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ABSTRACT This paper presents a two-stage genetic mechanism for the migration-based load balance of
virtual machine hosts (VMHs) in cloud computing. Previous methods usually assume this issue as a job-
assignment optimization problem and only consider the current VMHs’ loads; however, without considering
loads of VMHs after balancing, these methods can only gain limited effectiveness in real environments.
In this study, two genetic-based methods are integrated and presented. First, performance models of virtual
machines (VMs) are extracted from their creating parameters and corresponding performance measured
in a cloud computing environment. The gene expression programming (GEP) is applied for generating
symbolic regression models that describe the performance of VMs and are used for predicting loads of VMHs
after load-balance. Secondly, with the VMH loads estimated by GEP, the genetic algorithm considers the
current and the future loads of VMHs and decides an optimal VM-VMH assignment for migrating VMs and
performing load-balance. The performance of the proposed methods is evaluated in a real cloud-computing
environment, Jnet, wherein these methods are implemented as a centralized load balancing mechanism. The
experimental results show that our method outperforms previous methods, such as heuristics and statistics

regression.

INDEX TERMS
expression programming.

I. INTRODUCTION

A. LOAD BALANCE IN CLOUD COMPUTING

Cloud computing is an Internet-based resource utility [1], [2].
Its central concept is “‘everything can be a service” . In cloud
computing, computing hardware and software resources are
capsulized as web-services that can be accessed through
the Internet. Three application types of cloud computing
models are defined [3]: infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service (SaaS).
Among them, virtualization is a representative laaS applica-
tion, which provides computing infrastructure resources, such
as computing power, data storage, networking, all in the form
of web services [4], [5]. IaaS providers purchase and maintain
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physical computing and storage hardware and provide web
services to users. With the virtualization technology, the users
request laaS providers for computation or storage resources
as they own a “virtual machine” (VM) without purchas-
ing and maintaining physical hardware. The users can uti-
lize VMs for deploying system/application software with
a considerably lower cost of hardware procurement and
possession.

An TaaS provider operates a server farm consisting of
some computing and storage hardware, wherein some host-
ing servers (referring to as VMHs) provide virtualization
services. A VMH may run one or many VMs, depending
on the capacity of the VMH. If VMHs are not properly
managed in a server farm, some VMHs may be busy running
many VMs but some VMHs almost idle with few VMs.
Managing loads of VMHs by adjusting the consumption of
resources held by VMs for better cost-performance efficiency
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while guaranteeing service level agreements (SLA) to the
customers is an essential issue in IaaS [6]-[9].

Migration of VMs among VMHs is one of the methods
for load balance of VMHs, which is to move the workload
of VMs from one overloaded VMH to other VMHs, trying
to make the workload of all VMHs evenly. Three phases
of work are involved in this process: detection, decision,
and action. The detection phase is to detect if an imbalance
occurs in a server farm. The decision phase is to decide
if the migration of VMs is needed and select the VMs for
migration and VMHs for accepting these VMs. The action
phase is to suspend the VMs selected, migrate them from one
VMH to others, and restart them after the migration. During
the migration, only the VMs to be moved are suspended
and restarted, and other VMs in the VMHs are still running.
Thus, the workload of VMHs is not static; migration of VMs
may cause the workload of the target VMHs to much worse.
Therefore, an effective load balancing mechanism is essential
yet difficult for the management of VMHs.

Load-balance is a typical but essential research topic in
parallel or distributed systems, and many machine learning-
based methods have been proposed, such as [10]-[12]. The
following discusses some recent methods for load balancing
in cloud computing. Alonso-Calvo et al. presented in [13]
an application-level load balancing system for applications
running on VMs. Doong et al. presented in [14] a multi-
kernel support vector regression model for modeling VMs
performance. Hu et al. developed a scheduling strategy for
load balancing of VM resources using GA that refers to
historical data and the current state of the system [15].
A capacity allocation algorithm is presented in [16] that coor-
dinates multiple distributed resource controllers executing in
geographically distributed cloud sites. Pang et al. presented
in [17] a hybrid method that employs the estimation of distri-
bution algorithm to estimate possible solutions of VM loads
and then uses GA to adjust these solutions. HEELS [18] is
a heuristic task deployment approach based on clustering
and Glowworm Swarm Optimization and used for long-term
load balancing of a cloud framework with edge computing.
A hybrid metaheuristic is proposed in [19] that hybridizing
artificial bee colony and ant colony optimization for load
balancing of VMs in the cloud.

These methods consider the load balance problem as job-
assignment optimization and mainly focus on developing
optimization algorithms for fast convergence. However, they
assume the load of VM/VMH is static and do not consider
the cost of migration and the load of VMHs after balancing,
resulting in limited effectiveness in real environments.

B. MOTIVATION

Based on the above discussions, an effective and efficient
load balancing mechanism must consider the following.
A load balancing mechanism works in a dynamic environ-
ment consisting of many running VMs and VMHs. It needs
to monitor, detect, and decide how to release the imbalance
situation of VMHs. An effective load balancing mechanism
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can take actions that release an overloaded VMH and do
not result in overloads on another. Also, efficiency and low
overhead are required for a balancing mechanism. Simple
balancing methods like fixed or heuristic-based rules work
efficiently but not effectively since they may derive over-
loading of other VMHs. Advanced balancing methods like
statistics-based can work effectively; however, they need
to calculate many sophisticated operational parameters and
require considerable computation power to decide migration
targets.

Because there are diverse IaaS implementations, some

assumptions are adopted in this study.

1) A VM operates on only one VMH at a time, and
multiple VMHs share a data storage. The amount of
resource consumption of a VM cannot exceed the host
VMH can offer.

2) There are many types of load in computer systems,
such as CPU/GPU computing load, memory/disk stor-
age, network transmission. This study focuses on the
CPU load of VMHs, which is mainly discussed in the
literature.

3) A centralized load balancing mechanism is employed
for monitoring and managing all VMHs. The mecha-
nism detects the number, locations, and all VMH work-
load parameters periodically.

