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ABSTRACT Tremendous penetration of photovoltaic (PV) systems into the electric grids develops many
challenges in the modern power systems. In the simulation analyses of PV systems, accurate modelling of
PV modules plays a crucial role in enhancing the characteristics of such systems. Modelling of such PVs is
represented by a non-linear I -V behavior, involving various unknown parameters because of the inadequate
data offered in the datasheet of PV cells. This paper proposes a novel implementation of the equilibrium
optimizer algorithm (EOA) to identify the nine-parameters of a three-diode (TD) model of a PV module.
Soundness of the EOA-TD model is extensively confirmed by the simulation results that are carried out
in different environmental conditions. The optimal parameters obtained using the proposed approach are
compared with those realized using other optimization techniques-based TD models. To achieve a practical
study, the simulation and experimental outcomes are checked for various commercial PV panels and the
error among these results records a value less than 0.5%. Moreover, the optimal parameters attained using
the EOA are competitive and very close to that realized using other approaches, where the offered EOA
has exhibited a minimum fitness value of 1.14e-14 and 7.154 e-13 for Kyocera and Solarex marketable PV
cells, respectively. The effectiveness of the proposed TD PV model is adequately assessed by evaluating its
absolute current error (ACE) with the ACE in different PV models. The EOA technology is considered to be
an accurate means of achieving the proper modelling of any commercial PV module.

INDEX TERMS Equilibrium optimizer algorithm (EOA), photovoltaic modeling, solar power, three-diode
model.

NOMENCLATURE
Abbreviations
ACE Absolute current error
DD Double-diode
EOA Equilibrium optimizer algorithm
MPP Maximum power point
PV Photovoltaic
PSO Particle swarm optimization
RMSE Root mean square error
SA Simulated annealing
STC Standard test condition
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SD Single-diode
TD Triple-diode
WOA Whale optimization algorithm
Symbols
ai ideality factor of diode i
Eg Band gap energy (eV)
G Solar irradiation (W/m2)
I Produced current of PV array (A)
IOi Leakage current for diode i (A)
Imp Maximum output current of PV array (A)
IPV Photo-generated current (A)
Isc Short circuit output current of PV module (A)
Ki Temperature coefficient of Isc (A/◦C)
Kv Temperature coefficient of Voc (V/◦C)
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KB Boltzmann’s constant (1.38065e-23 J/K)
Ns Number of series cells in PV module
Pm Maximum output power of PV module (W)
q Electron charge (1.6022e-19 C)
Rs Series resistance (�)
Rp Parallel resistance (�)
T Cell temperature (K)
V Output voltage of PV module (V)
Vm Maximum output voltage of PV module (V)
Voc Open circuit output voltage of PV module (V)
Vt Thermal voltage (V)

I. INTRODUCTION
Renewable energy systems have received great solicitude
around the globe due to various strategic issues, including
the rapid exhaustion of fossil fuels, climate interests, political
concerns, and the potential trend to have a healthy envi-
ronment [1]– [4]. The photovoltaic (PV) power system is
considered as a competitive renewable power technology in
the future. This interest is because of the recent cost saving
in the components of such PVs, which reflects the enormous
efforts exerted to develop the PV industry and to improve its
efficiency [5]. Globally, the latest record of the PVmarket has
reported that the PV installations realized 515 GW in 2018,
which indicates a rise of 27% relative to 2016’s statics. Note
that, the global PV installations shall realize 2.5 TW by 2025,
leading to a large-scale integration of the PV arrays into the
power networks [5].

In the curved portion, there is a region of the
I − V /P − V characteristics called a power region, in
which only one point can efficiently deliver the maximum
output power from the PV module. This point illustrates the
desired current/voltage, achieves the maximum output power.
Notably, the tracking of maximum power point (MPP) is a
dynamic process, where the operating point should be always
adapted due to the constantly changing in the temperatures
and irradiations [6].

In light of that, the huge-scale integration of PV power
plants into the power grids/micro grids requires an accurate
modelling of such PV modules/panels to investigate their
impact on the system behavior under various environmental
conditions, and during the grid disturbances. In addition,
the precise mathematical model of such PVs is valuable in
the dynamic analyses of power electronic converters that
connected with such PVs, the MPP tracking techniques, and
the simulation studies of such PV arrays and their power
components. Modelling of such PV panel is represented by a
non-linear I − V curve, involving many ungiven parameters
because of the limited data given in the PVs’ datasheet [7].

