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ABSTRACT In this paper, we compare two artificial neural networks (ANNs) approaches designed to
perform channel equalization for millimeter-wave (mmWave) signals operating in the 28 GHz frequency
band. We used an in-house deterministic Three-Dimensional Ray-Launching (3D-RL) code to simulate the
spatial structure of mmWave channels considering the material properties of the obstacles within the scenario
at the frequency under analysis. We performed offline training of a multilayer perceptron (MLP) neural
network with the simulated mmWave channels to equalize the received signal. We also performed online
training of an extreme learning machine (ELM) neural network to directly get the equalized symbols at
the receiver, given as input the received mmWave signal. The ANN solutions were tested in terms of the
achievable spectral efficiency, bit error rate, and time to process. We compared the ANN techniques to the
minimum mean square error and the zero-forcing equalizers, considering an orthogonal frequency-division
multiplexing communication based on the 5G New Radio standard. We present numerical results on the
performance of the proposed ANNs and show that the ELM strategy outperforms theMLPmethod, requiring
significantly less processing time than the reviewed equalization methods.

INDEX TERMS 5G and beyond, channel equalization, ELM, multilayer perceptron, mmWave communica-
tions, OFDM.

I. INTRODUCTION
Although commercial millimeter-wave (mmWave) radios are
already available, it could take two to five years for mmWave
communications to become a mainstream technology used
by end-users. This is due to the limited range of coverage
of mmWave transmissions that demands a dense deploy-
ment of radio equipment, which implies that mobile service
providers must invest more capital [1], [2]. Based on the
fifth-generation (5G) New Radio (NR) standard, mmWave
communications follow a cyclic prefix orthogonal frequency
division multiplexing (CP-OFDM) scheme to transmit and
receive the signals. At the receiver side, the signal processing
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task is divided into several steps, such as channel estimation
and interpolation, channel equalization, symbol demodula-
tion, bit decoding, among others. To improve the operational
efficiency of mmWave systems, multiple artificial intelli-
gence (AI) strategies have been developed to achieve faster
execution time at the signal processing level with highly
parallel computing, through machine learning (ML) and deep
learning (DL) methods [3].

Particularly, artificial neural networks (ANNs) have been
applied in many tasks at the physical layer of wireless com-
munications, and ANN strategies have been demonstrated to
be successful in resolving these tasks in one step [4], [5].
With ANNs, the input-output behavior of a complex system
is modeled by using model-free strategies, rather than rely-
ing on a mathematical expression as with traditional signal
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processing techniques. Nevertheless, it is important to recog-
nize that many signal processing tasks, such as decision hard
demodulation, have been solved optimally, and the solution
approaches based on ANNs will not add further contributions
in these applications [6]. On the other hand, ANNs are useful
to learn specific tasks in the next-generationmobile networks,
such as 5G and 6G, that are difficult to solve with tradi-
tional methods. Among these tasks, techniques of ML and
DL are useful during beamforming establishment, channel
estimation, signal detection, load balancing, and optimization
of the available spectrum [7]. Using ML and DL algorithms
present key advantages for complex analysis, and these tech-
niques could save a considerable amount of computational
power [2].

A. RELATED WORKS AND OUR CONTRIBUTIONS
Recent works have demonstrated that ANN approaches are
suitable to solve different tasks in mobile communication
systems. The work in [8] presents an ANN solution to per-
form channel estimation taking the estimated channel as an
image input and performing an image re-scaling and restora-
tion. This strategy is compared to the linear minimum mean
squared error (MMSE) channel estimator. The results of this
work are limited to the mean-squared error (MSE) and no
equalization method was described. Authors of [9] present
a Deep Neural Network (DNN) based channel estimation
and tracking algorithm for vehicular mmWave communi-
cations. The simulation results showed that this approach
estimates and tracks the mmWave channel efficiently and
with minor training overhead. However, the analysis was
limited to the MSE. The work in [4] presents a DNN design
to perform channel equalization with OFDM systems. This
approach addressed channel distortion and detected the trans-
mitted symbols with performance comparable to the MMSE
estimator. However, it is limited to a simplemultipath channel
model, which severely restricts the wireless characteristics
of mmWave scenarios. The work presented in [10] explains
that an estimation technique should be analyzed jointly with
the channel equalization technique, since the MSE does
not provide a wireless performance metric like the spectral
efficiency (SE) or the bit error rate (BER). To the best of
our knowledge, channel equalization depends directly on the
accuracy of estimated channel and the technique used to
perform this task. Therefore, it is of special interest to learn
the equalization process with an ANN strategy in order to
recover the received mmWave signal. However, this work
is not centered on the estimation process since ANNs are
capable of performing channel estimation and equalization
in one single step.

