraints
may be states as follows:∑

ejk∈E
f ′jk −

∑
eij∈E

f ′ij = bnj , ∀j ∈ V \ Vs (13a)

−(|V| − |Vs|)be ≤ f′ ≤ (|V| − |Vs|)be (13b)

Constraint (13a) states that every energized non grid-forming
node in G injects unit virtual commodity into the network.
Constraint (13b) bounds flows on energized lines and fixes
flows on de-energized ones at 0. Here, f′ ∈ R|E | is a vector
representing virtual line flows. It must be emphasized that
f′ is different from f in (12a). Both these vectors are used
to impose connectivity conditions, and have no physical sig-
nificance related to the power flow quantities. Again, this
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setup is feasible only when all units injected by energized
non grid-forming nodes can be withdrawn at grid-forming
nodes.

Some grid-forming nodes may not be energized in the
optimal topology. This is implicitly considered through the
topological constraint in (1), that ensures all edges connected
to a de-energized node are de-energized as well. Therefore,
no path exists from an energized non grid-forming to a
de-energized grid-forming node. A potential microgrid candi-
datemay host multiple generators with grid-forming capabili-
ties. In such cases, only one generator shall serve as themaster
unit, and suitable power sharing strategies may be required;
see [34] and references therein.

E. DETERMINISTIC ODNP
The deterministic ODNP problem (d-ODNP) is solved for
one realization of the power generation capacity (ξgp , ξgq ),
and demands (ξdp , ξdq ). The central idea is to sustain max-
imum load through microgrids if supply from the main
grid is lost, thereby minimizing service interruption. There-
fore, the objective for d-ODNP becomes maximizing load
served. The entire deterministic optimization setup may be
mathematically expressed as follows.

min−1Tpd

s. to (1)− (9), (12a)− (12e), (13a)− (13b) (ODNP-1)

The relative priority of loads has not been considered
in (ODNP-1). However, this cost may be modified
by assigning weights to loads in proportion to their
criticality.

F. PROBABILISTIC ODNP
The problem (ODNP-1) applies to one realization of the
generation-demand scenario (ξgp , ξgq , ξdp , ξdq ). However,
a more realistic goal would be to identify microgrids
that are optimal in some sense for a large set of real-
izations of the generation-demand scenarios. In the lat-
ter setup, the decision variables ψ1 := {b

n, be, f, f′, θ}
shall remain fixed for all realizations of the uncertain-
ties. The realization dependent variables would be ψ2 :=

{pd, qd, pg, qg, v, P, Q}. Collecting all the uncertainties
in ξ := {ξgp , ξgq , ξdp , ξdq}, the probabilistic ODNPmay seek
to solve-

min
ψ1

− Eξ [1Tpd]

s. to Pr (∃ ψ2|1((1)− (9), (12a)− (13b)) = 1)

≥ 1− ε (ODNP-2)

The probabilistic constraint in (ODNP-2) is very difficult
to enforce in practice. However, we will next discuss some
reformulations that simplify the setup without loss of gener-
ality. First, note that if the power demands at all nodes are
zero, then for a feasible ψ1 satisfying (1) and (12a)-(13b),
there always exists a ψ2 that satisfies all other constraints.
Therefore, the probabilistic constraint may be equivalently

posed by enforcing all constraints other than (6a)-(6b) as
hard constraints, and putting the probabilistic requirement on
(6a)-(6b). Setting aside (6b) for expository convenience,
notice that the equality constraints in (6a) may be
decomposed into the following inequality constraints.

pdi − b
n
i ξ

dp
i ≤ 0, ∀i (14a)

−pdi + b
n
i ξ

dp
i ≤ 0, ∀i (14b)

Now, (14a) can be posed as a hard constraint, leaving (14b)
as the main chance constraint. To reiterate, the ODNP task
seeks to identify potential microgrids within an existing dis-
tribution network, such that load served is maximized, and
the microgrids are self-adequate with probability at least
(1 − ε). Islanded microgrids are called self-adequate when
their internal load can be met by their internal generation.
Mathematically,

