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ABSTRACT In this article, the repetitive finite-length linear discrete-time singular system is formulated as
an input-output equation by virtue of the lifted-vector method and a gain-optimized P-type iterative learning
control profile is architected by sequentially arguing the learning-gain vector in minimizing the addition of
the quadratic norm of the tracking-error vector and the weighed quadratic norm of the compensation vector.
By virtue of the elementary permutationmatrix and the property of the quadratic function, the optimized-gain
vector is solved and explicitly expressed by the system Markov matrix and the iteration-wise tracking error.
Then the linearly monotonic convergence of the tracking error is derived under the assumption that the initial
state of the dynamic subsystem is resettable. Furthermore, for the circumstance that the system parameters
uncertainties exist, the quasi scheme is established by replacing the exact system Markov matrix with
the approximated one in the optimized gain. Rigorous analysis conveys that the proposed gain-optimized
scheme is robust to the system internal disturbance within a suitable range. The validity and effectiveness
are demonstrated numerically.

INDEX TERMS Discrete-time singular systems, iterative learning control, linearly monotonic convergence,
robustness, the optimized-gain vector, tuning factor.

I. INTRODUCTION
In mathematical, the hybrid differential/difference-algebraic
equations constitute of a singular system, where the differ-
ential/difference equation describes the faster dynamic sub-
system whilst the algebraic equation models the slower static
subsystem, respectively [1]. Occasionally, a singular system
is considered as a descriptor system, a semi-state system
or a generalized system, etc. For the reason that the idea
recommended, the dynamical behavior of a singular system
has been recognized as a more reasonable feature in diverse
areas such as the electricity grid [2], economy [3], power
systems [4], robots science [5], chemical engineering [6]
and biology [7], etc. Basing on the hybrid dynamic-static
character of the singular systems, the essential and conceptual
controllability and the observability [2], Lyapunov stabil-
ity [8], the robust stability and the stabilization [9], and the
optimal control [10], etc., have been adapted. Because of
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the complexity, it encounters quite difficult challenges for
a singular system to examine the scientific, artificial, and
mathematical deeds in pursuing efficacious control schemes.

For the desired trajectory tracking issue of a repetitively
operational system, the iterative learning control (ILC) has
been acknowledged as a fairly possible and effective strategy
in the control perspective. The notion of ILC is inferred from
the human being’s learning experience while the same job
is done repetitively [11] by investigating the consignment
implementation mechanism in former repetitions. The pri-
mary concern of a proficient ILC is the compensation tech-
nique that can adjust the reference signal for the improvement
of the output tracking [12]. The traditional compensation
ideas for ordinary systems are the tracking-error feed-forward
or feedback modes, including the P-type, PD-type, or D-type
profiles [13], [16]. The ILC has attracted significant attention
due to the straightforward narrative and less prior to the
system knowledge [14]–[18].

Following up the ILC investigations for ordinary sys-
tems purely described by difference or differential equations,
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the ILC studies for singular systems have earned many efforts
covering an open and a closed-loop ILC technique using
the standard dynamic decomposition, the asymptotic conver-
gence in the sense of lambda-norm measurement [19], [20] a
closed-loop PD-type ILC technique via an initial state rectifi-
cation [21], a D-type ILC handling random initial states [22],
the P-type ILCs for singular impulsive system and distributed
parameter systems [23], [24] and an iterative learning con-
troller with packet loss [25] and so on.

By looking at the above-mentioned ILCs for singular sys-
tems, it is evident that the key ILC schemes are the tra-
ditional P-type or PD-type profiles with the learning gain
being constant. Since the issues do not give a handy way for
determining the learning gain, the learning program is usually
made through experience. Furthermore, the only asymptotic
convergence does not meet the practical requirement for the
tracking performance assessment as it will likely trigger an
overshoot of the tracking error in the beginning iterations
and subsequently causes the system to hang. It can inter-
fere with the practical implementation of the established
ILCs. In addition, for improvement of the tracking accuracy
and the convergence speed, a gain-regulative P-type ILC
scheme for a singular system with measurement noise is
proposed [26]. However, the gain regulation is implemented
by pre-multiplying a diagonal matrix formed by a non-linear
function with a constant learning gain matrix, which is hardly
acceptable due to the acquisition of the fixed learning gain.

Indeed, some experimental system knowledge contain-
ing the design, selection of the parameters or the impulse
response could be accessible through trials before the con-
trol method is implemented. In context, the known sys-
tem information is workable to optimize the traditional
ILC to overcome the deficiency of the fixed learning gain
ILC mode. The current study about the optimal ILC has
focused on ordinary systems. The discrete-time optimal
ILC without analytical convergence has stemmed from the
classical mathematical optimization methods [27]. Later,
Owens et al. have developed the idea to norm-optimal
ILC (NOILC) scheme for linear continuous-time systems,
where the sequential objective function is formulated as the
addition of the quadratic norm of the tracking-error vector
and the weighed quadratic norm of the incremental-input
vector of two consecutive iterations. The argued control input
originally manifests a feedback mode that needs the complex
calculation to solve the co-state system based on the matrix
Riccati differential equation [28]. Importantly, it is defi-
nite that the finite-length feature of the linear discrete-time
ILC system allows the dynamics to be transformed via the
lifted-vector-matrix technique as an algebraic input-output
transmission. This makes the NOILC advancement and
modification spectacular and distinctive. The diversities are
including the acceleration technique [29], the non-minimum
phase effect [30], the auxiliary optimization [31], the appli-
cation extension [32], [33] as well as the data-driven
efficiency [34]. The existing Owens-type NOILCs are
splendid indeed. However, the reluctance is no profound

conversation about the rate of convergence. Simultaneously,
a parameter-optimal ILC (POILC) with iteration-wise scalar
learning gain has been designed in [35], where the perfor-
mance index is the combination of the quadratic norm of the
tracking-error vector and quadratic absolution of the scalar
learning gain and the argument is the learning gain of the tra-
ditional feed-forward D-type ILC. Though the mechanism is
originated from the ILC profile, the declining of the tracking
error is inefficient due to the single-dimensional gain opti-
mization. Progressively, a full-dimensional gain optimization
has been raised, where the performance index is assessed
as the additive quadratic norms of the tracking-error vector
and the weighed learning-gain vector [12]. The idea is no
doubt innovative. However, the convergence is incomplete
for the case when some components of the tracking-error
vector are zeros. Fortunately, an inspiring breakout is the rig-
orous strictly monotonic convergence of the full-dimensional
parameter-optimal ILC with the iteration-wise tuning fac-
tor via an algebraic approach [36]. As a matter of fact is
that the NOILC and POILC are coupled as linear quadratic
multi-parameter optimization on behalf of the general con-
cepts of NOILC and POILC [37].

Although the above NOILCs and POILCs have orig-
inally focused on ordinary systems, it is referential for
the gain-optimized ILC to be utilizable for singular sys-
tems. For the regard, by reformulating the discrete-time
difference-algebraic singular systems as an algebraic
input-output transmission, a gain-adaptive ILC (GAILC) has
been explored where the minimization problem is consisting
of the quadratic norm of the tracking-error vector and the
argument is the P-type iteration-time-wise learning-gain vec-
tor [38]. The optimal learning gain is solved in an explicit
form and the monotonic convergence has been derived for
the circumstance that the initial state is resettable and the
exact parameters of the system are available. Though the
convergence result seems perfect, the practical implemen-
tation is hardly realizable as it requires ultimate compen-
sation as no compensation cost is considered. For usual
implementation ease, the possible way is to evaluate the
reduction of the tracking error and the compensation cost
in a tradeoff manner. Motivated by the issue, this paper
explores a P-type gain-optimized iterative learning control
(GOILC) strategy for a linear discrete-time singular system.
The scheme argues the sequential learning-gain vector while
minimizing the sequential performance index composed by
the additive quadratic tracking-error vector and the weighed
quadratic compensation term by an iteration-wise tuning
factor. The target is to explicate the optimal learning-gain
vector and the linearly monotonic convergence. The subse-
quent work is to analyze the robustness of the GOILC to
the system parameters uncertainties, respectively. By taking
advantage of the permutation transformation and the matrix
theory, the paper clarifies the existence and uniqueness of the
iteration-time-variable learning-gain vector and deduces the
convergence factor for linearly monotonic convergence in a
rigorousmanner, under the assumptions that the initial state of
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the dynamic subsystem is resettable and the system Markov
parameters are precisely available. The paper also derives the
robustness of the proposed GOILC to the system parameters
uncertainties in a direct time-domain manner.