Communication systems usually operate in dynamic and
nonstationary environments in which conditions change over
time. Therefore, ML/DL based solutions of these systems
need to have mechanisms to detect and adapt to evolving data
over time. Otherwise, their performance will degrade. This is
where the extreme learning machine (ELM) algorithm comes
in handy since this fully complex ANN has been recently

developed for recovering OFDM signals in wireless systems.
The ELMalgorithm can recover theOFDMsignal with online
training performed with reference signals (pilots) for single
input single output (SISO) systems [11], [12]. However, a test
of the performance of an ELM network has not been reported
for mmWave frequencies where the path loss is high.

In this paper, a multilayer perceptron (MLP) neural net-
work was designed to learn the specific task of channel equal-
ization based on the minimum mean square error (MMSE)
channel estimation and equalization. The MLP network takes
as input the least squares (LS) estimation of the mmWave
channel and provides as output the equalizer required to
recover the received signal. We also designed an ELM neural
network to directly equalize the received OFDM mmWave
signal without performing offline training. Perfect channel
state information (CSI) is not considered at the base sta-
tion (BS), so the estimation of the CSI has been performed
with the LS method to generate the dataset required to
train the MLP network. Additionally, we consider realis-
tic mmWave channels, based on an in-house determinis-
tic Three-Dimensional Ray-Launching (3D-RL) algorithm,
in which the full topological and material characteristics of
themobile scenario have been taken under consideration [13].
We run simulations of the mmWave CP-OFDM communi-
cation based on the Third Generation Partnership Project
(3GPP), Release 15 specifications [14]. The contributions of
this work are summarized as follows:

• We present a 3D-RL mmWave channel model in which
full topological and material characteristics have been
taken under consideration to generate the datasets for
the ANNs.

• We trained an MLP neural network to learn the MMSE
channel estimation and equalization process in one step,
given as input of the neural network the LS estimation
of the mmWave channel.

• We designed a real-time adaptive ELM network to
directly equalize the received mmWave signals.

• We provide an analysis of the channel equalization per-
formance of the MLP and ELM networks, in terms of
the achievable SE, BER, and average time to process,
and compared these techniques to the MMSE and zero
forcing (ZF) channel equalizers.

II. BACKGROUND
A. SYSTEM MODEL
We consider a mmWave scenario, where a BS with a
directive antenna communicates with single-antenna users
in the 28 GHz frequency band. The SISO mmWave link
employs N subcarriers to send data symbols, as is illustrated
in Fig. 1 [15], [16]. Additionally, we consider a CP-OFDM
communication system with 120 kHz of subcarrier spacing
and time-division duplexing (TDD), according to the NR
specifications described in the 3GPP Rel-15 standard [17].

We denote {φ[k]}N−1k=0 as the k th subcarrier pilot used by
a user and transmitted with power ρ. To transmit the signal,
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FIGURE 1. Simplified hardware block diagram of the CP-OFDM mmWave system.

it is necessary the use of a high power amplifier (HPA) which
introduces nonlinear distortion. Considering the third-order
statistic polynomial of the Volterra series, the amplified mul-
ticarrier pilot signal of the k th subcarrier transmitted by a user
is given by φk = X [k] + ηX [k]|X [k]|2, where {X [k]}N−1k=0 is
the pilot symbol mapped at the k th subcarrier, and η is the
HPA nonlinear distortion gain [17].