The PV cell is a semiconductor diode whose positive-
negative (PN) junction converts the incident light into electric
power. The PV is made of different semiconductor materials
like monocrystalline, polycrystalline, and silicon cells. Ideal
PVmodel is performed by an electrical current source, named
photo-generated current (IPV ), which relates to the solar irra-
diance falling on it. The real modeling of PV cell, which is

a non-ideal diode, should involve the internal losses of such
PVs, e.g., electrical and optical losses [8]. The optical losses
can be represented by the recombination and diffusion losses
of the charge carriers in quasi-neutral, space charge, and
deficiency zones of the PN junction [1], [4]. These losses are
performed by utilizing a number of diode models, i.e., single-
diode (SD), double-diode (DD), or three-diode (TD) models.
The SD PV model is used to address the losses in the quasi-
neutral zone [1]. Due to the lower irradiance at the open-
circuit voltage and the neglecting of recombination losses in
the depletion zone, the SDmodel lacks precision [4]. The DD
model can address the losses within the quasi neutral and
space charge zones. Although this model is more accurate,
it suffers from complexity, where it involves a high number
of unknowns, i.e., an additional diode leakage current and
the diode coefficient of the second diode [4]. Recently, the
TD model is proposed to express all PV losses in the three
regions, resulting in a more significant PV model [9].

The mathematical PV modelling is expressed by a
nonlinear I /V relationship, which involves an exponential
function. The electrical modelling of PV cells is expressed
by a IPV paralleled by the diodes and a Rp, then connected
to a series Rs. The non-ideal diode represents the internal
losses in the PN junction of the PVs. These diodes can
be modeled by a nonlinear exponential function with three
designated parameters, i.e., leakage current (Io), ideality fac-
tor (a), and IPV . The SD model includes five-parameters,
i.e., Io, a, IPV , Rs, Rp. The DD model is used to represent
the extra losses plus SD losses, which is a seven-parameters
model. The TDmodel is used to express all losses in the PVs,
which is a nine-parameters PV model [1], [4]. It is indis-
pensable to estimate the unknown parameters to realize an
efficacious and a very precise PV model, which is beneficial
in several simulation scenarios of PV arrays that integrated
with the utility networks [9].

Various techniques have been utilized in obtaining the
optimal design of ungiven parameters of such PV models. In
literature survey, the SD and DD models of PV panels are
commonly investigated owing to their low unknown parame-
ters that can be extracted using iterative methods, analytical
methods, and heuristic techniques. The analytical methods
are presented to extract the PV parameters using various key-
points which are available in the PV datasheet like the Isc,
Voc, and Pm [9], [10]. Although these techniques have a rapid
convergence, some approximations are coming in to reduce
the number of unknown parameters, like neglecting Rp [9],
the initial values of Rp [11] and Io [12], Lambert function
method [13], and using the linear least-squares approach [14].
However, it is hardly to achieve a precise PV model due
to the inaccurate assumption of the formula or the inaccu-
rate measurement of the key-points [15]– [17]. On the other
hand, numerical methods such as deterministic and stochas-
tic numerical optimization techniques were also presented
to overcome the problems of analytical methods, achieving
a precise PV model by minimizing the root mean square
error (RMSE). Newton-Raphson method [18], Nelder-Mead
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simplex [19], and pattern search method [20] are deter-
ministic numerical optimization techniques. Although, these
methods have high computation efficiency and rapid con-
vergence, they may fall into local optima, and hence the
accuracy is very sensitive to the initial points. The stochastic
approaches are used to identify the PV model parameters,
such as genetic algorithm (GA) [21], [22], particle swarm
optimization (PSO) [23], [24], teaching-learning optimiza-
tion approach [25], [26], artificial bee colony [27], grey
wolf optimization [28], whale optimization algorithm (WOA)
[29], [30], Harris hawks optimization [31]. Although these
methods are powerful approaches, they suffer from low con-
vergence speed and require high numbers of iterations to
achieve satisfactory responses. Moreover, more incorporated
analytical and meta-heuristic techniques are developed for
finding the seven-parameters of DD models [32], [33].