Pr(−pdi + b
n
i ξ

dp
i ≤ 0,∀i) ≥ 1− ε (15)

The self-adequacy condition of microgrids can hence be
posed at the node level since constraints (12a)-(12e) ensure
that the network topology is a spanning forest, and loads in a
microgrid can be supplied only by generators within the same
microgrid. If needed, onemay relax the the reliability require-
ment by modifying (15) slightly. For instance, the condition
that a microgrid should be able to serve 90% of its internal
load could be written as Pr(−pdi + 0.9 × bni ξ

dp
i ≤ 0,∀i) ≥

1− ε.

G. SAMPLE AVERAGE APPROXIMATION
Recall from Section III-B that a chance constraint needs to
be satisfied with a probability specified by a risk parame-
ter ε. The chance-constraint (C2) may also be rewritten as
q(x) ≤ ε, where q(x) = Pr(g(x, ξ ) > 0). Let ξ1, ξ2, . . . , ξN

be N independent and identically distributed (iid) samples
of the uncertainty vector ξ ; then q̂N (x), an estimator of
q(x) is equal to the proportion of realizations in the sample
where g(x, ξ i) > 0, i = 1, ..,N . This is a sample average
approximation of the chance-constrained problem (P1) for the
samples ξ1, ξ2, . . . , ξN :

min
x∈X

f (x) s.to. q̂N (x) ≤ γ (P2)

Here, γ ∈ (0, 1) and is the risk level for the SAA problem.
Assuming that the SAA can be solved, a) if γ < ε, and N
is sufficiently large, SAA is a restriction on the true problem
and a feasible solution of SAA is likely to be feasible for the
true problem as well, b) if γ > ε, SAA is a relaxation of
the true problem and the optimal value of SAA is likely to
be a lower bound to the optimum for true problem. It can
be shown that for γ = ε, the SAA optimum approaches
its true counterpart with probability one as N approaches
infinity [21].
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The chance-constrained SAA problem P2 can be solved
using MILP for N iid samples of ξ as shown below [21].

min
x∈X

f (x) (P3)

s. to h(x) ≤ 0 (16a)

g(x, ξα) ≤ M (1− zα), α = 1, 2, . . . ,N (16b)

1T z ≥ (1− γ )N (16c)

z ∈ {0, 1}N , α = 1, 2, . . . ,N (16d)

Here, α is used to index samples of ξ , zα is a binary variable
and M is a large number such that M > maxx∈X g(x, ξα)
for all α = 1, 2, . . . ,N . Vector z stacks all zα values.
In constraint (16b), if zα = 1, then the chance constraint is
not violated. If zα = 0, then no bound is imposed. The cardi-
nality constraint in (16c) bounds the proportion of constraint
violations.

For ODNP the hard constraints are given by
{(1)−(4b), (6b)−(9), (12a)−(13b), (14a) ∀α}. Probability of
violating the chance-constraint {(14b) ∀α} is to be bounded.
Equation (16b) becomes:

−pdα + diag(b
n)× ξdp,α ≤ M (1− zα)× 1, ∀α (17)

Putting everything together, the problem becomes:

min −
1
N

N∑
α=1

1Tpdα (ODNP-3)

s. to pdα ≤ zα × ξ
dp , ∀α

(1)− (4b), (12a)− (13b), (14a), (16c)− (17) (18)

The objective function in (ODNP-3) is the sample-based
estimator of the objective in (ODNP-2) designed to maximize
average load served across considered scenarios. Constraint
(18) fixes bus consumptions at zero when constraint (14b)
is not satisfied. This motivates the optimal solution for the
ODNP to be one that also increases 1T z, lower bounded by
(1− γ )N .

The optimal topology obtained by solving (ODNP-3) is
determined by vectors bn∗ and be∗. In practice, microgrids
can be isolated by opening the boundary lines between
energized nodes and deenergized nodes.