For coherent wireless communications systems, the
BS needs to estimate the frequency-domain channel response
at the k th subcarrier, {H [k]}N−1k=0 . The channel estimation
process is performed with the received pilot signal at the
k th subcarrier, {Yφ[k]}

N−1
k=0 , which can be written as

Yφ[k] =
√
ρH [k]φ[k]+ Z [k] (1)

where {Z [k]}N−1k=0 represents the Gaussian noise characterized
as i.i.d CN

(
0, σ 2

Z

)
[18]. The LS estimate of the k th subcarrier

channel Ĥ [k] is given by

Ĥ [k] =
1
√
ρ
Yφ[k]φ∗[k]. (2)

For the LS estimation of the channels per subcarrier,
it can be applied the MMSE estimation, which is a Bayesian
approach to minimize the average MSE of the estimated
channel Ĥ [k], given the received signal Y [k], and is written
as

Ĥmmse[k] = σ 2
Ĥ
(σ 2
Ĥ
+ σ 2

Z )
−1Ĥ [k] (3)

where σ 2
Ĥ
represents the variance of the estimated subcarrier

channels with LS [10], [19].

In (2), we assume the impact of interference is null due to
the bandwidth available at mmWave frequencies. However,
we consider that the impact of noise and nonlinear effects can
significantly reduce the performance of the wireless system
due to the high path loss characteristic of these signals. Sim-
ilar to (1), the k th subcarrier received signal {Y [k]}N−1k=0 at the
BS during the uplink data transmission is given by

Y [k] = H [k]S[k]+ Z [k] (4)

where {S[k]}N−1k=0 represents the data symbols transmitted
from the user.

To equalize the OFDM signal received in the uplink, it is
necessary to calculate the frequency-domain equalizer per
subcarrier, which is then multiplied with (4) to obtain

Ŝ[k] = V [k]Y [k] = V [k]H [k]S[k]+ V [k]Z [k], (5)

where Ŝ[k] is the k th equalized symbol, and {V [k]}N−1k=0 is
the k th subcarrier equalizer, which is based on the estimated
channel {Ĥ [k]}N−1k=0 through

V [k] =


(
Ĥ∗[k]Ĥ [k]

)−1
Ĥ∗[k], ZF(

Ĥ∗[k]Ĥ [k]+ σ 2
Z

)−1
Ĥ∗[k], MMSE,

(6)

which corresponds to the ZF and MMSE channel equalizers,
whereas {V ∗[k]}N−1k=0 is used to pre-equalize the transmitted
signal in the downlink [18]. Therefore, the important feature
to learn with an ANN strategy is the channel equalizer, since
it is used both in the uplink and downlink communication.
In (6), we can use the LS channel Ĥ [k] estimation or the

41680 VOLUME 9, 2021



D. F. Carrera et al.: Comparative Study of Artificial Neural Network Based Channel Equalization Methods

FIGURE 2. MLP neural network designed to perform channel equalization.

MMSE channel estimation Ĥmmse[k]. The channel equaliza-
tion presents a better performance with an accurate CSI. So,
we used the MMSE channel estimation in this study in order
to equalize the received signals and train the MLP neural
network. However, more accurate channel estimators can be
applied, which can potentially increase the performance of a
given equalizer.

B. CHANNEL MODEL
The channel coefficients have been calculated by means
of an in-house 3D-RL algorithm, optimized for mmWave
frequency ranges [13], [20], [21]. The 3D-RL algorithm is
based on geometrical optics (GO) and the geometrical theory
of diffraction (GTD). The principle of the algorithm is that
a set of rays are launched from the transmitter at a solid
angle and the rays arriving at the receiver are considered
the true path. Antenna radiation patterns can be introduced
considering the elevation angle θ and the azimuth angle ϕ in
the spherical coordinate system. The simulation scenario is
discretized in an array of three-dimensional cuboids, accord-
ing to the topology and dimensions of each scenario. The field
components are then evaluated for the full simulation matrix.
Electromagnetic phenomena such as reflection, refraction,
and diffraction are considered, according to the material
properties of all the obstacles within the environment at the
operational system frequency. Based on [22], the channel
frequency response fromM paths can be calculated as follows

H [k] =
M−1∑
i=0

|hi|2 e−j2π f τi , (7)

where |hi|2 is the power value of each multipath ray at the
receiver, f is the carrier frequency and τi is the delay of each
multipath. The in-house implemented 3D-RL algorithm has
already been validated in the literature for different complex
scenarios for mmWave frequency ranges. Some scenarios

which have been considered have been typical office scenar-
ios [13], street urban canyon environments [20] or vehicular
communications [21].