Furthermore, the iterative model method presents another
approach to properly estimate the PV model parameters. An
iterative model method is defined as a mathematical proce-
dure that utilizes an initial value for generating a sequence
to enhance an approximate solution for a problem. In [34],
the iterative model method was applied to find the values of
Rs and Rp, which are used in the PV model. Obtaining these
parameters is vital to allow the peak of themathematicalP−V
curve very close to the measured data. In the iterative process,
Rs is starting from zero and slowly incremented. Thereafter,
other PVmodel parameters can be calculated using datasheet-
based Equations at The STC for each value of Rs and Rp,
as reported in [34]. Different iterative techniques were also
presented to find the unknown parameters for different PV
arrays, including Gauss Seidel method [35] and Newton
Raphson method [36]. Note that, the classical approaches
lack precision, resulting in inaccurate values of the PV param-
eters due to the nonlinear behavior and the multi-variable of
PV models, besides the multi-modal problems that lead to
various local optima [4].

On the other side, meta-heuristic approaches are the
effective tools developed to optimally obtain the values of
unknowns for the SD and DD PV models by minimizing
the fitness functions. Recently, GA [21], simulated anneal-
ing (SA) [37], hybrid trust-region-reflective algorithm [38],
WOA [39], hybrid firefly algorithm and pattern technology
[40], water cycle algorithm [41], salp sawm algorithm [42],
flower pollination algorithm [43], enhanced leader PSO
(ELPSO) [44], and time varying acceleration coefficients
PSO (TVACPSO) [45] are presented to minimize the RMSE
for attaining the PV parameters. In addition, several fitness
functions and many algorithms were implemented for solv-
ing the optimization problem, involving bacterial foraging
algorithm [46], differential evolution [47], [48], and shuffled
frog leaping approach [49]. Moreover, other approaches were
presented in this sector, including penalty-based differential
evolution to extract the PV parameters [50], parameter extrac-
tion of PV modules using mathematical techniques based on
SD and DD models [51], and applying mathematical data for
parameter extraction and model the PV system [52].

At present, the TD model has been addressed to show
all losses in the PV cell. The analytical approaches used
to achieve the nine-parameters are hardly to be employed
because of the several variables and the lower number of non-
linear equations. Nowadays, the meta-heuristic approaches,
including WOA [39], sunflower optimization algorithm
(SOA) [53], [54], moth flame algorithm [55], coyote opti-
mizer algorithm (COA) [56], Harris Hawk optimizer [57],
and transient search algorithm [58] are the best choice to
design the unknown parameters of TD model. Moreover, the
experimental data of PV modules are applied to precisely
attain the TDmodel using the RMSE concept. Till nowadays,
application of new heuristic-based optimization approaches
to properly determine the ungiven parameters of the TD
model is highly appreciated and welcomed. This appears
the main impetus to apply the equilibrium optimizer algo-
rithm (EOA) to identify the nine-parameters of the TD-based
PV panel.

The EOA is a new physics optimization approach simu-
lated in 2019. It is motivated by physics-based dynamic mass
balance on a control volume that is utilized to evaluate the
dynamic and equilibrium states [59]. The EOA is a powerful
heuristic approach that includes several advantages, like a
lower number of variables to design, easier procedures, lower
computation complexity, and rapid convergence speed. So,
the EOA can be applied to solve different problems in the
power systems.

This paper exhibits a new approach using the EOA to find
the ungiven parameters of the TD PVmodel, achieving a pre-
cise electrical TD modelling of the PV modules that used in
the power systems simulation analyses. The soundness of the
EOA-based TD model is confirmed by the numerical results
that are performed under different environmental conditions.
The nine-parameters extracted using the proposed approach
are paralleled to those achieved using other optimization
techniques-based TD models. For achieving practical study,
the numerical results are compared with their experimental
outcomes for various commercial PV panels like KC200GT
andMSX-60 and the error among these results records a value
less than 0.5%. Moreover, the optimal parameters attained
using the EOA are competitive and very close to that realized
using other approaches, where the offered EOA has exhibited
a minimum fitness value for Kyocera and Solarex marketable
PV cells, respectively. The effectiveness of the proposed TD
PV model is adequately assessed by evaluating its absolute
current error (ACE) with the ACE in different PV models.
The EOA technology is considered to be an accurate means
of achieving the proper modelling of any commercial PV
module. Notably, the EOA-based PV model parameters iden-
tification has not so far been pointed out in PV research
literature.