V. SOLUTION VALIDATION
Consider a candidate solution x̄ found by the SAA approach
of (ODNP-3). To adjudge its quality, two aspects need to be
analyzed: a) Can it be said with some desired confidence that
x̄ a feasible solution for the true problem (ODNP-2)? b) If yes,
then how far is f (x̄) from the optimal value f (x∗)? A method
for checking an upper bound of Pr{g(x̄, ξ ) > 0} and lower
bound on f (x∗) is shown in [21] and references therein.

A. UPPER BOUND ON VIOLATION PROBABILITY
Consider N ′ iid realizations of ξ , such that N ′ � N , where
N is the number of ξ samples used for solving the SAA
problem. Here, N ′ may be large as the samples will not be

Algorithm 1Derivation of Upper Bound on Chance Con-
straint Violation Probability

1. Generate N ′ iid realizations of ξ , where N ′ � N .
2. For the N ′ scenarios, count the number of times (N ′v)
the event 1(g(x̄, ξ j) > 0) = 1 is observed.
3. Calculate q̂N ′ (x̄) = N ′v/N

′.
4. Substitute q̂N ′ (x̄) in equation (19) and calculate
Uβ,N ′ (x̄).

used in solving an optimization problem, avoiding computa-
tional issues. Let q̂N ′ (x̄) be an estimator of q(x̄); equal to the
proportion of times the event 1(g(x̄, ξ j) > 0) = 1 is observed
in N ′ trials. Estimator q̂N ′ (x̄) of q(x̄) is unbiased, implying
E(q̂N ′ (x̄)) = q(x̄). Also, for a large N ′, its distribution may
be approximated by a normal distribution with mean q(x̄) and
variance q(x̄)(1− q(x̄))/N ′ [21]. This yields an approximate
(1− β)-confidence upper bound on q(x̄):

Uβ,N ′ (x̄) := q̂N ′ (x̄)+ zβ
√
q̂N ′ (x̄)(1− q̂N ′ (x̄))/N ′ (19)

Here, zβ = 8−1(1 − β), where 8 is the cumulative dis-
tribution function for the standard normal distribution, β ∈
(0, 1). We compare Uβ,N ′ (x̄) to ε to check if x̄ is a feasible
solution. If Uβ,N ′ (x̄) ≤ ε, then x̄ describes a topology where
microgrids are very likely to be self-sufficient. A summary of
the steps to be followed to derive this upper bound on chance
constraint violation probability is provided in algorithm 1.
Note that the scenarios used to solve and validate the SAA
problem are generated using independent processes.

B. LOWER BOUND ON OPTIMAL VALUE
A procedure for deriving a lower bound for f (x∗) is shown
in [21]. Let the SAA problem (ODNP-3) be solved for N ′′

iid samples of ξ with risk level γ ≥ 0; and denote this
problem by PN

′′

γ . Let the true problem (ODNP-2) with risk
ε be denoted as Pε. Now, the probability that at most bγN ′′c
constraint violations are observed in N ′′ trials while solving
PN
′′

γ , when the true violation probability is ε, becomes:

2N ′′ := B(bγN ′′c; ε,N ′′)

where,

B(k; q,N ) :=
k−1∑
r=0

(
N
r

)
qr (1− q)N−r

is the cumulative density function of the binomial distribu-
tion. Say, solving PN

′′

γ yields an objective value f (x̄). Assum-
ing Pε has an optimal solution f (x∗), Pr{f (x̄) ≤ f (x∗)} ≥
2′′N . This result yields a method for obtaining lower bounds
with a specified confidence level (1− β).
Consider two positive integers M and N ′′, such that M >

N ′′. GenerateM independent sets of N ′′ iid samples of ξ , and
solve the SAA problem for each of theM sets to obtain values
f (x̄)j, j = 1, 2, . . . ,M . These can be viewed as iid samples of
the random variable f (x̄). Let L be the largest integer such that
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FIGURE 3. Modified IEEE 37-bus benchmark feeder showing the location of DER units and
normally open switches.