III. ARTIFICIAL NEURAL NETWORK STRATEGIES
A. MULTILAYER PERCEPTRON NETWORK-BASED
EQUALIZER
In this section, we present an MLP neural network designed
to perform MMSE channel estimation and equalization on
the received OFDM signal in one single step. The MLP
consists of multiple hidden layers that have greater learning
and mapping capabilities than a single-layer neural network.
The computation of the jth neuron at each layer is given by

oj = f (
I∑
i=1

(Wij × ci + bj)), (8)

where bj, oj, ci,Wij and I are the bias, output data, input data,
weights and the number of neurons respectively. f (.) is a
non-linear function, called activation function, that is applied
after a fully connected layer. The activation function allows
us to generate nonlinear mappings.

The MLP neural network has shown high effectiveness in
similar applications, such as channel estimation [23]. In this
work, the MLP model was trained with the LS channel esti-
mation performed with the pilot signals received in the uplink
communication. The input of the network is the LS channel
estimation, and the output corresponds to the k th subcarrier
equalizer V [k], as is illustrated in Fig. 2.
The MLP method treats the input as an 1-D vector of

real values. However, in a channel equalization scenario,
the output is an 1-D vector of complex data. Therefore,
the real and imaginary parts of this vector are input separately
to the MLP neural network. That is, the training data is
converted from a complex N-by-1 matrix into a real-valued
2N-by-1 matrix, where the real and imaginary parts are
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concatenated subsequently, as shown in Fig. 2. The same
strategy applies for the output of the MLP network, using
the subcarrier equalizer signal. Formally, we show in Fig. 2
that the input of the MLP network corresponds to the
real and imaginary parts of the LS estimated channel
{ĤRe[k], Ĥ Im[k]}N−1k=0 , and the output of the regression layer
corresponds to real and imaginary parts of the equalizer
{V̂ [k]Re, V̂ Im[k]}N−1k=0 , for k = 0, 1, 2, . . . ,N − 1.

B. ELM EQUALIZER
In [24], it is introduced and ELM-based receiver for massive
multiple-input multiple-output (MIMO) systems, which can
be applied for mmWave SISO communications as well. The
advantage of this kind of receiver is that it can perform
channel equalization online. Namely, it is not required to
train the ELM network offline like with the MLP strat-
egy. The ELM equalizer can be applied in the complex
domain taking as input the received pilot signal vector Yφ ={
Yφ[0],Yφ[1], . . . ,Yφ[N − 1]

}
∈ CN and as output the pilot

vector φ = {φ[0], φ[1], . . . , φ[N − 1]} ∈ CN , a-priori
known at the BS, as is illustrated in Fig. 3.

FIGURE 3. Complex domain ELM equalizer.

The ELM network, which consists of L hidden nodes,
between the input and the output layers is written as φ =

Oφβ, where β ∈ CL is the output weight vector, and Oφ ∈
CN×L represents the hidden layer output matrix when the
pilot signal vectorYφ is used at the input of the ELMnetwork.
Oφ is given by (9), as shown at the bottom of the page,
where a(·) is the activation function of the hidden layer,
w = [w0,w1 . . . ,wL−1] ∈ CL represents the weight vector
between the single input neuron and the L hidden neurons,

and bn denotes the bias of the nth hidden node, for n =
0, 1, . . . ,L−1. Specifically, when N > L, the output weight
vector is written as

β =
(
Oh
φOφ

)−1
Oh
φφ. (10)

After the ELM network is trained, the data signal vector
Y = {Y [0],Y [1], . . . ,Y [N − 1]} ∈ CN can be directly
equalized, as Ŝ = Oβ, where O ∈ CN×L represents the
hidden layer output matrix when Y is used as the input of the
network, which is given by (11), as shown at the bottom of
the next page.