The remaining paper is arranged as follows. Section II for-
mulates the discrete-time dynamic-static singular system as
an input-output form and presents a gain-optimized iterative
learning control scheme. Section III focuses on the solution of
the optimized learning-gain vector and the linearlymonotonic
convergence of the GOILC under the assumption that the
initial states are resettable. Section IV discusses the robust-
ness of the GOILC to the system parameters uncertainties.
The effectiveness and the validity are numerically verified
in section V and the conclusion of the work is addressed in
Section VI.

II. SYSTEM REFORMULATION AND P-TYPE
GAIN-OPTIMIZED ITERATIVE LEARNING CONTROL
STRATEGY
Consider a class of repetitive linear discrete-time single-
input-single-output singular systems taking the form of

[
Ip 012
021 022

][
x̃k (n+ 1)
x̂k (n+ 1)

]
=

[
A11 A12

A21 A22

][
x̃k (n)
x̂k (n)

]

+

[
B1

B2

]
uk (n) ,

yk (n) = [C1C2]

[
x̃k (n)
x̂k (n)

]
, n ∈ D;

(1)

where Ip denotes a p-th-order identity matrix, the sub-
script k presents the repetition index, x̃k (n) ∈ Rp stands
for the k-th-repetition p-dimensional state of the dynamic
subsystems while x̂k (n) ∈ Rq is the k-th-repetition q-
dimensional state of the static subsystems, respectively.
In addition, 012, 021 and 022 represent zero matrices together
withA11,A12,A21,A22,B1 and B2 are matrices with appro-
priate dimensions, respectively.D = {0, 1, · · · ,N − 1} is the
set of the discrete-time variable n. In this paper, we propose
the learning strategies under the assumption that the matrix
A22 is non-singular satisfying C2A−122 B2 6= 0 and the initial
state of the system (1) with respect to the dynamic subsystems
being x̃k (0) = 0.

Let

xk (n) =
[
x̃k (n)
x̂k (n)

]
, Ā =

[
A11 A12

−A−122 A21A11 − A−122 A21A12

]
,

B̄1 =

[
B1

−A−122 A21B1

]
, B̄0 =

[
0

−A−122 B2

]
,

B̃1 =
(
ĀB̄0 + B̄1

)
.

The state equation of the system (1) is inferred as

xk (n+ 1) = Āxk (n)+ B̄1uk (n)+ B̄0uk (n+ 1) . (2)

Recursively, the output becomes

yk (n) = Cxk (n) = CĀ
n−1

B̃1uk (0)+ CĀ
n−2

B̃1uk (1)

+ · · · + CB̃1uk (n− 1)+ CB̄0uk (n) , for all n ≥ 0.

(3)

Denote

yk = [yk (0) , yk (1) , yk (2) , · · · , yk (N )]T ,

uk = [uk (0) , uk (1) , uk (2) , · · · , uk (N )]T ,

m0 = CB̄0,mj = CĀ
j−1

B̃1, j = 1, 2, · · · ,N ,

M =


m0
m1
m2
...

mN

0
m0
m1
...

mN−1

0
0
m0
...

mN−2

· · ·

· · ·

· · ·

. . .

· · ·

0
0
0
...

m0

 .
Here M is a Toeplitz matrix composed of the impulse
response sequence {m0,m1, · · ·,mN } of the system (3) and is
usually named the Markov matrix of the singular system (1),
assuming that m0 = CB̄0 is nonzero.
Then, the input-output of the system (1) is lifted as

yk =Muk . (4)

Remark 1: It is worthy to notice that the singular system
(1) is composed of the dynamic subsystem and the static
subsystem in hybrid form. As the static subsystem is mem-
oryless, the sampling instant n for the state x̂k (n) of the
static subsystems lacks the end instant N if the sampling set
is D = {0, 1, · · · ,N − 1}. In order to present the hybrid
dynamic-static equation (1) in a lifted-vector-matrix form
(4), the paper acquiesces the sampling range for the sub-
state x̂k (n) is n ∈ D+ = D ∪ {N }. Throughout the paper,
the consideration of the sampling variable is n ∈ D for the
dynamic subsystem whilst n ∈ D+ = D ∪ {N } for the static
subsystem, respectively.
Besides, due to the static subsystem, the output equation

(3) conveys that the sampling instant of the output yk (n) is
synchronous with that of the control input uk (n) for the case
when C2A−122 B2 6= 0, namely, CB̄0 6= 0. This implies there
is no leading of the sampling number of the output yk (n) in
(3) to the input uk (n) for all n ∈ D+. It is no other but the
well-known concept that the relative degree of the singular
systems (4) is zero while CB̄0 is nonzero. This essential and
distinguishing attribute of the singular systems makes the
learning compensation mode to differ from the derivative-
type method for the ordinary systems.

In this paper, we will construct a P-type gain-optimized
iterative learning control for a class of singular systems (4)
under the assumption that m0 = CB̄0 is nonzero.
Given that yd = [yd (0) , yd (1) , · · · , yd (N )]T is a prede-

termined desired trajectory. While the systems (4) attempt to
track yd to enable the tracking error ek = yd − yk to vanish
as the repetition goes on, an iterative learning control strategy
has established as

u1 : arbitrarily given;

uk+1 = uk + Ek3k , k = 1, 2, · · ·. (5)
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Here

ek = yd − yk = [ek (0) , ek (1) , . . . , ek (N )]T ,

Ek = diag(ek ) =


ek (0) 0 · · · 0
0 ek (1) · · · 0
...

...
. . .

...

0 0 · · · ek (N )

 ,
3k = [3k (0),3k (1), · · · ,3k (N )]T .

In particular,3k is termed as the learning-gain vector that will
solve by the minimization problems composed of

arg
3k

min J (3k) = ‖ek+1‖2 + ηk · ‖uk+1 − uk‖2 . (6)

In the minimization problem (6), ηk is a sequential tuning
factor that shows the concerning ratio of the compensation
cost ‖uk+1 − uk‖2 = ‖Ek3k‖

2 to the tracking-error energy
‖ek+1‖2 satisfying 0 ≤ ηk ≤ η0, for all k = 1, 2, · · · .
Here, η0 is a constant upper bound of the tuning factor, which
means that the concerning compensation cost is confined in
an allowable range.
Remark 2: In the ILC (5), it is found that for each sampling

instant n, n ∈ D+ = D ∪ {N } we arrive uk+1(n) = uk (n) +
3k (n)ek (n). It implies that the sampling discrete-time instant
n of the compensation term 3k (n)ek (n) is synchronous with
the compensated input uk (n). Additionally, as the minimiza-
tion problem (6) determines the learning-gain vector 3k , it
is reasonable to term the ILC (5) as a P-type gain-optimized
iterative learning control (P-type GOILC) scheme.

For deriving the optimized-gain vector3k of theminimiza-
tion problem (6), what follows are some necessary proposi-
tions.