Algorithm 2 Derivation of Lower Bound on Optimal
Value
1. Choose two positive integersM and N ′′ such that
M > N ′′. A guide for selection is provided in [35].
2. GenerateM independent sets of N ′′ iid samples of ξ .
For each of theM sets, solve (ODNP-3) to obtain values
f (x̄)j, j = 1, 2, . . . ,M .
3. Find the largest integer L such that
B(L − 1;2′′N ,M ) ≤ β.
4. Arrange the optimal values in a non-decreasing order
f (x̄)1 ≤ f (x̄)2 ≤ · · · ≤ f (x̄)M . The lower bound for
f (x∗) with confidence level (1− β) is f (x̄)L .

B(L − 1;2′′N ,M ) ≤ β. If the optimal values are arranged in
a non-decreasing order f (x̄)1 ≤ f (x̄)2 ≤ . . . f (x̄)M , it can be
shown that with probability at least (1 − β), f (x̄)L is lower
than the true optimal value f (x∗).
Note that f (x̄)L > f (x∗) if and only if more than L of

the observed f (x̄)j values are greater than f (x∗). Considering
event f (x̄)j ≤ f (x∗) as a success, f (x̄)L > f (x∗) if and only
if there are fewer than L successes in M trials, with success
probability 2N ′′ . Probability of fewer than L successes in
M trials is B(L − 1,2N ′′ ,M ), and the bounding procedure
described in this section restricts this probability value to β.
The steps for calculating the lower bound on f (x̄) with a

confidence level of (1 − β) are summarized in algorithm 2.
Further insights on validating the quality of solutions yielded
by SAA problems are available in [21], [35] and references
therein.

VI. NUMERICAL RESULTS
Performance of the proposed methodology is illustrated
through computational experiments on a 3.6 GHz Intel Core
i7-4790 CPU with 32 GB RAM. Optimization tasks are
solved using YALMIP and Gurobi [36], [37].

A. EXPERIMENT SET-UP
The ODNP problem is solved for a modified version of
the IEEE 37-bus benchmark feeder (fig. 3), converted to its
single-phase equivalent by: a) assigning average three-phase

load as bus spot-loads, and b) assigning average three-phase
impedances as line impedances. Four normally open switches
are added (shown with dotted edges in fig. 3). Grid-forming
generators are placed at nodes 742, 718 and 710. PV gen-
erators of equal rated capacity (without grid-forming abili-
ties) are added at nodes 702, 705, 707, 709 and 737. There
are 22 buses with non-zero load. Total rated capacity of
grid-forming and PV generators are 13% and 29% of the rated
system load respectively. Practical feeders of the scale of our
benchmarkmay not host such extensive distributed resources.
However, such a model has been intentionally chosen to
capture diverse flexibilities and computational concerns that
may show up in real but larger networks. A feeder with fewer
generators and tie-lines would have fewer load-generation
scenarios and would be faster to solve for.

Load-generation scenarios were constructed as described
next. Data corresponding to hourly solar generation in
California from NREL’s solar power dataset were used to
synthesize five annual generation profiles [38]. The first
50 generators in the dataset were used; every 10 genera-
tors were aggregated to obtain one profile. The normalized
profiles were then scaled to match the rated capacity of the
generators. It is further assumed that the PV generators are
set to work at unity power factor, implying that they do not
participate in reactive power support. This is without loss of
generality since PV generators with reactive power support
may be indicated with non-zero entries in the ξgq vector.
In a similar manner, hourly load profiles were constructed for
residential and commercial buildings in California with data
available from OpenEI [39]. The normalized profiles were
scaled such that the 75th percentile of load data coincided
with the nominal spot load of the corresponding bus. Thus,
a total of 8760 scenarios were constructed for a year; denoted
as set S.