II. TD MODEL OF PV MODULE
Fig. 1 depicts the TDmodelling of a PV panel, which consists
of a current source, three diodes that are in parallel connec-
tion, and series and parallel resistances [1], [39]. The leakage
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FIGURE 1. TD model of PV module.

currents of three diodes are Io1, Io2, and Io3. In the first
diode, the current (Io1) expresses the current due to quasi-
neutral regions of the emitter and bulk zones of the PN
junction with ideality factor (a1). In the second diode, the
current (Io2) relates to the recombination current in the space
charge zone with ideality factor (a2). In the third diode, the
current (Io3) expresses the grain boundaries with ideality
factor (a3). TheRs represents thematerial resistance of the PN
junction. Rp is the parallel resistance of the solar cell [4]. The
PV model has a nonlinear I -V curve that can be represented
as follows [4], [9], [39]:

I = IPV − IO1

{
exp

[
V + IRs
a1Vt

]
− 1

}
− IO2

{
exp

[
V + IRs
a2Vt

]
− 1

}
− IO3

{
exp

[
V + IRs
a3Vt

]
− 1

}
−
V + IRs
Rp

(1)

where IPV denotes the photo-generated current, IOi denotes
the reverse current of a diode i, ai is the ideality factor of a
diode i, where i represents the diodes number, i.e., i = 1, 2, 3,
and Vt = NsKT/q denotes the thermal voltage of PV
panel. Ns represents the total cells in the PV module, K is
the Boltzmann factor, T represents the panel temperature in
Kelvin, and q is charge of electrons (1.60217646e−19C).
As a rule, there are some key-points specified in the

PV datasheet which are Isc,Voc, and Pm. Note that, var-
ious functions are developed to efficiently illustrate the
I -V characteristic of various PV models at various temper-
atures and solar irradiations as follows [60], [61]:

IPV =
(
IPV ,n + Ki1T

) G
Gn

(2)

IO = IOn

(
T
Tn

)3

e

{
qEg
aK

[
1
Tn
−

1
T

]}
(3)

Eg = Eg,n (1− 0.0002677)1T (4)

Rp = RP,n
G
Gn

(5)

where, n denotes the nominal value at the STC. KI is the
coefficient of short circuit current, 1T is the temperature
difference, G is the irradiance, and Eg is the material band
gap. Eg,n = 1.211 eV [4], [31]. Therefore, it is necessary
to identify the ungiven parameters of such PV models. Here,
the ungiven parameters are IPV ,Rs, Rp, IOi, and ai, where
i = 1, 2, 3.

III. PROBLEM FORMULATION
In order to estimate the electrical parameters of the TDmodel
using an optimization technique, a definition of the fitness
function is required, and then the optimization approach can
be applied on it. In this study, a new fitness function is
presented to extract the parameters of the TDmodel. Here, the
current error, which is the difference between the modelled
and practical currents, is proposed. The fitness function, ε, is
depicted as follows:

ε =

N∑
k=1

|fk (V , I , φ)| +
N∑
k=1

f 2k (V , I , φ)+
N∑
k=1

f 4k (V , I , φ)

(6)

where N is the measured data samples, φ stands for a vector
of design parameters that involves the unknown parameters of
the TD model. The fk (V , I , φ) is mathematically expressed
as:

fk (V , I , φ) = IPV − IO1

{
exp

[
V + IRs
a1Vt

]
− 1

}
− IO2

{
exp

[
V + IRs
a2Vt

]
− 1

}
− IO3

{
exp

[
V + IRs
a3Vt

]
− 1

}
−
V + IRs
Rp

− Imeasured (7)

where φ =
{
IPV , IO1, IO2, IO3,Rs,Rp, a1, a2, a3

}
Imeasured stands for the practical PV current. The EOA
approach is used to minimize the fitness function, ε, to
precisely extract the nine-parameters. The principle EOA is
performed by using MATLAB software [62].

IV. EOA TECHNOLOGY
The EOA is a novel optimization algorithm, which was first
presented by Faramarzi, Heidarinejad, et al. in 2019 [59]. It
was motivated by physics-based dynamic mass balance on a
control volume to determine the dynamic and steady states. In
the EOA, the agent with its concentration represent the search
agent. This search agent randomly updates its concentration
based on the equilibrium candidate (best solution) to attain
the equilibrium state (optimal solution) [59].