This study was motivated by the authors’ daily experiences in
managing VMHs. Two genetic-based methods are developed
and integrated for load balance. First, performance models
of virtual machines (VMs) are extracted from their creating
parameters and corresponding performance measured in a
cloud computing environment. The gene expression program-
ming (GEP) is applied for generating symbolic regression
models that describe the performance of VMs and are used
for predicting loads of VMHs after load-balance. Secondly,
with the VMH loads estimated by GEP, the genetic algorithm
considers the current and the future loads of VMHs and
decides an optimal combination of VM-VMH assignments
for migrating VMs and performing load-balance. Our pro-
posed methods work effectively and efficiently for balancing
VMH workloads in a dynamically working VMH environ-
ment. The performance of the proposed method is evaluated
in a real cloud-computing environment. The experimental
results show that our method outperforms previous methods.

As stated in the literature, load balance is a critical issue

for managing VMH servers in cloud computing. Using GEP,
the idea of load prediction of VM for optimizing VM-VMH
assignment helps improve the stability of the load balance
mechanism. The white-boxed GEP expression of VM load
behaviors can be easily integrated with the balance mecha-
nism. GA provides an intuitive and fast method of deciding
VM-VMH assignments for load balance and flexibly works
with various objective functions for different management
purposes. The genetic-based methods, GA and GEP, can be
easily implemented by the cloud administrator. The perfor-
mance and usability of the proposed methods are evaluated
and proved to be valid in a real cloud environment.
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FIGURE 1. VMs, hypervisor, and a server farm with m VMHs.

Il. BACKGROUNDS

A. VIRTUALIZATION

The virtualization technology is to establish a software layer
called a hypervisor on a physical hardware platform. A hyper-
visor is an operating system that protects the resources of a
VMH and manages the requests and responses from VMs.
Depending on the application environments, type-1 hypervi-
sors directly running on VMH’s hardware and type-2 running
on the VMH’s OS are defined. For more details about hyper-
visors, please refer to [20]. A VM is an abstract machine
defined by virtual processors (vCPUs), virtual memory
(vVRAM), and virtual hard drives (vHDs) provided by a VMH.
A user program running on a VM cannot directly access the
physical hardware. Instead, all resources are wrapped by the
VMH’s hypervisor. Generally, multiple VMs are executed
on and managed by a VMH. Fig. | presents a collection of
VMHs (referring to as a VMH server farm), where each VMH
serves for one or many VMs. Commonly used hypervisors
include VMware vSphere [21], KVM(kernel-based virtual
machine) [22], and Microsoft Hyper-V [23].

Conceptually, a VM is composed of a ““configuration file
describing the specifications of vCPU, vVRAM, and vHD and
a “‘disk image file” retaining the user data (vHD). A volatile
“memory page” is generated in the VMH’s main memory
when the VM is running. When a VM is created, the above
files are created on the VMH’s storage. Therefore, deleting,
copying, or moving a VM means deleting, copying, or mov-
ing these files. One of the advantages of virtualization is the
easy migration of VMs, which means that one VM can move
from one VMH to another VMH. With migration, VM can
execute on different VMH platforms. During the migration,
if the VM is in execution, the VM needs to be suspended first.
In addition to moving the VM files (configuration and disk
image), the memory pages associated with the VM must also
be moved from the current VMH’s main memory to the target
VMH. After all the movements are completed, the VM can be
activated again.

During migration, a VM may be suspended for seconds,
even dozens of minutes, depending on the sizes and stor-
age methods of vHD and vRAM. Additionally, migrating a
VM incurs the transfer of VRAM pages over the network.
The larger the vRAM, the more considerable the amount of
data to be transferred, and the greater the system’s burden.
The so-called ““live migration” [24] is a fast re-configuration
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FIGURE 2. Live migration with shared storage.

of vHD and vRAM for migration with a shorter suspending
time with which the VM users may not even notice the
suspension in the migration process. Live-migration is com-
monly implemented with shared storage. VM migration can
be easily and quickly done by re-assigning the ownerships
and disk mapping files instead of physically transferring
vHDs (huge sizes). Fig. 2 illustrates the scenario of live
migration with shared storage between two VMHs. Suppose
the administrator selects VM4 to migrate. The disk mapping
files associated with VM4 are reconfigured in the storage,
and the memory pages are transferred from VMH1 to VMH2.
With live migration, load balance can be more efficient and
reduce the impact on working VMs [25], [26].

B. PROBLEM FORMULATION
The load of a VM is dominated by factors like CPU usage,
memory size, network speed, etc. Assume that v is a VM,
and Ly (v) represents its load. The Ly (v) can be described as
a function, as shown in Eq. (1).

Ly(v) =f(ur,ua, ..., up), (D

where ui, us, ..., u; are the aforementioned k factors that
dominate Ly. A VMH may serve many VMs. The workload
of a VMH is the combination of the load from all its VMs
and its operating system. Assume /4 is a VMH with n VMs
(vi, v, ..., vy) running on h. The load Lg(h) of h can be
described as follows.

n
Lu(h) = Lo(h) + Y _ Lv(vy), 2
i=1
where, Ly(h) is the system load of 4 and Ly (v;), 1 <i < n,
is the load of the VM v;. Usually, each VM’s load is protected
by SLA and should be above a reasonable level to maintain
good service quality. Also, by the quota contract, VM’s load
is limited. Eq. (3) describes the upper and lower bounds of
Ly (v).

L(vi) < Ly (vi) < I*(vp). 3)

Usually, /,(v;) and [*(v;) are constants set by the administrator
of VMHs according to the SLA and contract requirements.
If Ly (v;) > I*(v;), the v;’s load is too high, and it may not
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perform the user’s tasks smoothly. If Ly (v;) < L.(v;), the load
is low, causing a waste of resources of the VMH.

Suppose there are p VMHs, hy, ..., h,, operating in a
server farm. The overall load of each VMH must also be
within a reasonable range and can be described as Eq. (4).

Li(hj) < Lu () < L*(hy), “

where 1 < j < p. Also, Ly(h;) and L*(h;) are control
parameters set by the administrator. If Ly(h) > L*(hy),
the VMH is overloaded, and the VMSs running on /; may
not obtain sufficient resources, degrading the performance
and even service quality. If Ly (k) < L. (h;), the computing
resources are idle and wasted.