Denote two functions as

f (z) = a0 + a1z+ · · · + amzm, z ∈ [0,+∞) ,

g(z) = a−lz−l + · · · + a−1z−1 + a0 + a1z+ · · · + amzm,

z ∈ (0,+∞) ,

where m and l are positive integers and a−l , · · ·, a−1, a0, a1,
· · ·, am are constant coefficients, respectively.
Proposition 1: For a square matrix P, if there exists a

number λ(P) and a vector ξ so that Pξ = λ(P)ξ , then
f (P) ξ = f (λ(P)) ξ holds. In particular, if the matrix P is
invertible, then λ (P) 6= 0 and g (P) ξ = g (λ (P)) ξ . Here
λ(P) is noted as an eigenvalue of the matrix P.

Throughout the context, denote λmin (P) = min {λ (P)}
and λmax (P) = max {λ (P)}, respectively.
Proposition 2: For any two invertible matrices P and

Q with identical dimensions, the equation P − Q =

P
(
Q−1 − P−1

)
Q identically holds.

Proposition 3: For any two n × n − dimensional real
symmetric semi-positive definite matrices P andQwith iden-
tical dimensions, the inequality λmax (P+Q) ≤ λmax (P) +
λmax (Q) holds.
Proposition 4: For a continuous function h (z) = z

1+z , z ∈
[0,+∞), h(z) is monotonously increasing.

Definition 1: A nonnegative sequence {ek ≥ 0, k=1, 2, · · ·}
is said to be linearly monotonically convergent, means
that ek+1 < ek , lim

k→+∞
ek = 0 and lim

k→+∞
sup ek+1

ek
= ρ < 1.

III. SOLUTION OF THE OPTIMIZED-GAIN VECTOR AND
THE LINEARLY MONOTONE CONVERGENCE
Theorem 1: Assume that the input uk in (4) is updated

by the input uk+1 generated by (5), the optimized-gain vec-
tor3k of the minimization problem (6) is existent and unique.

Proof: From the GOILC (5), we have

ek+1 = yd − yk+1 = yd − yk −
(
yk+1 − yk

)
= ek −MEk3k . (7)

Substituting the inner product of the equality (7) into the
performance index (6), one yield

J (3k) = 3
T
kEk

(
ηkI+MTM

)
Ek3k

−2eTkMEk3k + eTk ek . (8)

It is seen that the objective function J (3k) is a
quadratic function concerning the argument vector 3k and
its Hesse matrix is Ek

(
ηkI+MTM

)
Ek , which is symmetric

semi-positive definite. Then, if the objective function J (3k)

exists a unique stationary point, it must be the optimal solu-
tion.

Letting the gradient ∇J (3k) =
∂J(3k )
∂3k

= 0 makes

Ek
(
ηkI+MTM

)
Ek3k = EkMTek . (9)

Observe that in the equation(9), the matrix Ek is diagonal
and the diagonal elements match the components of the
tracking-errors vector. For the reason that the GOILC (5) is
to pursue the tracking error vanishing, it much possible that
a few components of the vector ek are null as the iteration
is going on. There is no difference, however, the matrix is
in all likelihood singular. Within the condition, the equation
(9) is not absolutely determinative. The solution wishes to
derive for the instances when the matrix Ek is non-singular
and singular, respectively.
Case 1: The matrix Ek is non-singular.
Equation (9) obtains

3k = E−1k
(
ηkI+MTM

)−1
MTek .

Keep in mind that the value m0 = CB̄0 being nonzero
means that the Toeplitz matrix M is invertible. Accordingly,
the above equation is comparable to

3k = E−1k M−1
(
I+ ηkM−TM−1

)−1
ek . (10)

Case 2: If the matrix Ek is singular.
Without loss of generality, suppose that rank (Ek) = rk <

N + 1 with ek
(
hp
)
6= 0 for p = 1, 2, · · · , rk and ek

(
sq
)
= 0

for q = 1, 2, · · · ,N + 1− rk satisfying h1 < h2 < · · · < hrk
and s1 < s2 < · · · < sN+1−rk .
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Denote

ẽk =
[
ek (h1) , ek (h2) , · · · , ek

(
hrk
)]T

, (11)

ēk =
[
ek (s1) , ek (s2) , · · · , ek

(
sN+1−rk

)]T
, (12)

Ẽk = diag(ẽk ), (13)

Ēk = diag (ēk) , (14)

3̃k =
[
3k (h1) ,3k (h2) , · · · ,3k

(
hrk
)]T

, (15)

3̄k =
[
3k (s1) ,3k (s2) , · · · ,3k

(
sN+1−rk

)]T
, (16)

8k = [ h1 , h2 , · · · , hrk
, s1 , s2 , · · · , sN+1−rk

]. (17)

It is understandable that the matrix Ẽk is invertible and ēk = 0
together with Ēk = 0. Specifically, in the representation
of 8k , i gives the (N + 1)-dimensional unit vector whose
the i-th element is unit and the others are zeros, for i =
h1, h2, · · · , hrk , s1, s2, · · · sN+1−rk . It indicates that 8k is a
permutation matrix and orthogonal fulfilling8−1k = 8

T
k . For

eases,8k is noted as a column-permutation matrix while 8T
k

is a row-permutation matrix, respectively.
It is no hard to get through calculation

8T
kEk8k =

[
Ẽk 0
0 Ēk

]
=

[
Ẽk 0
0 0

]
, (18)

8T
k3k =

[
3̃k

3̄k

]
, (19)

8T
k ek =

[
ẽk
ēk

]
=

[
ẽk
0

]
, (20)

8T
kM8k =

[
M̃k

_

Mk

M̄k M̆k

]
. (21)

Here

M̃k =


m0
mh2−h1
...

mhrk−h1

0
m0
...

mhrk−h2

· · ·

· · ·

. . .

· · ·

0
0
...

m0

 (22)

is an rk × rk -dimensional square matrix while M̄k ,
_

Mk and
M̆k are matrices with appropriate dimensions respectively.
Visually, the matrix M̃k is invertible by the assumption m0 =

CB̄0 6= 0.
Pre-multiplying equation (9) by8T

k and in view of8−1k =
8T
k provides(
8T
kEk8k

) [
ηkI+

(
8T
kM8k

)T (
8T
kM8k

)]
(
8T
kEk8k

) (
8T
k3k

)
=

(
8T
kEk8k

) (
8T
kM8k

)T
8T
k ek .

(23)

Bymeans of denotations (18)-(21), the equation (23) converts
into[
Ẽk 0
0 0

](
ηkI+

[
M̃T

k M̄T
k

_

M
T

k M̆T
k

][
M̃k

_

Mk

M̄k M̆k

])[
Ẽk 0
0 0

]

[
3̃k

3̄k

]
=

[
Ẽk 0
0 0

][ M̃T
k M̄T

k
_

M
T

k M̆T
k

][
ẽk
0

]
. (24)

Equivalently, the equation (24) becomes

Ẽk
(
ηkIrk +

(
M̃T

k M̃k + M̄T
k M̄k

))
Ẽk3̃k = ẼkM̃T

k ẽk . (25)

03̄k = 0. (26)

As the matrix
(
ηkIrk + M̃T

k M̃k + M̄T
k M̄k

)
is positive definite

and thus invertible, for simplification, denote

9k =

(
ηkIrk +

(
M̃T

k M̃k + M̄T
k M̄k

))−1
. (27)

It is evident that 9k is symmetric. Then the solution to the
equation (25) gives rise to

3̃k = Ẽ−1k 9kM̃T
k ẽk . (28)

In the view of denotations (12), (14) and (16), it can be seen
that 3̄k is coupled with Ēk = 0. It is thus congruent to let

3̄k = 0. (29)

Considering equations (28), (29) and denotation (19) together
with the fact 8T

k = 8−1k , the solution to the equation (9) is
encouraged as

3k = 8k

[
Ẽ−1k 9kM̃T

k ẽk
0

]
. (30)

When the formulation (10) is paired with (30), one gets

3k =



E−1k M−1
(
I+ ηkM−TM−1

)−1
ek ,

if Ek is nonsingular;

8k

[
Ẽ−1k 9kM̃T

k ẽk
0

]
,

if Ek is singular..