The design of EOA approach is analogous to that of the
PSO technique, where the agent solution is similar to the
position of a particle. In this regard, the concentration of each
particle is updated using three parts. The first part is defined
as steady-state concentration, which is known as some of
the best solutions of the steady-state pool. The second part
relates to a concentration variance between the agent and
steady-state, which appears as a direct search technique. This
phase acts as explorers, where the particles are promoted to
the search space. The third part relates to the generation rate
that has a crucial role in obtaining the solution, although it
sometimes participates as an explorer as well. Each phase is
briefly clarified as follows [59].

41894 VOLUME 9, 2021



M. A. Soliman et al.: Electrical Parameters Identification of TD PV Model Based on EOA

A. INITIALIZATION AND FUNCTION EVALUATION
In the EOA approach, the optimization process is started
using the initial population similar to several meta-heuristic
approaches. The initialization process of the agents can be
updated by using the following formula:

C initial
i =Cmin+rand i(Cmax − Cmin) i = 1, 2, . . . .n (8)

where C initial
i denotes an initial concentration vector, Cmax

and Cmin are the maximum and minimum limits, rand i
denotes a random vector ∈ [0,1], and n represents the number
of agents. These agents are assessed based on their fitness
value, and then they are arranged to estimate steady-state
candidates.

B. EQUILIBRIUM POOL AND CANDIDATES
The final convergence of the EOA is the steady-state that
is required to find the optimal solution. At starting of the
optimization process, no information exists in the steady-
state. Also, some candidates are defined by four best particles
set through the process and another agent whose concen-
tration is an arithmetic mean of mentioned four particles.
These agents are implemented to achieve a better exploration
process. These agents are the steady-state candidates and
they are utilized to arrange a vector, named the steady-state
pool. Each agent updates its concentration with the course of
the iteration with random chosen among candidates that are
selected with similar probability.

C. EXPONENTIAL TERM
The exponential term, F , is used in the updating rule. The
precise definition of F assists EOA to have an acceptable
balance between exploration and exploitation. λ represents
random vector ∈ [0,1], where the turnover rate varies with
time.

EF = e−Eλ(t−t0) (9)

where t is the time that is a function of (Iter), and t0 is the
initial start time.

t = (1−
Iter

Maxiter
)
(a2 Iter

Maxiter
)

(10)

where Iter andMaxiter are the present and the total number of
iterations, and a2 denotes a constant value that managing the
exploitation process. To guarantee the convergence rate along
with enhancing the exploration and exploitation capability of
the EOA, the following formula is considered:

Et0 =
1
Eλ
ln
(
−a1sign (Er − 0.5)

[
1− e−Eλt

])
+ t (11)

where a1 denotes a constant value that controls exploration
ability. r is a random vector that its value between 0 and 1.
Eq. (11) is substituted into (9) and then,

EF = a1sign (Er − 0.5)
[
1− e−Eλt

]
(12)

D. GENERATION RATE
The generation rate, G, plays a vital role in the EOA. It
provides the accurate solution by enhancing the exploitation
phase. The G is described as a function of time, and can be
expressed in following formulas [63]:

EG =
−→
Goe−

−→
K (t−t0) (13)

where Go denotes an initial value and K points out a decay
constant. For a more systematic search, K is assumed to be
equal to λ. Thus, the final set of G is:

EG =
−→
Goe−

Eλ(t−t0) =
−→
Go EF (14)

where,
−→
Go =

−−→
GCP( ECeq − Eλ EC) (15)

−−→
GCP =

{
0.5r1, r2 ≥ GP
0, r2 < GP

(16)

where r1 and r2 are random values in [0,1],
−−→
GCP represents

the generation rate control parameter that involves the pos-
sibility of G for the updating process, GP is the generation
probability that determines how many particles utilize G to
update their states, and Ceq is the equilibrium pool. To obtain
a compromise balance between both of the exploration and
the exploitation, GP = 0.5. The updated formula of the EOA
is expressed as follows:

EC = ECeq +
(
EC − ECeq

)
� EF +

EG
EλV

(1− EF) (17)

where V is regarded as a unit.
In (17), the first part denotes the steady-state concentration,

and the other parts appear changing in the concentration. The
second part is in charge of global searching the space in order
to get the optimal solution. The third part is participated to
achieve a more precise solution.