B. CHANCE-CONSTRAINED ODNP
As stated previously, the original chance-constrained prob-
lem and its SAA counterpart become equivalent in limit
as the number of scenarios considered N increases. How-
ever, a higher N value also increases computation time.
This increasing trend is illustrated in fig. 6, the markers
show median time for 10 runs conducted over the same
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FIGURE 4. Median computation time increases with number of scenarios .

FIGURE 5. 2-D visualization of scenario clusters .

FIGURE 6. Variation in performance when number of scenarios is varied
from 10 to 150. Proposed cc-ODNP is compared to a clustering based
method.

scenario sets. For computational tractability, let the SAA
problem be solved on a smaller sample set S ′ ⊆ S; if S ′
is sufficiently representative of S, then the candidate solution
obtainedwill be close to the true solution for the original CCO
problem.

Performance of the SAA approach is compared to a cluster-
ing based methodology, wherein set S is divided into clusters
and the ODNP task is designed to yield a solution that holds
for some representative samples drawn from these clusters.
Let us call these twoMethod 1 and Method 2 respectively.
•Method 1: Scenarios are sampled from S at random with

uniform probability and used to solve (ODNP-3).
•Method 2: Using principal component analysis followed

by agglomerative hierarchical clustering, set S is divided into
10 clusters [40]. The scenario clusters are visualized in fig. 5.
Once the clusters are determined, equal number of samples
are randomly drawn from each cluster. Evidently, samples can
only be drawn in multiples of 10. The ODNP is solved such
that the optimal topology is feasible for all selected samples,
i.e. γ = 0.

The performance of the two solution methods is compared
in fig. 7. For SAA, the value of γ used is 0.1. A 95%
confidence lower bound on the objective value is found using

FIGURE 7. Variation in cc-ODNP performance with γ considering
50 scenarios.

FIGURE 8. Variation in performance with number of normally open
switches. Number of scenarios considered is 50, γ = 0.1.

TABLE 1. Comparison of SAA and Clustering Based Approaches.

the methodology described in Section V. With 50 runs of
independently generated sets of 20 scenarios each, and γ =
0.7, this lower bound is determined to be -0.18536. The
parametersM ,N ′′ and γ here were chosen following the rec-
ommendations outlined in [35]. The 95% confidence upper
bound on feasibility of the candidate solution U0.05,1000(x̄) is
estimated using a set of 1000 scenarios. Median computation
time for the feasibility checking process was 1.438 seconds.

Evidently, as more scenarios are considered, both aver-
age load served and U0.05,1000(x̄) decrease. The trends are
not strict as additional scenarios can introduce favorable
cases with lower cost. Observe that Method 2 yields a more
robust solution (low constraint violation probability) in lieu
of a higher objective cost. Method 1 achieves an objective
value close to the theoretical lower bound while bounding
supply-deficiency probability to an acceptable level. Table 1
summarizes observations when both methods are run over
100 scenarios.

C. CHOICE OF RISK PARAMETER
The optimal topology is highly dependent on the specified
risk parameter. Of course, if a utility has a high risk bud-
get, they may plan to cover a larger amount of loads with
microgrids. The risk appetite may be dictated by a number of
factors, such as the installed storage capacity and criticality
of loads. If the loads to be served are critical (hospitals,
police stations etc), then the risk budget goes down. The
intuition of higher load served with higher risk tolerance is

42178 VOLUME 9, 2021



S. Biswas et al.: Chance-Constrained Optimal Distribution Network Partitioning to Enhance Power Grid Resilience

FIGURE 9. Optimal microgrid topology considering all switches, 100 scenarios and γ = 0.1.
Average load served is 0.1935 p.u.. U0.05,1000(x̄) = 0.08005.

FIGURE 10. Optimal microgrid topology for the base radial network, 100 scenarios and
γ = 0.1. Average load served is 0.1483 p.u.. U0.05,1000(x̄) = 0.06465.

experimentally verified and shown in fig.7. It can also be seen
that computation time increases with γ ; possibly because for
higher values of γ , the feasibility space that the solver has to
search for an optimal solution to ODNP grows in size.