With the above equations, to keep the load of a set of VMHs
balanced is to keep all Ly (-)s evenly, i.e.,

Ly(h) = Lu(hy) = - - - =~ Ly (hy), &)

and to preserve the consistency of Eq. (4) for all VMHs.
If Eq. (5) is corrupted due to the overload of some VMHs,
some VMs associated with these VMHs may need to be
turned off or migrated to other VMHs for load-balancing. The
load of all VMHSs is expected to be balanced after the migra-
tion of VMs. Suppose & is a VMH about to become over-
loaded and &, is a VMH in safe load, i.e., Ly (hg) > L*(h,) and

L (hy) < L*(hy). If migration of g VM, vy, ..., vy, from hy
to h; is performed, the load of &g and A, changes as follows.
q
Ly(hy) = Ly (hy) = Y Ly(v), (6)
i=1
q
Ly(h) = Lig(he) + Y Ly () ™

i=1
Therefore, load balancing by the migration of VMs can be
considered as a combinatorial problem, wherein the best set
of VMs are selected from VMHs and migrated to proper hosts
and Eq. (4)-Eq. (5) are always observed either before or after
the VM migration. The following issues are considered in this
study.

« The load of VMHs is expected to remain balanced after
the migration of VMs. It is necessary to predict the load
of VMHs to prevent the target hosts from becoming
overloaded after the migration. One method to obtain the
descriptive expression of Ly (v;) in Eq. (2) is to collect a
sufficient amount of data and find a statistics or regres-
sion model accordingly. There are two types of learn-
ing methods, black-box and white-box [27]. The main
difference between them is the explainability and read-
ability of the regression model obtained. An explainable
VM load model can be integrated and adjusted more
easily with the management system from the system
administration perspective.

o Choosing the best set of VMs and target hosts for migra-
tion is a job-assignment optimization problem, usually
a time-consuming combinatorial explosive problem. An
efficient and effective selection mechanism is needed for
load balance and painless migration.
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Ill. GENETIC METHODS

There are two goals in this study. The first one is to describe
the load of VMs as a white-box model. The second one is to
decide on the best VM-VMH assignment for migration. This
research adopts two genetic methods, genetic algorithm and
genetic expression programming, for achieving these goals.

A. GENETIC ALGORITHM

The genetic algorithm (GA) [28] is a stochastic search
optimization method that mimics natural genetic systems’
mechanics. With GA, solutions to domain problems are
encoded as chromosomes that are iteratively processed by
genetic operators, reproduction, mutation, crossover, etc. The
ones with better fitness are retained. GA is well known
for its efficient exploitation of better solutions via search
in the vicinity of known ones. GA has many advantages
over traditional search methods: (1) it provides a simple and
direct representation of solutions; (2) it searches solutions
with a population of potential ones; and (3) it works with
probabilistic transition rules instead of deterministic ones.
GA has been successfully applied to many combinatorial
optimization problems and is widely used in many applica-
tions. Genetic programming (GP) [29], is a genetic method
for evolving programs or mathematic formulas. GP uses a
tree structure to represent a program or formula, as shown
in Fig. 3. The genetic operators in GP are similar to those in
GA (mutation, crossover, and reproduction); however, they
are applied as node-renaming, pruning, and recombination of
subtrees. Because tree structures are complicated and compu-
tationally inefficient for implementation, some improvements
are proposed, such as the following.

GA is a type of metaheuristic algorithms that applies
specific search schemas for solving complex optimization
problems. Each metaheuristic algorithm employs a unique
representation for problem description and a specialized
mechanism for exploring the search space and is useful for
particular applications. GA is adopted in this study due to the
following reasons.

o GA provides a direct and intuitive representation for
describing the VM-VMH assignment and is easy to
implement.

o Many metaheuristic algorithms are working on an estab-
lished objective function (fitness function), which may
be changed for various load balance considerations (see
Section VI).

o For various optimization subjects, only the objective
function’s calculation needs to be changed without
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massively changing the gene expression and the whole
balance mechanism.

More comparisons on the difference and usage of metaheuris-
tic methods are available in [30], [31].

B. GENETIC EXPRESSION PROGRAMMING

Genetic expression programming (GEP) [32] is a variation of
GP. Given a set of terminals (input variables or constants) and
operators (functions), GEP describes programs or formulas
as binary trees represented in linear gene expressions. The
gene expression is the level-order traversal of a binary tree
and is composed of head and tail. Symbols in the head can
represent functions or terminals; the ones in the tail can
only be terminals. The length of a gene expression is & + ¢,
where & is the length of head given by the users and ¢ =
h x (n — 1) + 1 the length of tail. The parameter n is the
number of most arguments of a function, also given by the
users. Referring to Fig. 3(a), symbols x, y and integers are
terminals and +, —, X, =, J/are operators. A GEP tree with
h = 7 and n = 2 is presented in Fig. 4, wherein the gene
expression of length 15 (# = 8) expresses (3x + 8) x (,/y/2).
Notice that the GEP expression is determined by level-order
traversal of its binary tree. Some terminals in the tail part
may be useless. They are used as operands only if their
parent nodes are operators. The genetic operators in GEP
are reproduction, mutation, transposition, and recombination,
applying on the gene expression. Reproduction and mutation
are the same as those in GA. Transposition is to prune a
gene segment and insert it to a position randomly selected.
Recombination is similar to crossover in GA by breaking and
recombining two gene expressions. The use of expression
trees brings efficiency to GEP because genetic operations
can be more easily applied in a simple linear structure. The
cost for search specific gene elements in a genetic operation
is reduced from O(n) to O(1). GEP has superior perfor-
mance in dealing with complex problems than conventional
regression methods; for example, modeling sensor charac-
teristics [33], diagnosis and prediction of lung cancer [34],
fault diagnosis of power transformers [35], and intrusion
detection of power grid [36]. Refer to [32] for more details
about GEP.
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TABLE 1. Operators used in GEP.