E. MEMORY SAVE OF PARTICLE
The memory save is added to assist each particle to follow
its coordinates and also to inform the objective value. The
technique looks like pbest rule in the PSO approach. For
each particle, the objective function value of the agent is
compared with the back-step iteration and shall be replaced
if it realizes a better value. Although the technique helps in
the exploitation process, it may fall into the local minimum
point if the technique does not execute the global exploration
process [64]. Fig. 2 demonstrates the flowchart of the offered
EOA-based electrical parameters extraction of the PV model.

V. SIMULATION RESULTS
The EOA is applied to properly model the PV panels. Here,
the proposed algorithm is employed to optimally design the
parameters of a TD model of different PV modules. In this
regard, two commercial PV panels are employed to test
the validity of the EOA model, like KC200GT [65] and
MSX-60 [66]. Table 1 indicates the electrical behaviors of
such marketable PVs, which are measured under the STC.
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FIGURE 2. Flowchart of proposed EOA-based nine-parameters extraction.

TABLE 1. PV modules data.

The EOA approach is used for minimizing the fitness
function, ε that mentioned in Eq. (6), where the number of

TABLE 2. Optimal parameters using the EOA-TD model.

FIGURE 3. Convergence over iterations. (a) KC200GT. (b) MSX60.

iterations is set 500. Based on the designer experience, the
number of particles in the EOA is set 30. Notably, the control
parameters of the EOA have been set using the trial and error
method. After performing several runs, the EOA was termi-
nated. Fig. 3(a) and (b) indicates the convergence curves of ε

using the EOA approach for the two marketable PV modules.
Note that, the EOAmethod has a rapid convergence speed. In
addition, the graphs are smooth and terminated to a minimum
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TABLE 3. Comparison among PV models for KC200GT.

TABLE 4. Comparison among PV models for MSX-60.

objective value of 1.14e-14 and 7.154 e-13 for Kyocera
KC200GT and Solarex MSX-60 PV cells, respectively. The
optimization and numerical results are performed with the
help of using MATLAB 2016b [62]. Furthermore, multiple
runs around 50 of the EOA approach are executed to check
the validity of the EOA technique. It is highly to mention here
that the standard deviation value and variance value are close
to zero, which reflect the excellence and the proper structure
of the EOA technology. Table 2 clarifies the optimal variables
of the PV model for KC200GT and MSX-60 PV modules.
Tables 3 and 4 illustrate the optimal parameters that achieved
using the EOA approach compared to that obtained using the
WOA [39], SFO [54], COA [56], ELPSO, and TVACPSO for
the two marketable PV modules. Notably, the optimal nine-
parameters of the TD model using the EOA method are very
near to that realized by using various algorithms for the two
marketable PV modules. In addition, the proposed EOA-TD
model has achieved a lower fitness value of 1.14e-14 and
7.154 e-13 for both marketable PV cells compared with other
approaches. So, the EOA represents a competitive technology
to precisely establish the TD model of any PV modules.

Table 5 clarifies the constraints of the proposed EOA-based
TD model. Moreover, the numerical results that achieved
using the proposed EOA-based PV model are compared with
the practical results at various temperature and solar irra-
diation conditions. The I-V and P-V characteristics of the
proposed EOA-based PV model are paralleled with the prac-
tical data of the marketable KC200GT PV panel at various
temperatures, as depicted in Fig. 4(a)&(b). The results are
achieved at constant G = 1 kW/m2. Notably, the numerical
results of the EOA model are concurred with the practical
data. This reflects the high preciseness of the offered TD

TABLE 5. Constraints of the proposed EOA-based TD model.

FIGURE 4. Simulation results and practical data of KC200GT at various T ,
G = 1 kW/m2. (a) current-voltage (I − V ) curves, (b) power-voltage
(P − V ) curves.

model of the PV panel. Furthermore, the PV characteristics
of the EOA-PV model that compared with their practical
data for KC200GT panel at several irradiations are illustrated
in Fig. 5(a)&(b). It can be mentioned here that no change
occurs between numerical and practical results. It appears a
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FIGURE 5. Simulation results and practical data of KC200GT at various G,
and T = 25 ◦C. (a) current-voltage (I − V ) curves, (b) power-voltage
(P − V ) curves.

confirmation of the effectiveness of the EOA model. The PV
characteristics of the MSX-60 PV panel that are realized at
G = 1 kW/m2 and various temperatures by the proposed
model are compared with the practical results, as demon-
strated in Fig. 6(a)&(b). Notably, the numerical outcomes of
the proposed model coincide with the practical data. From
the previous comparisons, it is noticed that the proposed PV
model has a high efficacy.