Finally, to equalize the received signal, it is necessary to
use the output weight vector already learned from the training
process and is written as

Ŝ = Oβ, (12)

where Ŝ =
{
Ŝ[0], Ŝ[1], . . . , Ŝ[N − 1]

}
∈ CN denotes

the equalized symbols at the output layer of the ELM
network [12], [24].

IV. METHODS
In order to get the results, we performed extensive
link-level simulations based on the 5G NR standard and the
3D-RL mmWave channel model introduced in Section II-B.
We considered a CP-OFDM mmWave communication, and
the reported results, namely SE, BER and time to process,
were averaged over 8000 channel samples, which is equiva-
lent to the number of 5G NR slots in one second of communi-
cation for 120 kHz of subcarrier spacing [17]. The simulation
parameters are summarized in Table 1.

TABLE 1. 5G NR simulation parameters [17].

The scenario illustrated in Fig. 4 was designed to simu-
late the frequency response of the mmWave channels. The
outdoor scenario size is 70 x 175 meters, and the transmitter
position was placed at (x = 87.8 m, y = 32.9 m, z = 4 m) in
a streetlight to analyze the link between the BS and a mobile
device. For generating the mmWave channels and therefore
simulating the dataset for the ANNs training, we use the

Oφ =

 a(w0Yφ[0]+ b0) · · · a(wL−1Yφ[0]+ bL−1)
...

. . .
...

a(w0Yφ[N − 1]+ b0) · · · a(wL−1Yφ[N − 1]+ bL−1)

 (9)
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FIGURE 4. Schematic representation of the outdoor mmWave scenario.

3D-RL algorithm introduced in Section II-B for the 28GHz
frequency band [13]. We performed the ray-launching sim-
ulations with a ray angular resolution of 1 degree in both
azimuth and elevation, with the per ray upper bounds on
six reflections and maximum ray path loss of 200 dB. The
3D-RL simulation parameters are summarized in Table 2.

TABLE 2. Scenario simulation parameters.

A. DATASET GENERATION
We generated a dataset from simulations exclusively to per-
form offline training for the MLP neural network. First,
we used 8000 channel samples to generate the estimated
channel dataset, for which we used the LS method, and we
also generated the equalizer dataset based on the MMSE
channel estimation and equalization. Each LS channel esti-
mation {H [k]}N−1k=0 , and therefore each equalizer {V [k]}N−1k=0 ,
consist of N = 792 subcarriers, which corresponds to the
number of subcarriers available in a 100 MHz CP-OFDM
communication with 120 kHz of subcarrier spacing.

For the total number of LS channels andMMSE equalizers,
we used 80 % of the samples for the MLP training, 10 % for
validation, and 10 % for testing.

B. MLP HYPERPARAMETERS TUNING
The hyper-parameters of the MLP model were selected using
a random search approach. We first defined the maximum
and minimum limits of the number of the fully connected
layers, the number of neurons in each fully connected layer,
and the training parameters, namely, the minibatch size and
the number of epochs to train the model. In the case of the
activation functions used in each layer, we defined two func-
tions to be selected, namely, tanh and ReLU . Then, we tested
the hyper-parameters randomly, according to a uniform distri-
bution, and selected the combination that produced the lower
MSE on the validation set.

The best MLP neural network structure that resulted from
the hyper-parameter selection was: An input layer with 2N
neurons, corresponding to the real and imaginary components
of the N subcarriers in the mmWave signal. It follows 10 fully
connected layers with 120, 100, 120, 100, 120, 100, 120,
100, 120, and 100 neurons, respectively. After each fully
connected layer, it follows a batch normalization layer that
helps to speed up the training process of the ANN and reduce
the sensitivity to network initialization. The activation func-
tion for each hidden layer is tanh. Finally, we set the output
regression layer with 2N neurons corresponding to the real
and imaginary components of the N subcarriers. We used
the stochastic gradient descent algorithm with momentum
0.9 and updated the network parameters with a learning rate
of 0.001 and a mini-batch size of 600 samples. Moreover,
we reduced the learning rate by a factor of 0.99 after each
set of 10 epochs.