(31)

This completes the proof.
Theorem 2: Assuming that the singular system (4) repet-

itively operates over the sampling set D+ with the value
m0 = CB̄0 being nonzero while the initial state x̃k (0) of the
dynamic subsystem is reset at zero, that is, x̃k+1 (0) = 0, for
all k = 1, 2, · · · . Under the condition of 0 < ηk ≤ η0, for all
k = 1, 2, · · ·, the P-type GOILC (5) with ITVLGV 3k solved
by (31) is linearly monotonically convergent, namely, there
exists such a constant ρ (0 ≤ ρ < 1) that, ‖ek+1‖2 < ‖ek‖2,

lim
k→+∞

‖ek+1‖2 = 0 and lim
k→+∞

sup ‖ek+1‖
2

‖ek‖2
< ρ < 1.

Proof: Following the derivation of Theorem 1, the proof
is split into two cases when the matrix Ek is non-singular and
singular, respectively.
Case 1: The matrix Ek is non-singular.
From the formulations (4), (5), (9) and (10), we have

ek+1 = yd − yk+1 = yd − yk −
(
yk+1 − yk

)
= ek −MEk3k =

(
I−

(
I+ ηkM−TM−1

)−1)
ek .

(32)
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Here M−T =
(
MT

)−1
.

Denote

Sk = M−TM−1, (33)

Hk =

(
I+ ηkM−TM−1

)−1
= (I+ ηkSk)−1 . (34)

It is evident that the matrices Sk andHk are real and symmet-
ric.

Then, equality (32) becomes

ek+1 = (I−Hk) ek . (35)

Calculating inner product for both sides of the equation (35)
arrives

‖ek+1‖2 = eTk (I−Hk)
2 ek . (36)

From the property of the multi-variable quadratic function,
the equation (36) is evaluated as

‖ek+1‖2 ≤ λmax

(
(I−Hk)

2
)
‖ek‖2 . (37)

From Proposition 2, we have

I−Hk = I− (I+ ηkSk)−1 = ηkSk (I+ ηkSk)−1 . (38)

From Propositions 1 and 4, the equation (38) makes

λmax

(
(I−Hk)

2
)
= λmax

(
η2kS

2
k (I+ ηkSk)

−2
)

=

(
ηkλmax (Sk)

1+ ηkλmax (Sk)

)2

. (39)

Recall that the matrix M is invertible. This implies that
λmax (Sk) = λmax

(
M−TM−1

)
is constantly positive.

Denote

λmax (Sk) = λmax

(
M−TM−1

)
= λ0.

From Proposition 4, the condition of ηk ≤ η0 yields(
ηkλmax (Sk)

1+ ηkλmax (Sk)

)2

≤

(
η0λ0

1+ η0λ0

)2

. (40)

Substituting the formulations (39) and (40) into (37) gives
rise to

‖ek+1‖2 ≤ σ0 ‖ek‖2 , (41)

where σ0 =
(

η0λ0
1+η0λ0

)2
< 1.

Case 2: If the matrix Ek is singular.
For this case, the inversion Ek does not exist. Thus we may

not directly solve the equation. It needs to adopt a permutation
transformation for reforming the equation (7).

Left-multiplying equation (7) by 8T
k and considering for-

mula (27) and denotations (18)-(21) give rise to

8T
k ek+1

=

[
ẽk+1
ēk+1

]
= 8T

k ek −
(
8T
kM8k

) (
8T
kEk8k

) (
8T
k3k

)
=

[
ẽk
0

]
−

[
M̃k

_

Mk

M̄k M̆k

][
Ẽk 0
0 0

] [
3̃k

3̄k

]

=

[
Irk − M̃k9kM̃T

k
−M̄k9kM̃T

k

]
ẽk =

[
Irk − H̃k

−M̄kM̃−1k H̃k

]
ẽk , (42)

where H̃k = M̃k9kM̃T
k .

From denotation (27), we have

H̃k = M̃k9kM̃T
k =M̃k

(
ηkIrk +

(
M̃T

k M̃k + M̄T
k M̄k

))−1
M̃T

k

=

(
Irk + ηkM̃

−T
k M̃−1k + M̃−Tk M̄T

k M̄kM̃−1k
)−1

=

(
Irk + ηk S̃k + S̄k

)−1
, (43)

where

S̃k = M̃−Tk M̃−1k , (44)

S̄k = M̃−Tk M̄T
k M̄kM̃−1k . (45)

Then S̃k is symmetric positive definite and S̄k is symmetric
semi-positive definite, respectively.

Then from proposition 2, we get

Irk − H̃k = Irk −
(
Irk + ηk S̃k + S̄k

)−1
=

(
ηk S̃k + S̄k

) (
Irk + ηk S̃k + S̄k

)−1
=

(
ηk S̃k + S̄k

)
H̃k = ηk S̃kH̃k + S̄kH̃k . (46)

Then (
Irk − H̃k

) (
Irk − H̃k

)
=

(
Irk − H̃k

)
− H̃k

(
Irk − H̃k

)
=

(
Irk − H̃k

)
− ηkH̃k S̃kH̃k − H̃k S̄kH̃k . (47)

In addition,(
M̄kM̃−1k H̃k

)T (
M̄kM̃−1k H̃k

)
= H̃k

(
M̃−Tk M̄T

k M̄kM̃−1k
)
H̃k = H̃k S̄kH̃k . (48)

Calculating inner product to both sides of the equation (42)
and then substituting the equalities (47) and (48), we obtain∥∥∥8T

k ek+1
∥∥∥2 = ‖ek+1‖2
= ẽTk

(
Irk − H̃k

)
ẽk − ηk ẽTk H̃k S̃kH̃k ẽk

≤ ẽTk
(
Irk − H̃k

)
ẽk

≤ λmax

(
Irk − H̃k

)
‖ẽk‖2 = σ̃ (ηk) ‖ek‖2 ,

(49)

where

σ̃ (ηk) = λmax

(
Irk − H̃k

)
= λmax

(
ηk S̃k + S̄k

) (
Irk + ηk S̃k + S̄k

)−1
.

From Propositions 1 and 3, we confirm

σ̃ (ηk) =
λmax

(
ηk S̃k + S̄k

)
1+ λmax

(
ηk S̃k + S̄k

) . (50)
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From Propositions 1 and 3, it is no difficult to obtain

λmax

(
ηk S̃k + S̄k

)
≤ ηkλmax

(
S̃k
)
+ λmax

(
S̄k
)
. (51)

From the denotations (44) and (45) it is noticed that the
matrices S̃k and S̄k are totally dependent on the permutation
matrix 8T

k and Markov matrix M. Because the permuta-
tion h1, h2, · · · , hrk has a one-to-one correspondence to the
matrix 8T

k and the possible permutations h1, h2, · · · , hrk ,
for all indices k = 1, 2, · · · and rk = 1, 2, · · · ,N + 1,
are finite, the possible forms of the matrices S̃k and S̄k are
limited. Therefore, the eigenvalues λmax

(
S̃k
)
and λmax

(
S̄k
)

are uniformly upper-bounded.
Denote

λmax

(
S̃k
)
≤ λ̃0, (52)

λmax
(
S̄k
)
≤ λ̄0. (53)

Combining inequality (52) with (53) makes

λmax

(
ηk S̃k + S̄k

)
≤ ηk λ̃0 + λ̄0. (54)

From Proposition 4 and the condition of ηk ≤ η0, inequality
(54) results in

σ̃ (ηk) ≤
η0λ̃0 + λ̄0

1+ η0λ̃0 + λ̄0
. (55)

Denote

σ̃0 =
η0λ̃0 + λ̄0

1+ η0λ̃0 + λ̄0
. (56)

Inequalities (49) and (55) along with denotation, (56) arrives

‖ek+1‖2 ≤ σ̃0 ‖ek‖2 . (57)

Let

ρ = max {σ0, σ̃0} .