It is worthy for mentioning here that all the practical data
are attained on the outer surface of a Campus building roof.
In this regard, the PV panel is located in an open glassed
container. A circular hot water or cold water can flow in
order to control the PV panel temperature. Many practical
measurements were successfully carried out in June 2017,
Cairo, Egypt. The PV panel is simply loaded by an adjustable
resistance, which has a rated value of 39 �. A digital mul-
timeter is utilized in recoding the values of PV’s current
and PV’s voltage. These measurements were done at various

FIGURE 6. Simulation and practical results of MSX-60 at various
T , G = 1 kW/m2. (a) current-voltage (I − V ) curves, (b) power-voltage
(P − V ) curves.

temperature and irradiance conditions. The solar irradiance
is measured with the help of using a Pyranometer SP-110-SS
with a calibration factor of 5W/m2 permV and its uncertainty
is ±5%. Besides, an infrared thermometer is performed to
precisely record the temperature and its accuracy is ±1 ◦C,
and its available range is [−32, 550 ◦C]. The real PV panel
used in the experimental test is depicted in Fig. 7.

For an inclusive validation of the EOA PV model, the
ACE, which is the difference between the modelled and
practical currents, is used in the comparison between different
approaches-based PV model. Fig. 8(a)&(b) points out the
ACE of the EOA model compared with the WOA [39] and
the iteration models [39] for both PV panels. It has obvi-
ously been noticed that the ACE of the EOA-TD model is
lower than that obtained using other PV models. Hence, the
EOA-TD model is preferable compared with the others mod-
els, particularly in the MPP operation and in the applications
of PV panels. Thus, the superiority of the EOA-TD model
distinguishes the proper design of the EOA technology.
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FIGURE 7. Real PV panel used in the experimental test.

FIGURE 8. ACE (a) KC200GT, (b) MSX-60.

VI. CONCLUSION
As the TD model is a complex nonlinear model, the electri-
cal nine-parameters are hardly achieved using mathematical

methods. So, the optimization techniques present an
alternative solution to overcome these problems. This article
has exhibited a new fitness function and a novel imple-
mentation of the EOA technology to optimally design the
undetermined parameters of the TD model-based PV panel.
The EOA is inspired by physics-based dynamic mass balance
on a control volume that is utilized to evaluate the dynamic
and equilibrium states. The principle goal of this study is
to achieve a precise PV model for commercial PV panels.
The TD model of PV modules is mathematically simulated
by a nonlinear I -V behavior, involving unknown parameters
because of the shortage data offered in the PVs’ datasheet.
The main purpose of the optimization problem is to mini-
mize the current error function, ε. The EOA technology was
successfully employed for minimizing the ε, achieving the
nine-parameters of the TD model. Several comparisons were
made to confirm the effectiveness of the offered EOA-based
PV model. The proposed approach was applied to extract
the optimal parameters of the TD model for two commercial
PV panels, which include different cells, power ratings, and
voltage ratings. The PV model parameters, obtained using
the EOA-based PV model, are close and competitive to that
realized using other various approaches, where the EOA
model has revealed a minimum fitness value of 1.14e-14
and 7.154e-13, respectively for both marketable PV panels.
Moreover, the simulation outcomes of the offered EOA-based
PV model are near to the practical data for these marketable
PV modules under several temperatures and irradiances.
The ACE of the EOA-based PV model with respect to the
measured data records a value less than 5% compared with
different PV models. In conclusion, the proposed EOA tech-
nology and the proposed fitness function, ε, can be applied to
properly identify the unknown parameters of the TD model
of any commercial PV panel, achieving a precise PV model.
The precise PV model is very useful in the simulation anal-
yses of the solar power systems. Furthermore, the proposed
EOA algorithm can be further employed in solving different
problems in various renewable energy conversion systems,
microgrids, and smart grids.
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