Name Definition =~ Name Definition
Addition (z+vy) Inverse 1/z
Subtraction (z—y) Power of 2 z?
Multiplication (z * y) Negation -z
Division (z/y) Average of 2 inputs avg(z,y)
No operation Max. of 2 inputs max(z,y)
Complement (1 — z) Min. of 2 inputs min(z,y)
10% pow(10,z) Exponential exp(z)
Floor floor(z) Absolute value abs(x)
Ceiling ceil(x) Natural logarithm In(z)
Square root sqri(z) 10-based Logarithm log(z)
Power pow(x,y)  Floating-point remainder mod(z,y)

IV. THE PROPOSED METHODS

A. SYMBOLIC LOAD MODELS BY GEP

Symbolic regression is to find a description model from the
input-output tuples of a problem that can rationally predict
the correspondence of a new input. By Eq. (1), suppose the
load of a VM v is determined by k parameters of resource
settings, uy, ..., ui. Let U = {(uy;, ..., uki, i)} and y; be
the load of v, measured with the settings of u, ..., u; at the
ith instance. Suppose f(u1, . .., ux) is a symbolic regression
model describing the relation of y and uy, ..., u; obtained
from U. If the difference, usually measured by MSE (mean-
square error), between f (u1j, - -, uxi) and y; is acceptable,
the model can be used for describing and predicting the load
of VM.

. 1< .
MSEF, Uy == i =fai-om)®, ®)
i=1

where n is the size of U. When using GEP, terminals are
numeric constants and resource parameters, ui, ..., Ui, and
the operators are mathematic calculations, as listed in Table 1.
For obtaining a fast VM migration decision, the operators per-
forming complicated calculations (and consequently require
longer computational times) are assigned lower evolutionary
priority.

B. VM ASSIGNMENT BY GA

Since there may be many VMs and VMHs working in
the cloud, deciding an optimal VM-VMH assignment is
combinatorially explosive and time-consuming. Below we
show how GA is applied for fast and reliable VM-VMH
assignments.

1) CHROMOSOME ENCODING

Suppose that there are ¢ VMSs, v, ..., v4—1, served by p
VMHs, hy, ..., hy—1,in a VMH server farm. A chromosome
consisting of g genes is defined as follows.

’ §q—1]» (9)

where ¢;, 0 < i < g — 1, denotes that the ith VM is served
by the VMH h;, ¢; € {ho,h2, ..., hp—1}. A chromosome

[5-07 gls
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of the form in Eq. (9) represents a VM-VMH assignment.
For example, Fig. 5 presents the assignment of 12 VMs to
3 VMHs.

2) LOAD ESTIMATIONS

For the load balancing of VMHs by VM migration, a good
configuration should correct the currently imbalanced situa-
tion. It will not result in a new imbalance after the migration
of VMs. Suppose the chromosome in Eq. (9) is considered.
Let & be the VM-VMH assignment before migration and £ a
new assignment generated by GA. Let £(v;) = h; denote the
VMH assigned to v; in £ and é_l(hi) = {(vjl§(vj)) = h;} the
set of VMs assigned to 4; in £. By Eq. (2), the load of A; is
estimated as

Ly (hi) = Lo(h) + Y Ly (v)). (10)
J=1

where v; € £~1(h;) and Zv(vj) = f(ul, ..., ug) is the load
predicted by the regression model presented in Eq. (8).

3) MIGRATION COST

The cost of migration is also a critical issue that should
be considered. Migration is costly, i.e., the time/resources
consumption for retaining and moving VM data and the
profit loss due to service suspension. Therefore, for a new
VM-VMH assignment, the fewer moving VMs, the better. Let
0 be the cost of moving a VM, the migration cost «(§) of a
chromosome £ is to examine £(v;), 0 < i < g — 1, against &,
ie.,

q 1

a(é)—l——ZV(V) an
i=0

Sy = 10 E0D =&, 12)

0, &) # &),

where 0 < 6 < 1 indicates the impact of migration of a
VM and is defined by the system administrator. In a con-
figuration with 0 migrating VMs, the migration cost is 0;
otherwise, the migration cost is accumulated as the number
of migrating VMs increases. Migration of VMs is costly,
even with shared storage (live-migration). However, migra-
tion of VMs is a need for the administration of VMH servers
from energy-saving or SLA aspects [37]-[39]. A higher 6
setting reduces the occurrence of migration and eases the
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impact or inconvenience resulted from migration. Setting a
reasonable 6 can refer to the aspects stated in [24], [40].

4) FITNESS FUNCTION

The fitness of & is defined by considering the migration cost
() and the balance factor 8(£). The balance factor B(§)
considers the load difference of two VMHs and computes the
balance ratio against the maximum workload predicted.

. Ip(p — 1) maxy;({Lu (h)})
> varp Lt (ha) — Ly ()|

The overall fitness of & is defined as follows,

BE&) = ). (13)

a(§)- BE), Li(hj) < Ly(hy) < L*(hy),
fitness(§) = for all j,
0, otherwise

(14)

Because the load of VMHs is expected to be “balanced” after
migration, the fitness of a configuration is bad (0) if any VMH
is predicted to be overloaded (> L*) or underloaded (< L.).
Otherwise, the migration cost («(£)) and the balancing degree
(B(&)) are evaluated.

C. LOAD-BALANCING PROCEDURE
Based on the proposed genetic-methods, an intelligent load
balancing mechanism is implemented with two main proce-
dures. Suppose there are ¢ VMSs running on p VMHs, the
parameters associated with the generation of a GEP-based
load model include: historical VM load data or the log
records periodically collected by VMHs: D, a linear GEP
chromosome ¢y converted from the current load model, a set
of operators: O, population size: k, best GEP trees to retain:
t, MSE threshold: € by Eq. (8), and head (h) and the maxi-
mum number n of operators in a GEP tree. The pseudocode
of the GEP-based load model generation is presented in
Algorithm 1. The load-balance procedure is invoked period-
ically with the following parameters. The current VM-VMH
assignment &y = [co, 61, ..., G4—1] in the form of Eq. (9),
Load-Balance Status (LB) by Eq. (13), Population size: K,
Best chromosomes to retain: 7', Best fitness threshold: B =
M X fitness(&p). The pseudocode of our proposed GA-based
load balance mechanism is presented in Algorithm 2.
Notice that the current VM load model ¢y and the
current VM-VMH configuration & are also include the ini-
tial population of GEP_Load_Model_Generator and
GA_Balance_Procedure, respectively. Such settings
make sure that solutions better than the current one can be
derived. Initially, the training data for the VM load model can
be manufactured, as shown in Section V-B. They are collected
from VMH’s log and used to update the VM load model,
as shown in GEP_Load_Model Generator. Therefore,
as the system performs, the VM load model evolves reason-
ably to the real situation. GA_Balance_Procedure per-
forms load balance when an imbalance is detected. It searches
by GA a new VM-VMH assignment better than the current
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Algorithm 1 The GEP-Based Load Model Generation
1: function GEP_Load_Model_Generator
2 Compute tail sizet = h x (n — 1) + 1;
3: Evaluate MSE ¢ of ¢ against D;
4
5