D. NUMBER OF NORMALLY OPEN SWITCHES
Any topology determination problem is combinatorial in
nature, and hence the search space and solution time increases
with the number of graph edges. In the ODNP task, network
flexibility may be better utilized to serve more load by lever-
aging normally open switches. However, addition of extra
edges introduces additional binary decision variables, thereby
increasing solution time. In fig. 8, it is shown that as more
switches are added to the base radial 37-bus network, ODNP
yields higher average load served (i.e. lower objective val-
ues), but the computation time grows. These data points were
determined by solving the ODNP problem over 50 scenarios
sampled with method 1 and using γ = 0.1. For each of these
cases, multiple combinations of normally open switches are
possible. However, switches were added one at a time in a
random sequence to the base network for illustration.

E. MICROGRID TOPOLOGY
Optimal microgrids determined for the base radial network
with and without normally open switches are shown in fig. 9
and 10 respectively. Microgrid components are indicated in
color while external elements are in grey. When all switches
are considered, higher load can be served.When only the base

radial network is considered, load served by microgrids is
lower, and so is the supply-deficiency violation probability.

The determinedmicrogrids do not violate the self-adequacy
and power systems constraints for more than γ fraction
of cases, are radial and contain at least one grid-forming
generator. Notice that despite hosting a solar generator,
bus 707 is not included in any of the microgrids. This
may be because there are no possible ways to connect bus
707 to a grid-forming generator without violating one of the
prescribed constraints.

F. COMPUTATIONAL PERFORMANCE
As illustrated in the simulated examples, the time required
to solve the stochastic ODNP problem depends on several
factors such as network size, number of scenarios consid-
ered, number of switches and the choice of risk parameter.
Evidently, the inherent combinatorial and stochastic nature
of the underlying network splitting problem poses compu-
tational challenges. Fortunately, since ODNP is a planning
problem, the scalability concern is less severe compared to
similar applications pertaining to real-time operation. Nev-
ertheless, to enhance scalability, the linearized distribution
flow model [31] is used in this work instead of the full
AC power flow model, thus yielding a MILP formulation.
Recent advancements in commercial solvers like CPLEX and
Gurobi have significantly improved both the speed and scale
at which MILPs can be solved. This makes MILP formu-
lations attractive even for operation problems like topology
reconfiguration, and well-suited for planning-stage ODNP.
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Thus, the computational burden for solving ODNP is not
prohibitive and can be used to identify potential microgrids
in large distribution feeders with high DER penetration.

VII. CONCLUSION
The power grid is critical for maintaining essential sectors
like healthcare, transportation and emergency services. This
hasmotivated research towards enhancing grid resilience, and
formulating measures to hedge against extreme events. Effi-
ciently planned microgrids can help minimize load interrup-
tions and aid restoration during and after large-scale outages.
To this end, this work proposes a chance-constrained optimal
network partitioning problem and presents a computation-
ally tractable solution methodology. Specifically, the ODNP
problem seeks to enhance resilience by improving grid
performance in the post-disaster degraded state.

First, a deterministic version of the ODNP problem is for-
mulated considering practical constraints such as maintaining
network radiality and the availability of grid-forming gener-
ators. The optimal network topology is determined without
pre-fixing the number of partitions, or pre-assigning DERs
to microgrids. Moreover, the requirement of grid-forming
generators in viable islands had not been addressed in prior
microgrid planning literature. Next, the deterministic prob-
lem is extended to a probabilistic setup to account for the
stochasticity in energy demand and renewable energy gener-
ation. The probabilistic optimization problem is solved using
sample average approximation. Further, the article discusses
how to assess the quality of the obtained SAA solution using
rigorous statistical tools.

Case-studies on a modified version of the IEEE 37-bus
feeder show that good quality candidate solutions can
be found with modest computation cost; network flexi-
bility is well-utilized; and partitioning changes with risk
budget. Future work will focus on extending the present
planning-stage formulations to multi-phase topologies and
near real-time applications.
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