C. ELM PARAMETERS
The ELM network was designed to take as input the received
pilot signal vector Yφ and as the output, the pilot vec-
tor φ, a priori known at the BS. This step is performed
for the online training of the ELM network to find the
output weigh vector β. After the training step, the input
of the ELM network consists of the received data sig-
nal vector Y to get as the output the equalized symbols
vector Ŝ.

We used the tanh activation function, which marginally
outperforms other activation functions for ELM training [25].
The real and imaginary parts of the hidden layer parame-
ters (w and bn) were arbitrarily assigned, following a uni-
form distribution in the interval [−1, 1]. Note that these
parameters were kept fixed after the ELM network was
trained [26]. Finally, we set 2 neurons for the hidden layer,
since with fewer neurons, the ELM equalization perfor-
mance degrades, and with more neurons, the results are the
same.

O =

 a(w0Y [0]+ b0) · · · a(wL−1Y [0]+ bL−1)
...

. . .
...

a(w0Y [N − 1]+ b0) · · · a(wL−1Y [N − 1]+ bL−1)

 . (11)
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FIGURE 5. SE of the MMSE, ZF, MLP, and ELM equalization methods. (a) QPSK. (b) 16-QAM. (c) 64-QAM. (d) 256-QAM.

V. RESULTS AND DISCUSSION
With the simulation parameters of Table 1, we present the
wireless performance results in terms of the achievable SE
and BER for quadrature phase-shift keying (QPSK) mod-
ulation, 16-quadrature amplitude modulation (16-QAM),
64-QAM, and 256-QAM. These modulation schemes present
different results, which depend on the signal-to-noise
ratio (SNR) of the received signal. Fig. 5 shows the SE curves
for MMSE and ZF channel equalization methods compared
to the proposed MLP and ELM neural networks.

As is illustrated in Fig. 5, the SE of the MMSE and ZF
channel equalization methods is the same for all the modu-
lation schemes, and the MLP neural network achieves a SE
closer to that achieved with the MMSE/ZF methods. The
ELM strategy, on the other hand, presents the smallest SE
for QPSK and 256-QAMmodulations, however, for 16-QAM
and 64-QAM, the SE of the ELM is similar to that achieved
with the MLP strategy. However, only with the SE results

we cannot provide fair conclusions, so we present the BER
results in Fig. 6 to determine the performance of the different
techniques compared in this study.

Fig. 6 shows that the equalization methods perform almost
equally for QPSK and 16-QAM. However, for 64-QAM
and 256-QAM, the MLP and ELM strategies present higher
BER than those achieved with the MMSE and ZF methods.
Specifically, for 256-QAM, the ELM equalizer presents the
highest BER of the compared methods. High order modula-
tion schemes like 256-QAM require more SNR, which is a
limiting factor for mmWave communications due to the high
path loss that signals experience at those frequencies. On the
other hand, the MLP strategy presents a smaller BER than
that of the ELM method only for 256-QAM. However for
QPSK, 16-QAM, and 64-QAM, the BER is higher with the
MLP method. These results reveal that the ELM method is
more accurate than the MLP strategy for the majority of the
modulation schemes supported by the 5G NR standard.
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FIGURE 6. BER of the MMSE, ZF, MLP, and ELM equalization methods. (a) QPSK. (b) 16-QAM. (c) 64-QAM. (d) 256-QAM.

In Table 3 we present the time to equalize the received
signal with the compared equalization methods. The process-
ing time was averaged over 8000 channel realizations, and
these results are useful to acknowledge the computational
complexity of the compared methods.

TABLE 3. Time to process the channel equalization with MMSE, ZF, MLP
and ELM.