while (¢y > €) do
Randomize k& GEP chromosomes ¢;, 1 < i < k,
¢i is of length k1 4 ¢ (as in Fig. 4(a));

6: Set the initial population as R = Ui.‘:O{{i};
7: Evaluate MSE €(¢;) of ¢; in R by Eq.(8);
8: repeat
9: Retain top-T elements of R with lower MSE;
10: Perform GEP operators on ¢’s;
11: Evaluate MSE €(¢;) of ¢; by Eq.(8);
12: Select the best element ¢’ as the best VM load
model and €y = €(¢');
13: until (termination conditions: max.
iteration or low-enough MSE)
14: end while

15: return GEP expression of ¢ as the VM load model,
16: end function

Algorithm 2 The GA-Based Load Balance Procedure

1: procedure GA_Balance_Procedure

2 Evaluate load of each VMH, Ly (h;),0 <i<p—1;
3: By LB, evaluate load balance status al all VMHs;
4
5

while (LB < 0 lasts for 30 sec.) do
Randomize K chromosomes, &;, 1 < i < K, all
in the form of Eq. (9);

6 Set the initial population as S = U,K:O{Ei};
7: Evaluate the fitness of all ; in S by Eq.(14);
8 repeat (on S)
9 Retain top-T elements with best fitness;
10: Perform crossover/mutation on &’s;
11: Evaluate the fitness of each &; by Eq.(14);
12: until (termination conditions: max. iterations,
time limitation, high fitness)
13: Select the best chromosome &’ as the new VM-
VMH assignment if fitness(&’) > |B|;
14: Perform migration by &’;
15: end while

16: end procedure

configuration and suitably re-balance the system. The two
procedures work individually and periodically, as depicted
in Fig. 6.

V. EXPERIMENTS

A. ENVIRONMENT AND PARAMETER SETTINGS

The proposed methods were implemented and verified in a
small-scale but real cloud environment, Jnet. Jnet is a private
intranet, consisting of more than 20 various types of servers
accessed by about 200 users. The VMHs and the load balance
monitor were attached to Jnet. The experimental environment
consisted of four VMH servers, including three HP ProLiant

49766

VM Load Model Load-Balance

Load-balance

VM/VMH load data collector monitor

Operator/parameters -
P P historical data

Load data log/ }__
Load
balanced?

Genetic- terminals No
operation:
mutation,

recombination,

Genetic-
luat Gener. 1 operation:
VM-VMH [€—— crossover;
assignment by GA mutation,
reproduction

Gener:
regression tree by
GEP

fransp )
reproduction

Balanced VM-
'VMII re-assignment

VM load model

FIGURE 6. Load monitoring and balancing process.

HP ProLiant BL460c
4 Cores CPUx2, 2.4GHz
16 GB RAM

HP Proliant BL460c
4 Cores CPUx2, 2.4GHz
16 GB RAM

HP ProLiant BL460c HP ProLiant ML350
4 Cores CPUx2, 2.4GHz 4 Cores CPUx2, 2.5GHz
14 GB RAM 4 GB RAM

VMHO
Centralized
Load Balancer

1Gbps Ethernet,

1Gbps 24 Port
Ethernet Blade Switch

iSCSI Shared Storage D
HP ProLiant ML110 RAID-5: 2TB HDD x 4
2CoresCPUX1,233GHz | - Flash Memory 2GB (FreeNAS)
4 GB RAM

FIGURE 7. Experimental environment settings.

1Gbps Ethernet Uplink

BL460c blades and one HP ProLiant ML350, all running
in CentOS. The shared storage server was an HP ProLiant
ML110 running FreeNAS. All machines were connected by
1GB ethernet. KVM is the platform for VMHs. The central-
ized load balancing mechanism was executed and controlled
by the VMHO node. The architecture and specifications are
shown in Fig. 7. Because the resource capacity of each VMH
is different, the number of VMs that a VMH can support is
also different. In the following experiments, the VM capacity
of VMHO, VMHI1, and VMH?2 is 48, and the capacity of
VMH3 is 12. There are in total 48 VMs running in each
experiment.

A VMH manages the resource consumption of VMs by set-
ting capacity parameters that restrict the number of resources
used by VMs. Such parameters are contract-protected and
adjustable. In this study, two parameters of CPU utilization
are discussed.

o CPU utilization: This parameter explicitly limits the
CPU consumption of a VM and restricts the VM’s per-
formance/load. There are various implementations of
such parameters on different virtualization platforms.
The one used in this study is cpu.cfs_quota_us
defined by the Linux Cgroups [41], which ranges from
1000 to 100000, representing the CPU utilization from
1% to 100%.

o Usage priority: This parameter defines the priorities
of VMs for using a CPU core. Also, the parameters
cpu.shares defined be the Linux Cgroups is used in
this study, which ranges from 1 to 65535.
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This study defines two parameters for evaluating the perfor-
mance of the load balancing methods.

o Load-Balance status (LB). LB is the value of Eq. (13)
applied to the current VM-VMH configuration, the more
balanced load of VMHs, the higher LB.

« Balancing Efficiency (BE). BE is the number of load
balancing iterations performed by the monitor to make
all VMHs balanced (LB>0) after migration of VMs; the
fewer rounds, the faster the load balancing efficiency.