Hence, inequalities (41) and (57) achieve

‖ek+1‖2 ≤ ρ ‖ek‖2 . (0 ≤ ρ < 1) . (58)

It is immediate to attain that ‖ek+1‖2 < ‖ek‖2 ,

lim
k→+∞

‖ek+1‖2 = 0 and lim
k→+∞

sup ‖ek+1‖
2

‖ek‖2
< ρ < 1.

This completes the proof.
Remark 3: In Theorem 2, the linearly monotonic con-

vergence is perfect under the assumption that the initial
state of the dynamic subsystem is resettable to zero, that is,
x̃k+1 (0) = 0, for all k = 1, 2, · · · . This is ideally one of
the basic assumptions for ILC investigations. In addition the
formula (39) and (50) conveys that the smaller tuning factor
will lead to a smaller convergence factor, namely, a faster
convergence. Besides, the optimized ITVLGV 3k of the ILC
scheme (5) is dependent upon the parameters exactness of the
system (1). It is hardly realizable in engineering. However,
because of unavoidable disturbance, the system parameters
may have some uncertainties.

The next section is to analyze the robustness of the
P-type GOILC (5) to the system parameters uncertainties,
respectively.

IV. ROBUSTNESS OF THE P-TYPE GOILC
This part is going to the robustness analysis of the P-type
GOILC (5) to the uncertainties of the parameters of the
system (1), namely, system (4) in an additive form. For the
regard, we acquiesce that the system dynamics is subject to
the input-output equation (4), but the parameters uncertainties
occur in the optimized-gain vector expression.

Assume that the parameters of the system (1) are identified
in approximate ones formulated as A∗ = A + 1A, B∗ =
B + 1B and C∗ = C + 1C, where A, B and C are the
precise parameters of the system (1) while 1A, 1B and 1C
represent uncertainties, respectively. In specific, by denoting
ωj = C∗

(
Ā∗
)j−1

B̃∗1 as the approximation ofmj = CĀ
j−1

B̃1,
for j = 1, 2, · · ·,N , the corresponding Markov matrix of M
is approximated as

� =


ω0
ω1
ω2
...

ωN

0
ω0
ω1
...

ωN−1

0
0
ω0
...

ωN−2

· · ·

· · ·

· · ·

. . .

· · ·

0
0
0
...

ω0

 .

For validity, assume that ω0 = C∗B̄∗0 = C̄∗2
(
Ā∗22

)−1
B̄∗2 6= 0.

This means that the parameter uncertainties do not change
the nullity relative degree of the system (1). The detailed
inference and notions can refer to the lifted-vector-matrix
formulation (4) in Section II.
Denote 1M = � − M as the disturbance matrix of the

precise Markov matrix M. Then, we have

� =M+1M. (59)

It is known that, in terms of the ILC scheme (5), Theo-
rem 1 conveys that the optimized learning-gain vector 3k ,
which is formulated in equations (10) and (30), is relied
on the Markov matrix M and the tracking-error diagonal-
spannedmatrixEk . Because only the approximate parameters
are available, we may substitute the Markov matrix M in
the learning-gain vector formulations (10), and (30) by the
approximateMarkov matrix� and reserveEk as is so that the
learning scheme still performs well under some appropriate
uncertainties. As such, a quasi P-type GOILC strategy for the
system (4) is established as

u1 : arbitrarily given;

uk+1 = uk + Ek2k , (60)

where the iteration-time varying learning-gain vector 2k is
formulated as

If Ek is non-singular,

2k = E−1k
(
ηkI+�T�

)−1
�Tek . (61)

If Ek is singular,

2k = 8k

[
Ẽ−1k

(
ηkIrk +

(
�̃

T
k �̃k + �̄

T
k �̄k

))−1
�̃

T
k ẽk

0

]
.

(62)
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Here, �̃k and �̄k are consisting of the expression as

8T
k�8k =

[
�̃k

_

�k

�̄k �̆k

]
. (63)

In the expression (63), the dimensions of matrices �̃k , �̄k ,
_

�k and �̆k are identical to that of M̃k , M̄k ,
_

Mk and M̆k in the
formula (21), respectively.

Then

8T
k�8k = 8

T
kM8k +8

T
k1M8k . (64)

Here

8T
k1M8k =

[
1M̃k1

_

Mk

1M̄k1M̆k

]
. (65)

Indeed, in the expression (65), the dimensions of matrices
1M̃k ,1M̄k ,1

_

Mk and1M̆k are accordant to the ones of the
matrices M̃k , M̄k ,

_

Mk and M̆k in the formula (21), respec-
tively.

Consequently, formulations (21), (63) and (65) attain

�̃k = M̃k +1M̃k , (66)

�̄k = M̄k +1M̄k . (67)

Before going to the robustness, two groups of denotations are
listed as follows.

Denote

δM = 1M ·M−1, (68)

4k = M
(
ηkI+�T�

)−1
MT, (69)

δ5k = δM42
kδM

T
− (I−4k)4kδMT

− δM4k (I−4k) , (70)

δSk = M−T
(
1MTM+MT1M+1MT1M

)
M−1

= δMT
+ δM + δMTδM, (71)

δ6k = HkδSk42
kδSkHk + (I−Hk)4kδSkHk

+HkδSk4k (I−Hk) , (72)

ς (ηk) = λmax (δ5k + δ6k) . (73)

The group of denotations (68)-(73) will be adopted for robust-
ness when the matrix Ek is non-singular.

From the expressions (70) and (72), it is confirmative that
δ5k = 0 and δ6k = 0, which implies that ς (ηk) =
λmax (δ5k + δ6k) = 0 holds, if the relative uncertainty
matrix δM = 1M ·M−1 ≡ 0. Owing to the continuity of the
eigenvalues with respect to the elements, we may believe that
the value ς (ηk) = λmax (δ5k + δ6k) may be significantly
smaller in the circumstance while the uncertainty matrix1M
is constrained within an adequate range.