For SISO systems, the ELM strategy requires at least 2 neu-
rons in the hidden layer to perform the channel equalization
task with low BER, which results in lower computational
complexity than the other methods. However, the ELM strat-
egy requires the pilot symbols to follow the same modula-
tion scheme as the data symbols, which discard the standard

5G NR pilot structure. Compared to the ELM equalizer,
the MLP strategy presents higher BER, but we can find the
k th subcarrier equalizer V [k], which is useful to pre-equalize
the mmWave signal for downlink transmission. However, this
strategy requires a significant amount of time to perform
channel equalization compared to the other studied methods,
since it is required to process the signal only in the real
domain.

If we consider an improved channel estimation technique
in our study like recursive estimation [27], the results for
the MMSE, ZF, and MLP strategies could be improved;
however, for the ELM method there would be no change
in the performance since this technique does not require to
perform channel estimation, the ELMmethod performs chan-
nel equalization directly with the received signal. We con-
sidered MMSE channel estimation for the MMSE and ZF
techniques, as well as to generate the dataset for training the
MLP neural network since this estimation technique is well
known and simple to process. In the Introduction Section,
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we acknowledge that channel equalization depends directly
on the accuracy of the estimated channel and the technique
used to perform this task. So, with a better channel estimation
technique, we can get better results, but only for the MMSE,
ZF, and MLP equalizers.

Finally, we summarize the advantages and limitations of
the proposed ANNs methods.

• MLP advantages: This strategy achieves good wireless
performance (high) throughout the 5G NR supported
modulation schemes. Only with an LS estimation input,
we can directly perform channel equalization on the
received signal. MLP training can be time-consuming
and require high computational capabilities. However,
once trained, the MLP model requires a limited number
of floating point operations, which allows us to deploy
this solution in real-time.

• MLP limitations: This strategy required a large dataset to
achieve high levels of accuracy to learn the equalization
process. That is, the learning processing needs elevated
computational resources for theMLP training. However,
given the latest CPU and GPU capabilities that have
been customized for DL processes, this fact will not
represent a relevant problem. Moreover, this model has
a high component of ‘‘try and fail’’ and can have too
many parameters that generate redundancy. Neverthe-
less, hyper-parameters optimization can help to mini-
mize these issues. Finally, the MLP network must be
trained offline, meaning that it is less adaptable than the
ELM network. However, using parallel offline training
will outperform this limitation.

• ELM advantages: The transmitted symbols can be
recovered directly from the received signal, and the ELM
training is performedwith complex values. Furthermore,
we highlight the real-time adaptation capabilities of this
approach since the ELM performs online training on the
received pilot signal, thus, the time to perform channel
equalization is the shortest of the compared methods,
which is the key advantage of this technique.

• ELM limitations: This ANN does not provide the
equalizer value per subcarrier, which can be useful to
pre-equalize the downlink signal. The achievable BER
increases for 256-QAM, which requires more signal
power than low-order modulation schemes like QPSK
and 16-QAM.

VI. CONCLUSION
We experimented with two ANN strategies, namely, ELM
and MLP neural networks, to perform channel equalization
and achieve high wireless performance for SISO mmWave
communications. The MLP neural network showed a per-
formance comparable to that obtained with the MMSE and
ZF channel equalizers for QPSK and 16-QAM; however,
for high-order modulation schemes like 64 and 256-QAM,
the BER increases. Given that the MLP network requires
offline training, periodic MLP model retraining will be

needed to maintain its high performance in nonstationary
systems. Nevertheless, with a large enough dataset, generated
from a 3D-RL scenario, the offline training of the MLP
network is more accurate, and the results can be compared
without falling into optimistic parameters like perfect CSI.
On the other hand, the ELMmethod can perform online chan-
nel equalization. Namely, this method does not require offline
training like the MLP network and requires significantly less
time to equalize the received signal compared to the other
equalizers reviewed in this study, which turns this technique
into a practical option to perform channel equalization at
mmWave frequencies.

Finally, we highlight as a future research direction,
the comparative analysis of ANNs for channel equalization
in massive MIMO systems. With multiple antenna systems,
the achievable BER is smaller, and therefore, the SE is higher
due to the diversity gain of these systems. However, the com-
plexity of signal processing also increases, so the computa-
tional complexity of the application of an ANN strategy is of
special interest for future analysis.
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