The balancing and monitoring mechanisms were imple-
mented in C4++ with libvirt [42] as the software inter-
face. Each VMH scans and logs its CPU load by Eq.(2)
every 10 seconds. A load imbalance situation is detected
if LB<O lasts for the past 30 seconds. Load limitations of
a VM are L* = 25% and L, = 0%. The length of a
chromosome is the number of VMs currently served in the
data center. In the following experiments, six load balancing
heuristics are compared with our proposed one.

1) LtoS: move the top-loaded VM from over-loaded
VMHs to the VMH with the lowest load.

2) LtoR: move the top-loaded VM from over-loaded
VMHs to a random VMH.

3) StoS: move the lowest loaded VM from over-loaded
VMHs to the VMH with the lowest load.

4) StoR: move the lowest loaded VM from over-loaded
VMHs to a random VMH.

5) RtoS: move a random VM from over-loaded VMHs to
the VMH with the lowest load.

6) RtoR: move a random VM from over-loaded VMHs to
arandom VMH.

B. MODELING VM LOADS

The first experiment is to derive load models of
VMs. For training GEP, a set of data in the form
of (cpu.cfs_quota_us, cpu.shares, Ly(-)) was
collected. Because there is no historical VM load data,
we have to generate load data similar to real VMs. A VM v*
was designed for collecting load data with a load generator.
The generator performed several computation-intensive and
I/O-intensive instructions. The computation-intensive part
is to calculate sin ( (double) rand () /RAND_MAX) and
the I/O-intensive part is to read data from /dev/zero
and write to /dev/null. The program was ran-
domly executed and lasted for 10 seconds, the com-
putation or I/O instructions on v*. The parameters,
cpu.cfs_quota_us and cpu.shares were randomly
set for v*; cpu.cfs_quota_us was set 10000—100000
and cpu. shares was partitioned into 1024 levels. A total
of 1024 combinations of parameters were generated, each
used to initialize v*. The VM v* executed on a VMH for seven
times, and the load Ly (v*) was measured. A total of 7168 load
data were collected. Then, the operators listed in Table 1
and the hyper-parameters listed in Table 2 were used with
terminals cpu.cfs_quota_us and cpu.shares for
symbolic regression of Ly (v¥).
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TABLE 2. GEP hyper-parameters.

Parameters Value  Parameters Value

Max Generations 6000  Population size 30

Best fitness 0.999  Prob. Transposition 2.7%

Gene head length 7 Prob. Recombination ~ 2.7%

Gene tail length 8 Prob. Mutation 2.0%
1.0 = MSE ® MAE = MAPE-

0.8 -
0.6 -
04 -
0.2 -+
0.0 -+

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FIGURE 8. GEP training results with 10%-90% training data.

TABLE 3. Comparison with other regression methods.

GEP POL LIN EXP POW
OPs 5 11 5 6 4
MSE 0.02408 0.02470 0.02468 4.85929  0.12902
MAE 0.11926 0.12138 0.12250 1.53926  0.26876
MAPE 10.75789  11.14869  21.80033  78.37022  7.39531

Boldface: the best case in the row

To verify the effectiveness of the GEP models, some
regression methods [43], polynomial(POL), linear(LIN),
exponent(EXP), and power(POW) regression, were used to
analyze the same VM load data and compared it with GEP.
Variable portions of the training data were randomly selected
for training, and the rest portions were used for validation.
The same training process was repeated ten times. The train-
ing results are presented in Fig. 8. Because the best model was
with 90% of training data, the same data set was also applied
to other regression methods. The load models generated by
various regression methods are as follows:

e POL: —0.166 4 0.0939 u; + 0.0001 u% —0.00004 uy +

0.00000001 u3

e LIN: —0.3235 + 0.103 u; — 0.00002 u;

o EXP: exp(—0.4866 + 0.0337 u; — 0.00004 uy)

« POW: 0.0394 4] 2216, 00004

o GEP: In((1/u2) — 0.06 u?)

For simplicity, in the above models, cpu.cfs_quota_
us = u; and cpu.shares = uy. Fig. 9 and Table 3 present
the testing results of all regression models. In terms of MSE
and MAE, GEP, POL, and LIN perform competitively, and
EXP is the worst. MAPE indicates that GEP, POL, and POW
are more stable than others. POL and GEP produce similar
error rates; however, POL uses more and complicated opera-
tors than GEP does. LIN uses the fewest operators but is more
unreliable in terms of MSE/MAE and unstable in MAPE than
GEP. GEP produces a much compact formula than others and
can be considered competitive.

C. LOAD BALANCE SCENARIOS
In the following experiments, the VM load model generated
by GEP was used for load prediction. The load balancing
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FIGURE 9. Statistics on errors of all models.
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TABLE 4. Comparisons on average load (%) in Scenario-A. v i — o=

Ours LtoS LtoR StoS StoR RtoS RtoR

VMHO 549 437 179 192 964  86.2 96.1
VMH1 500 438 953 924 39 303 11.2
VMH2 538 719 179 198 53 312 8.0
VMH3 570 374 13.8 182 32 247 6.6

Average 539  49.2 362 374 272 431 30.5
StdDev 51 268 683 636 800 500 75.8

monitor of Fig. 6 was applied to four scenarios. A total
of 48 VMs were deployed, each of which performed similarly
as v*. In the following tests, 40 runs of load balancing were
observed. VM migration was performed when the load was
imbalanced, or the GA produced a VM-VMH assignment
with LB 1.25 times better than the current configuration.
The hyper-parameters associated with GA include: max.
generation: 1000, population size: 30, crossover_rate: 0.7,
mutation_rate: 0.4, time limitation: 60 sec.