In addition, denote

δM̃k = 1M̃k · M̃−1k , (74)

δM̄k = 1M̄k · M̃−1k , (75)

4̃k = M̃k

(
ηkIrk +

(
�̃

T
k �̃k + �̄

T
k �̄k

))−1
M̃T

k , (76)

δ5̃k = δM̃k4̃
2
kδM̃

T
k − δM̃k4̃k

(
Irk − 4̃k

)
−

(
Irk − 4̃k

)
4̃kδM̃T

k , (77)

δ5̄k = δM̃k4̃k S̄k4̃kδM̃T
k + δM̃k4̃k S̄k4̃k

+ 4̃k S̄k4̃kδM̃T
k , (78)

1W̃k = 1M̃T
k M̃k + M̃T

k1M̃k +1M̃T
k1M̃k , (79)

1W̄k = 1M̄T
k M̄k + M̄T

k1M̄k +1M̄T
k1M̄k , (80)

δS̃k = M̃−Tk 1W̃kM̃−1k = δM̃
T
k + δM̃k + δM̃T

k δM̃k , (81)

δS̄k = M̃−Tk 1W̄kM̃−1k = δM̄
T
k + δM̄k + δM̄T

k δM̄k , (82)

δH̃k = 4̃k

(
δS̃k + δS̄k

)
H̃k , (83)

δ6̃k = δH̃kδH̃k +

(
Irk − H̃k

)
δH̃k + δH̃k

(
Irk − H̃k

)
,

(84)

δ6̄k = δH̃k S̄kδH̃k − H̃k S̄kδH̃k − δH̃k S̄kH̃k . (85)

ς̃ (ηk) = λmax

(
δ5̃k + δ5̄k + δ6̃k + δ6̄k

)
. (86)

The notions (74)-(86) will be utilized for robustness when the
matrix Ek is singular.
From the expressions (77), (78), (84) and (85), it is of

course that ς̃ (ηk) = 0 if the relative uncertainty matrix
δM = 1M · M−1 ≡ 0 which contains 1M̃k = 0 and
1M̄k = 0.
In virtue of the continuity of the eigenvalues with respect

to the elements, we may realize that the value ς̃ (ηk) may be
very smaller in the circumstance while the uncertainty matrix
1M is constrained within an adequate range.
Theorem 3: Assume that the system (4) repetitively oper-

ates over the sampling setD+ with the valuem0 = CB̄0 being
nonzero and the initial state x̃k (0) of the dynamic subsystem
is resettable, that is, x̃k+1 (0) = 0, for all k = 1, 2, · · · . Under
the condition of ηk ≤ η0, for all k = 1, 2, · · · , the Quasi
P-type GOILC (60) with ITVLGV 2k formulated by (61)
and (62) is linearly monotonically convergent if the relative
uncertainties δM = 1M · M−1, δM̃k = 1M̃k · M̃−1k and
δM̄k = 1M̄k · M̃−1k are appropriately constrained so that
the inequalities ς (ηk) ≤ ς0 and σ0 + ς0 < 1 holds for
the case when the matrix Ek is non-singular. In contrast, the
inequalities ς̃ (ηk) ≤ ς̃0 and σ̃0 + ς̃0 < 1 are guaranteed for
the case when the matrix Ek is singular, respectively.
In other words, there exists such a constant τ (0 ≤ τ < 1)

that, ‖ek+1‖2 < ‖ek‖2, lim
k→+∞

‖ek+1‖2 = 0 and

lim
k→+∞

sup ‖ek+1‖
2

‖ek‖2
< τ < 1.

Proof:
Case 1: The matrix Ek is non-singular.
Substituting the algorithm (60) with the learning-gain vec-

tor (61) and denotation (59) into the system (4) yields

ek+1 = ek −MEk2k = ek −M
(
ηkI+�T�

)−1
�Tek

= ek −M
(
ηkI+�T�

)−1
MT

(
I+M−T1MT

)
ek .

(87)
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Substituting denotations (69) and (59) into (87) gets

ek+1 = (I−4k) ek −4kδMTek . (88)

Calculating inner product to both sides of the equation (88)
conducts

‖ek+1‖2 = eTk+1ek+1
= eTk (I−4k)

T (I−4k) ek + eTk δM4
2
kδM

Tek

− eTk
(
(I−4k)4kδMT

+ δM4k (I−4k)
)
ek

= eTk (I−4k)
T (I−4k) ek + eTk δ5kek . (89)

Substituting notion (59) into (69) and considering formula
(33) receive

4k = M
(
ηkI+

(
MT
+1MT

)
(M+1M)

)−1
MT

= (I+ ηkSk + δSk)−1 . (90)

Recall that expression (34) delivers Hk = (I+ ηkSk)−1.
From Proposition 2, the expressions (34) and (90), one
achieves

4k = Hk + (4k −Hk) = Hk +4k

(
H−1k −4

−1
k

)
Hk

= Hk −4kδSkHk . (91)

Therefore

(I−4k)
T (I−4k)

= (I−Hk +4kδSkHk)
T (I−Hk +4kδSkHk)

= (I−Hk)
2
+HkδSk42

kδSkHk

+ (I−Hk)4kδSkHk +HkδSk4k (I−Hk)

= (I−Hk)
2
+ δ6k . (92)

Substituting formulation (92) into (89) and considering
inequalities (39) and (40) along with the assumption of
ς (ηk) = λmax (δ5k + δ6k) ≤ ς0, we have

‖ek+1‖2

= eTk (I−Hk)
2 ek + eTk (δ5k + δ6k) ek

≤ λmax (I−Hk)
2
‖ek‖2 + λmax (δ5k + δ6k) ‖ek‖2

≤ (σ0 + ς0) ‖ek‖2 . (93)

Case 2: If the matrix Ek is singular.
Equation (76) is equivalent to(

ηkIrk +
(
�̃

T
k �̃k + �̄

T
k �̄k

))−1
M̃T

k = M̃−1k 4̃k . (94)

Substituting expressions (66) and (94) into a learning-gain
vector (62) makes

2k = 8k

[
Ẽ−1k M̃−1k 4̃k

(
Irk + δM̃

T
k

)
ẽk

0

]
. (95)

Substituting the quasi P-type GOILC (60) into the system (4)
yields

ek+1 = ek −MEk2k . (96)

Pre-multiplying the equation (96) by 8T
k and substituting the

learning-gain vector (95), we get

8T
k ek+1

= 8T
k ek −

(
8T
kM8k

) (
8T
kEk8k

) (
8T
k2k

)
=

[
ẽk
0

]
−

[
M̃k

_

Mk

M̄k M̆k

][
Ẽk 0
0 0

] (
8T
k2k

)
=

[
ẽk
0

]
−

[
M̃k Ẽk 0
M̄k Ẽk 0

][
Ẽ−1k M̃−1k 4̃k

(
Irk + δM̃

T
k

)
ẽk

0

]

=

[
Irk − 4̃k − 4̃kδM̃T

k
−M̄kM̃−1k 4̃k − M̄kM̃−1k 4̃kδM̃T

k

]
ẽk . (97)

Computing 2-norm for both sides of the equation (97) and
considering denotation (48), we obtain

‖ek+1‖2 = ẽTk
(
Irk − 4̃k

)T (
Irk − 4̃k

)
ẽk + ẽTk δ5̃k ẽk

+ ẽTk 4̃k S̄k4̃k ẽk + ẽTk δ5̄k ẽk . (98)

From equalities (66) and (67), we obtain

�̃
T
k �̃k =

(
M̃T

k +1M̃T
k

) (
M̃k +1M̃k

)
= M̃T

k M̃k +1M̃T
k M̃k + M̃T

k1M̃k +1M̃T
k1M̃k

= M̃T
k M̃k +1W̃k . (99)

Analogously, we reach

�̄
T
k �̄k = M̄T

k M̄k +1W̄k . (100)

Substituting (99) and (100) into (76) and considering denota-
tions (47) and (48), we arrive

4̃k = M̃k

(
ηkIrk +

(
�̃

T
k �̃k + �̄

T
k �̄k

))−1
M̃T

k

= M̃k

(
ηkIrk+M̃

T
k M̃k+M̄T

k M̄k+1W̃k+1W̄k

)−1
M̃T

k

=

(
Irk + ηk S̃k + S̄k + δS̃k + δS̄k

)−1
. (101)

By virtue of Proposition 2, we achieve

4̃k = H̃k + 4̃k

(
H̃−1k − 4̃

−1
k

)
H̃k

= H̃k − 4̃k

(
δS̃k + δS̄k

)
H̃k = H̃k − δH̃k . (102)

Then equality (102) produces

Irk − 4̃k = Irk − H̃k + δH̃k . (103)

Therefore(
Irk − 4̃k

)T (
Irk − 4̃k

)
=

(
Irk − H̃k + δH̃k

)T (
Irk − H̃k + δH̃k

)
=

(
Irk − H̃k

)2
+ δ6̃k . (104)

Besides, the formula (102) delivers

4̃k S̄k4̃k =

(
H̃k − δH̃k

)
S̄k
(
H̃k − δH̃k

)
= H̃k S̄kH̃k + δ6̄k . (105)
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Substituting expressions (104) and (105) into formula (98)
achieves

‖ek+1‖2 = ẽTk
(
Irk − H̃k

)2
ẽk + ẽTk H̃k S̄kH̃k ẽk

+ẽTk
(
δ5̃k + δ5̄k + δ6̃k + δ6̄k

)
ẽk . (106)

Similar to the derivation of expression (49), the first two terms
in the right hand of the equation (106) are rewritten as

ẽTk
(
Irk − H̃k

)2
ẽk + ẽTk H̃k S̄kH̃k ẽk

= ẽTk
(
Irk − H̃k

)
ẽk − ηk ẽTk H̃k S̃kH̃k ẽk . (107)

Substituting (107) into (106) and under the property of the
matrix-weighing quadratic function, the equation (106) is
evaluated as

‖ek+1‖2 ≤ (σ̃ (ηk)− ηk σ̄ (ηk)+ ς̃ (ηk)) ‖ek‖2

≤ (σ̃0 + ς̃0) ‖ek‖2 . (108)

Here σ̃0 is as shown in (56) and

ς̃ (ηk) ≤ ς̃0. (109)

Let

τ = max {σ0 + ς0, σ̃0 + ς̃0} . (110)

Then inequalities (93) and (108) makes

‖ek+1‖2 ≤ τ ‖ek‖2 , (0 ≤ τ < 1) . (111)

Therefore, inequality (111) arrives ‖ek+1‖2 < ‖ek‖2,

lim
k→+∞

‖ek+1‖2 = 0 and lim
k→+∞

sup ‖ek+1‖
2

‖ek‖2
< τ < 1.

This completes the proof.
Remark 4: From the expressions of the uncertainty values

ς (ηk) and ς̃ (ηk) respectively shown in (73) and (86), it is
confirmed that those two values are the relative uncertain-
ties. As discussed in remark 3 that the smaller tuning factor
leads to a smaller convergence factor. As such a smaller
convergence factor may tolerate the wider range of relative
uncertainties ς (ηk) and ς̃ (ηk). In virtue of the continuity of
the eigenvalues with respect to the elements, we may realize
that the value ς (ηk) and ς̃ (ηk) may be very smaller in the
circumstance while the uncertainty matrix1M is constrained
within an adequate range.
As the relative uncertainties matrices δM̃k = 1M̃k ·

M̃−1k and δM̄k = 1M̄k · M̃−1k are strongly relevant to
the matrix δM = 1M · M−1, the relative uncertainties
degree is usually a positive correlation function of the value
1m =

∥∥1M ·M−1
∥∥
2. For the sake of simplicity, 1m =∥∥1M ·M−1

∥∥
2 is used to measure the relative uncertainty.

Here, it is worthy to mention that a larger relative uncertainty
1m does not means a worse convergence as1m is a function
of multiple uncertainties 1A, 1B and 1C.
Besides, Theorem 3 conveys that the linearly monotone

convergence is derived in a direct time domain manner and
is guaranteed in a wider uncertainty scope.

V. NUMERICAL SIMULATIONS
In this simulation section, we shall consider the sampling set
as D = {0, 1, 2, · · · , 79}. The desired trajectory is preset as
yd (n+ 1) = −5 sin (0.4 (n+ 1))+ 10e−(n+1), n ∈ D+ =

D ∪ {80}. The tracking error in 2-norm is calculated as

‖ek‖2 =

√√√√ 80∑
n=0

|ek (n)|2.

Consider the following LDTI singular system

 1 0 0
0 1 0
0 0 0

 xk (n+ 1) =

−0.6 − 0.5 0.5
1 − 0.5 − 0.1
a1 a2 a3

 xk (n)
+

 b1b2
b3

 uk (n) ,
yk (n) = [c1 c2 c3] xk (n) , n ∈ S.

(112)

For the system (112), the state pertaining to the dynamic

subsystem is x̃k (n) =
[
x(1)k (n) , x(2)k (n)

]T
while the state

about the static subsystem is x̂k (n) = x(3)k (n) respectively.
The initial state relating to the dynamic subsystem is set as
x̃k (0) = x̃0 = [0 0]T.
Pick the parameters as a1 = 0.1, a2 = 0, a3 = 1, b1 = 0.2,

b2 = 0.2, b3 = −0.6, c1 = 0.5, c2 = 0.2 and c3 = 2.5. It is
computed that ρ (E,A) = (−0.58+ 0.71i,−0.58− 0.71i)
which signifies that the finite eigenvalue of the system (112)
is within the unit circle, that is to say, the system (112) is
stable. It is calculated that m0 = CB̄0 = 1.5 6= 0. This
implies that the relative degree of the system (112) is zero.

Set the tuning-factor sequences as

η
(1)
k = 0.8, η

(2)
k = 0.6 · 0.9k ,

η
(3)
k = 0.6

(
1− sin

(
kπ
/
8
))
, η

(4)
k ≡ 0.

Part 1: Validation and efficacy of GOILC (5)
This part is going for simulation when the initial state

x̃k+1 (0) of the dynamic subsystem is resettable to zero, that
is, x̃k+1 (0) = 0, for all k = 1, 2, · · · . As discussed in
Theorem 2, simulation is also conducted for the cases when
E1 is non-singular and singular, respectively.
Case 1-1: Matrix E1 is non-singular.
Choose the first iteration output as
y1 (n+ 1) = yd (n+ 1) + 0.6 sin (0.2 (n+ 1) π) − 2.8,

n ∈ D+.
Then it is assure that all components of the tracking error

e1 = yd − y1 are nonzero. This implies that the matrix E1 is
non-singular.

Whereas the GOILC (5) is forced on the system (112),
the sequential tracking error tendencies have come into view.
Fig.1 displays the tracking behavior for the tuning factor
being fixed at ηk = 0.8, where the solid curve shows the
desired trajectory while the dash-dotted, the dashed, and the
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FIGURE 1. Tracking behavior of GOILC (5) for Case 1-1.

FIGURE 2. Tracking error tendencies of GOILC (5) for Case 1-1.

dotted ones show the output at the 1st, 2nd, and 3rd iterations,
respectively.

From Fig.1, it is confirmed that the output yk of the system
(112) driven by the learning of GOILC (5) can track the
desired trajectory with quite good performance.

Fig.2 exhibits the comparable tracking errors, where the
dotted, the dash-dotted, the dashed, and the solid curves
are the tracking-error tendencies of GOILC (5) for the
tuning-factor orders η(1)k , η(2)k , η

(3)
k and η(4)k respectively.

It is evident from Fig.2 that those four tracking errors
are linearly monotonically convergent, and the lighter
tuning-factor sequence makes the convergence more rapid.
Remarkably, the solid tracking error for the tuning-factor
sequence η(4)k ≡ 0 converges expeditious and becomes zero at
the second iteration. This agrees with the result in Theorem 2.
Case 1-2: Matrix E1 is singular.
Formulate the first-iteration control input as u1 = H−1y1,

where the first-iteration output y1 is arranged as
y1 (n+ 1) = yd (n+ 1)+ 1.5 sin (0.5 (n+ 1) π), n ∈ D+.
It is understandable that e1 (2j) = 0, for j = 0, 1, 2, · · ·, 40,

which infers that the matrix E1 is singular.