1) SCENARIO A

In this scenario, an extreme imbalance is simulated. In the
beginning, all VMs were gathered together on a randomly
selected VMH, making the VMH heavily overloaded. Fig. 10
plots the change of load of all VMHs in 40 rounds of load-
balancing. Table 4 lists the loads of all VMHs, where R2R
is the average of RtoR1 and RtoR2 (Fig. 10(g)(h)). From
Fig. 10, it is observed that in the first round, all VMs are
concentrated to a VMH, the VMH loads are extremely imbal-
anced, and thus, the LB value is 0. However, our proposed
method takes only one round to re-balance the loads for all
VMHs. The workloads of all VMHs approximate evenly after
load-balancing, which can be observed in Table 4. Other
strategies take more iterations for re-balancing the loads. In
the cases using LtoS, StoS, and RtoS, LtoS migrates the
most heavily loaded VMs to the lowest loaded VMH and
reaches a balanced state in 20 rounds, causing load vibration
before back to balanced. Though RtoS takes 35 rounds for
re-balancing and StoS even not back to balanced, the load of
VMHs trend to balance. Other strategies even not back to the
balanced state.

2) SCENARIO B
Another extremely imbalance is studied in this experiment,
wherein a temporary service suspension of a VMH happens
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FIGURE 10. Loads and LB trends in Scenario-A.

so that all its VMs have to be migrated to other VMHs for
non-stop services. In this scenario, all VMs on VMHI are
moved to VMHO at round 0, and VMHI1 backs to service
at round 1. The balancing status is observed in Fig. 11.
It is found that VMHO is overloaded, and VMHI1 is idle in
the beginning. Again, our proposed method takes only one
round to re-balance loads of all VMHs and keep them almost
balanced in the consequence rounds. Some strategies can also
re-balance the loads, such as LtoS, LtoR, StoS, and even
RtoR; however, they take more rounds to re-balance and only
manage a low-level balanced status. This phenomenon can be
observed in Table 5.

3) SCENARIO C
This experiment simulates the daily use of VMs—the turning
on/off of VMs at peak/non-peak hours, wherein more VMs
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FIGURE 11. Loads and LB trends in Scenario-B.

TABLE 5. Comparisons on average load (%) in Scenario-B.

Ours LtoS LtoR StoS StoR RtoS RtoR

VMHO 544 433 431 446 269 506 44.5
VMH1 512 564 552 506 402 522 532
VMH2 540 669 683  69.1 86.8  71.6 71.1
VMH3 586 423 402 473 352 374 43.6

Average 545 522 517 529 473 530 53.1
StdDev 5.3 203 223 192 46,6 244 229

are online/offline in the peak/non-peak hours. Thus, VMHs
are less-loaded at non-peak hours and vice versa. The timing
of turning on or off a VM is decided by a Gaussian distribu-
tion model, with © = 10 and 0 = 5 for turning on VMs
and 4 = 20 and 0 = 5 for being online before turning
off. That is, a VM starts at around the 10th round and stays
online for about 20 rounds, simulating the 20th round as the
peak hour and the 1st and 40th rounds the off-peak hours.
The results are presented in Fig. 12. Notice that, due to no
fair comparison on two VMH load that is stochastic in this
scenario, average load of VMHs is not presented. Obviously,
the VMH load in this scenario is highly dynamic, which
challenges the load-balancers. In the beginning, all methods
do not balance VMH load effectively due to the unpredictable
behaviors of VMs being online, and all LBs are 0. It is found
that all methods can balance loads to some extend in peak
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FIGURE 12. Loads and LB trends in Scenario-C.

hours. This may be because the load behaviors become stable
in the peak hours, with more VMs being online so that the
load status is more easily to remain after VM migration. The
LtoR strategy is the first to re-balance the load; however,
it only works in the non-peak hours (the 5th round) when
there are only a few VMs. Some strategies, including LtoR,
LtoS, StoR, do not balance loads effectively in the peak hours
and even failed after the peak hours. Our proposed method
demonstrates a better performance on load balancing than
others.

4) SCENARIO D

Scenario D is an extended version of Scenario C, wherein the
dynamics of VMHs is considered. In this experiment, the sys-
tem load of a VMH, i.e., Ly(-), bursts intentionally, and the
VMH is undoubtedly overloaded. Thus, the VMs served by
this VMH have to migrate for load-balancing. Additionally,
VMs behave like those in Scenario C; they turn on and off in
peak/non-peak times. Two VMHs were randomly selected as
the load-burst hosts at the 7th and 27th rounds, respectively.
Their load bursts continue for seven rounds and back to ser-
vice at the 14th and 34th rounds, respectively. The balancing
results are presented in Fig. 13. Our proposed method is
sensitive to the imbalance in this highly dynamic environment
and can re-balance the VMH loads efficiently. Static heuristic
rules, such as LtoS and StoS, are also sensitive and able to
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FIGURE 13. Loads and LB trends in Scenario-D.

TABLE 6. Comparisons on LB and BE of all scenarios.

(a) LB
Scenario  Ours LtoS LtoR StoS StoR RtoS RtoR
A 24 0.7 0.0 0.0 0.0 0.2 0.0
B 2.7 1.3 1.3 1.6 0.0 0.2 1.2
C 1.3 0.5 0.6 0.7 0.6 0.7 0.6
D 14 0.5 0.7 0.7 0.3 0.7 0.6
Average 195  0.75 0.65 0.75 0.23 0.45 0.60
StdDev 0.70  0.38 0.53 0.66  0.29 0.29 0.49
(b) BE
Scenario  Ours  LtoS LtoR StoS StoR RtoS RtoR
A 1.0 12.5 40.0 40.0 40.0 36.0 40.0
B 1.0 7.0 10.0 15.0 40.0 4.4 12.5
C 14 15.0 6.8 5.2 26.0 4.0 6.4
D 1.7 4.3 27.0 8.7 16.5 13.0 9.9
Average  1.28 9.70 2095 17.23 30.63 1435 17.20
StdDev 0.34 491 1549 1572 1150 15.02 15.40

re-balance; they do not work well in all cases. Random heuris-
tic rules may be workable; they are not stable and have poor
performance.