FIGURE 3. Tracking behavior of GOILC (5) for Case 1-2.

FIGURE 4. Tracking error tendencies of GOILC (5) for Case 1-2.

Fig.3 expresses the tracking behavior for the tuning factor
being fixed as ηk = 0.8, where the solid curve depicts
the desired trajectory while the dotted, the dashed, and the
dash-dotted ones give a picture of the output at the first,
the second and the third iterations, respectively. It delivers
that the GOILC (5) pushes the system (112) to track the
desired trajectory in a perfect mode.

Fig. 4 compares the tracking errors made by GOILC (5)
with different tuning-factor sequences, where the dotted, the
dash-dotted, the dashed, and the solid curves are the tracking
errors for the tuning-factor sequences being η(1)k , η(2)k , η

(3)
k and

η
(4)
k respectively. It is detected that all the tracking errors lin-

early monotonically converge to a nullity as iteration carries
on. More to the point, the dash tracking error for the smaller
tuning-factor sequence η(3)k transfers a faster convergence
than that of the larger tuning-factor sequence η(2)k . As an
extreme case when the tuning-factor sequence η(4)k ≡ 0, the
solid tracking error vanishes at the third iteration.
Part 2: Validation and efficacy of Quasi P-typeGOILC (60)
This part demonstrates the convergence feature of

QGOILC (60) for distinct uncertainty degrees with a fixed
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tuning-factor ηk = 0.02. Additionally, to take advantage of
the first iterative control input provided in Part 1, the simu-
lations are composed for the cases when E1 is non-singular
and singular, correspondingly. The parameter uncertainties
for the system (112) are randomly made as

1a1 = 0.3(rand − 0.5)a1, 1a2 = 0.4(rand − 0.5)a2,

1a3 = 0.5(rand − 0.5)a3, 1b1 = 0.15(rand − 0.5)b1,

1b2 = 0.25(rand − 0.5)b2, 1b3 = 0.35(rand − 0.5)b3,

1c1 = 0.6(rand − 0.5)c1, 1c2 = 0.7(rand − 0.5)c2,

1c3 = 0.8(rand − 0.5)c3.

Here, every single variable rand stands for a self-
determining random number between 0 and 1. Let
Uncertainty 0:
1ai = 0, 1bi = 0 and 1ci = 0, for i = 1, 2, 3.
Then 1m(0)

= 0.
Case 2-1:Matrix E1 is non-singular.
The control input u1 is preferred as the same as inCase1-1.
Uncertainty1:

1a1 = 0.0036,1a2 = 0.0011,1a3 = −0.0028,

1b1 = 0.0096,1b2 = 0.0339,1b3 = −0.0593,

1c1 = 0.0501,1c2 = −0.0928,1c3 = −0.0485.

It is calculated that the relative uncertainty scale of M is
1m(1)

= ||1M ·M−1||2 = 0.4764.
Uncertainty 2:

1a1 = −0.0028,1a2 = 0.0093,1a3 = 0.0372,

1b1 = 0.0045,1b2 = 0.0153,1b3 = 0.0605,

1c1 = 0.0450,1c2 = 0.0239,1c3 = −0.0572.

It is tested that 1m(2)
= ||1M ·M−1||2 = 0.7824.

Case 2-2:Matrix E1 is singular.
The first-iteration input u1 is taken as alike as that of in

Case 1-2.
Uncertainty 3:

1a1 = −0.0012,1a2 = 0.0055,1a3 = −0.0327,

1b1 = 0.0074,1b2 = −0.0060,1b3 = 0.0436,

1c1 = −0.0289,1c2 = −0.0633 ,1c3 = 0.2333.

By determining, we get 1m(3)
= ||1M ·M−1||2 = 0.3739.

Uncertainty 4:

1a1 = −0.0051,1a2 = 0.0098,1a3 = −0.0267,

1b1 = −0.0039,1b2 = 0.0092,1b3 = 0.0697,

1c1 = 0.0042,1c2 = 0.1717,1c3 = −0.1313.

It is confirmed 1m(4)
= ||1M ·M−1||2 = 3.6421.

Fig.5 put the comparable strictly monotonic convergences
of Case 2-1 on view for the QGOILC (60) with Uncer-
tainty 0, Uncertainty 1 and Uncertainty 2. While Fig.6 com-
petes for the strictly monotonic convergence of Case 2-2 for
the QGOILC (60) with Uncertainty 0, Uncertainty 3 and
Uncertainty 4.

FIGURE 5. Tracking error tendencies of QGOILC (60) for Case 2-1.

FIGURE 6. Tracking error tendencies of QGOILC (60) for Case 2-2.

From Fig.5 and Fig.6, it is realized that the dashed and
the dotted tracking-error curves for the QGOILC (60) with
uncertainties converge slower than the solid tracking-error
curve for null uncertainties. Moreover, the dotted tracking-
error curve for uncertainties with the smaller relative scale
converges quicker than that of the dashed tracking-error curve
for uncertainties with the larger relative uncertainty degree.
It is seen in Fig.6 that the dashed tracking error curve with
uncertainty 1m = 3.6421 needs more iterations to fulfill the
convergence requirements. i.e., a smaller relative uncertainty
scale means a faster convergence of the tracking error. This is
common.

VI. CONCLUSION
A P-type gain-optimized iterative learning control (GOILC)
scheme come into being in this paper by arguing the learning-
gain vector for the sequential performance index combined by
the linear-quadratic form of the tracking error and the incre-
mental inputs weighted by the iteration-wise tuning factor
that put forward the concerning importance ratio of the incre-
mental input relating to the tracking error. The paper initially
modified the differential-algebraic structure of the singular
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system as an input-output transmission by the lifted-vector
method in order to obtain the convergence in a descriptive
way. By means of the matrix permutation transformation
and the property of the quadratic function, the sequential
learning-gain vector is explicitly formulated by the system
Markov matrix and the iteration-wise tracking error. Addi-
tionally, the linearly monotonic convergence is derived under
the assumption that the initial state of the dynamic subsystem
is resettable. The theoretical investigation and the numerical
simulations suggest that the tracking error is linearly mono-
tonically convergent and the faster convergence is achievable
by a smaller tuning factor. Further, when the system param-
eters have uncertainties in additive forms, the P-type GOILC
scheme may turn to a quasi P-type GOILC, which substitutes
the exact Markov parameters matrix with the approximated
one. The linearly monotonic convergence is induced on the
premise that the initial state is resettable, but the parameter
uncertainties are confined in an appropriate range. Numer-
ical simulations manifest that, in most circumstances, the
tracking-error tendency for the parameters uncertainties with
a smaller relative scale renders a faster convergence rate than
that of the tracking-error curve for the uncertainties with
a larger relative uncertainty degree, i.e., a smaller relative
uncertainties scale means a quicker convergence of the track-
ing error. This is common but not definitely confirmative as
the relative uncertainty degree is a multi-uncertainty assess-
ment. It is worthy to emphasize that the direct discrete-time
domain methodology is an effective way to visualize the
robustness of the GOILC to the uncertainties of parameters
and the comprehensive convergence outcomes could update
the existing robustness. Nevertheless, the job is done under
the ideal assumption that the initial state is resettable to zero
and the output is quantifiable with no disturbance. Indeed,
the convergence characteristic for the exploited GOILC to
count the external disturbance is a crucial topic. The issue
will be taken into consideration in the future. In addition some
future challenges are as follows:

1. To apply the methodology to a linear discrete-time
varying singular system.

2. To apply the proposed algorithm to a non-linear singu-
lar system.

3. When the order of the learning scheme is larger or
smaller than the relative degree of the system.
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