D. SUMMARY

Table 6 lists the averaged LB and BE values of all methods in
the four scenarios. A higher LB value means a better-balanced
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performance. A lower BE value presents better balancing effi-
ciency. Our proposed method demonstrates effectiveness and
efficiency in either stable (e.g., scenarios A and B) or dynamic
(e.g., C and D) environments in terms of LB and BE. With
VM load models obtained from GEP, our method predicts
the VMH loads after migration and computes by GA the
most effective VM-VMH assignment for migration. Other
strategies perform heuristic VM migration and take longer
rounds for re-balancing, or even not back to balance. Inter-
estingly, according to LB and BE in Table 6, LtoS is the
second-best strategy. LtoS is intuitive and straightforward to
implement, i.e., to move the worst VM to a VMH with the
lowest load; however, it takes a longer time to re-balance
VMH loads. Random methods, such as LtoR, StoR, RtoS, and
RtoR, are effective sometimes but are not recommended due
to their stochastic characteristics and unstable performance.
Our proposed method performs effective and efficient load
balancing in all tests. It is competitive and more promising
than others.

GEP_Load_Model_Generator updates the VM load
model every 120 seconds periodically. The monitor
GA_Balance_Procedure is activated every 250 seconds
and calculates the LB value of all VMHs. Notice that the
frequency of executing the two procedures should not be
too high. Higher updating and balancing frequency may
keep the VM load model and the system as real and
balance as possible. However, the operations of perfor-
mance measurement and migration are costly: the steal of
CPU cycles degrades the overall performance and QoS,
whereas frequent migration may cause unacceptable ser-
vice suspension. Hence, the period of load monitoring is
250 seconds and the period of updating the VM load model is
120 seconds.

Moreover, as in other machine learning algorithms, set-
ting hyper-parameters associated with GA and GEP is sub-
tle and complex. The size of population, probabilities of
genetic operators, and the termination condition are all
problem-dependent. In general, higher probabilities of invok-
ing genetic operators usually drive GA or GEP early mature
but easily trapped in local optimal; lower probabilities
take much time to converge. A large population consumes
considerable memory space and computing time but may
earn a higher chance of evolving a better solution. Due to
the costs of performance probing and migration, deriving a
solution (VM load model or VM-VHM assignment) should
be timely. Such a solution may not be the best one but has to
be acceptable and better than the current one. For example,
anew VM-VMH assignment has to be 1.25 times better than
the current one to be acceptable. Other hyper-parameters are
set by observing the behaviors of VMs and VMHs in JNet.
Several combinations of parameters are attempted. For the
length of this paper, some meaningful parameter sets are
presented in the experiments. For issues of setting hyper-
parameters associated with genetic methods, the readers can
refer to [44], [45].
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Regarding the efficiency of the balance mechanism,
the main concern is how fast an effective VM-VMH
assignment is suggested. The complexity of each strategy
depends on how it is implemented. In this study, all strategies
are implemented with standard C/C++- libraries. Searching
for a min/max item can be done in O(n) and generating
a random number can be done in O(1), where n is the
number of VMs. However, running a GA-based method is
stochastic. Its complexity depends on the representation of
chromosomes, the implementation of the genetic operators,
and the fitness function. Some studies presented theoretic and
experimental analysis on the complexity of GA [46], [47].
The complexity of our method is more likely O(gpn) for the
stochastic process and O(n?) for fitness evaluation, where g
is the number of generations and p is the population size.
In our experiment, g is 1000 and p is 30. The GA iteration is
usually terminated by a low LB value and is less than g. When
implementing our method in a large-scale cloud environment,
the fitness evaluation could be the computational bottleneck,
which can be implemented with a sophisticated data structure
to reduce the computation cost.

VI. CONCLUSION

This paper presents a load balancing mechanism based on
evolutionary computing. Loads of VMs and the associ-
ated resource parameters are measured and used for con-
structing symbolic regression models of VM using GEP.
An optimal combination of VM-VMH assignment is decided
by GA, which predicts VMH loads by GEP models and
suggests the VMs be migrated for load-balancing. Exper-
iments are conducted in a small-scale but real cloud
environment. The proposed method demonstrates its effec-
tiveness and efficiency on load balancing and is competitive
and promising. Although the proposed method performs well
for load-balance, it can be improved in some aspects and
discussed.

Currently, constant lengths of the head and tail of a GEP
chromosome may limit the searchability of GEP in the solu-
tion space. The variable size of the head that is determined
by the training data may produce better regression models.
The initial VM load model is built from simulated data.
However, according to the architecture depicted in Fig. 6,
VM load data are collected continuously; the VM load model
can also be updated accordingly. GEP and GA are the genetic-
based methods employed in this study. It is possible to use
other methods to generate regression models and decide the
optimal combination of VMs for migration, provided that
white-box regression models and fast decision-making can be
derived.

Due to the hardware resource limitations, the test environ-
ment only consists of four VMHs with a centralized load-
balancer installed on one VMH. However, the usability of
our proposed method is verified. The proposed method can
be applied to a distributed, large-scale management architec-
ture easily. At present, the CPU load of VMs and VMHs is
considered. Other types of load, like networking bandwidth,
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memory data transfer rate, or GPU loads, may also be worth
studying. However, these types of loads are stochastic, and
their measurements take considerable overhead. They are not
included in this paper but may be processed similarly by our
proposed method.

This study focuses on the load balancing of VMHs that
demand VHSs to work evenly. There may be other VMH
management strategies, e.g., power saving or utilization max-
imization, that can be done by load consolidation, i.e., to
aggregate VMs to some high-performance or energy-efficient
VMHs so that some VMHs can be turned off [48]—[50]. These
can be easily done using our proposed methods by re-defining
the fitness function of GA. The current fitness function and
balance factor are based on the ratio of the maximum load to
the load differences among VMHs, which is simple but fast.
Comprehensive statistics on the VMH loads may produce a
sophisticated fitness function and LB formula [51]. Consid-
ering all these factors for load balancing is a multi-objective
optimization problem, which requires sophisticated methods
for maintaining computation efficiency. However, measure-
ments on the detailed resource consumption of VMs may
take much more computational resources and thus degrade
the performance of VMHs and the load-balancer. The trade-
offs between efficiency and measurement need advanced
studies. Instead of GA, other metaheuristic algorithms may
also decide VM-VMH assignment efficiently. GA is com-
petitive than others in the practical administration of cloud
computing servers because it can easily and flexibly adjust
the optimization objectives and maintain a clear and intu-
itive representation for VM-VMH assignment. Studies on
the performance and applicability of various metaheuristic
algorithms for different balance purposes are worthy. These
will be part of our future work
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