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ABSTRACT To find out the hidden danger in the industrial production process in time, it is necessary
to monitor the health condition of the key components of the mechanical system in operation. However,
traditional fault diagnosis methods usually adopt manual feature extraction, which not only costs expensively
and depends on prior knowledge. Therefore, it is of great significance to study the application of automatic
fault identification based on the original vibration signals. Recently, existing studies have shown that most
of fault diagnoses are implemented by using deep neural network. Although these methods have achieved
satisfactory performances, there are obvious limitations in real applications, that is, the complexity of deep
neural network requires a lot of hardware computing resources. This hinders the development of online fault
diagnosis tools. To solve this problem, this paper proposes a fault diagnosis model based on lightweight
convolutional neural network MobileNet, and realizes an end-to-end intelligent fault classification and
diagnosis application. We evaluated the proposed method with the rolling bearing dataset from Western
Reserve University. The best average precision, recall and F1 score of ten different bearing health conditions
are about 96%, 82% and 88%, respectively. In addition, we also compare the accuracy of the rolling bearing
fault diagnosis classification model under the standard ReLU and the improved ReLU. Experimental results
show that both obtain good performances, but the improved ReLU reaches the over 96% accuracy more
rapidly.

INDEX TERMS Fault diagnosis, rolling bearing, deep neural network, mobilenet.

I. INTRODUCTION
Bearings are a fundamental component of all kinds of rotary
machinery, and its health conditions are directly related to
the normal operation of rotating machinery. With the rise
of industry 4.0, the application of fault diagnosis to ensure
the reliability and safety of mechanical system has been paid
more and more attention by industry and academia [1]–[3].
As we all know, it is the key of fault diagnosis to extract
features that can represent fault information from original
vibration signals. Based on this main line, fault diagnosis
technology has experienced two development stages such
as traditional methods [4]–[8] and deep learning based on
methods [9]–[11].
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As traditional fault diagnosis methods, feature extraction
and classifier construction are independent, and signal pro-
cessing technologies are often used to extract features. For
example, Randall and Antoni [4] investigated that rolling
bearing signals have the characteristics of randomness.
Bymodeling it as pseudo cycle stationary signals, local defect
pulse signals can be separated as fault features. Lu et al. [6]
employed empirical mode decomposition to decompose a
vibration signal into intrinsic mode functions, which rep-
resented the vibration signal characteristics of rolling bear-
ings. Li et al. [7] transformed time-frequency signals into
frequency features using Fast Fourier Transform, and then
adopted a fuzzy clustering algorithm to realize fault diag-
nosis. Cui et al. [8] constructed two dictionaries, such as
a pulse time-frequency dictionary and a modulation dictio-
nary, to propose a method called DDMP (Double-Dictionary
Matching Pursuit) to decompose and reconstruct rolling
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bearing vibration signals. Liu and Xiang [12] extracted the
high-frequency terms from the original vibration signals
using a first-order kernel regression residual decomposi-
tion, and then purified these high-frequency terms con-
taining fault information through a conversion technology.
Zhen et al. [13] utilized the third-order statistics called Bis-
pectrum to suppress the Gaussian noise in vibration signals,
and effectively extracted fault features from non-stationary
signals. Ming et al. [14] proposed to filter original vibration
signals using cyclic Wiener filters, and then used enve-
lope spectrum analysis to extract the most influential fea-
tures for fault classification. Jiang et al. [15] investigated
a semi-supervised kernel marginal Fisher analysis method,
which directly extracted low dimensional features from the
original high-dimensional vibration signals. Their researches
showed that these low dimensional features effectively iden-
tified fault diagnosis when it took as the input of KNN
(K Nearest Neighbor) classifier. Based on the above analysis,
we can see that traditional fault diagnosis methods have
achieved good application results, but there are two major
limitations. (1) the signal processing technology used to
extract features largely depends on the prior knowledge of
experts. (2) the fault classifier is not universal because the
extracted features are closely related to specific applications.

With the advent and development of deep learning, such
problems have been solved to a certain extent. In sharp con-
trast with traditional fault diagnosis methods, the methods
based on deep learning integrates feature extraction and fault
classification, which fully demonstrates the ability of deep
neural network to automatically learn features. At present,
deep belief network [16], autoencoder [17], CNN (convolu-
tional neural network) [18], [19] and RNN (recurrent neural
network) [19]–[21] are the most widely used deep learn-
ing technologies in the field of fault diagnosis. In order to
improve the accuracy of fault diagnosis, researchers have
explored the data representation ability of deep belief network
and auto encoder, the data transformation ability of CNN and
the timing processing ability of RNN. For example, in the
researches of fault diagnosis based on deep belief network
and autoencoder, Deutsch and He [22] proposed to construct
a deep belief network using a stacked version of an Restricted
Boltzmann Machine, and then add a linear regression layer
at the top of the deep belief network to realize the predic-
tion of the remaining use life of bearings; Zhang et al. [23]
took the fused frequency spectrums as the input of a deep
belief network, and used these inputs to train the deep belief
network model which recognized the degradation of ball
screw. Based on the advantages of deep belief network and
quantum inspired neural network, Gao et al. [24] constructed
a quantum inspired neural network using linear superposition
of deep belief network with quantum interval in the last
hidden layer, which was used for fault detection of aircraft
fuel system.When constructing the power system fault classi-
fication model based on multi-layer perceptron, oh et al. [25]
transformed vibration sensor signals into vibration images,
and then used a histogram of oriented gradients related to

the vibration images as the input of deep belief network to
learn the high-level features in the images. Sun et al. [26]
adopted the idea of compressed sensing to construct the
mapping relationship between all the information of faults
and low dimensional spaces with appropriate compression
ratio, and then obtained the compressed data containing the
original fault signals, and finally used these compressed data
to build a stacked sparse autoencoder to extract fault fea-
tures. Sohaib et al. [27] proposed a two-layer fault diagnosis
scheme, which used a hybrid feature set and a sparse stacked
autoencoder to realize fault diagnosis of rolling bearings.
Among them, the function of themixed feature set is to isolate
bearings under different health states, and the sparse stacked
autoencoder is used to extract the intrinsic information in the
mixed feature set.

For the methods based on CNN, Wei et al. [28] studied the
influence of activation functions on the performance of CNN,
and proposed an improved model named ReLU-CNN for
mechanical fault diagnosis. The experimental results showed
that the proposed model has good performance and fast con-
vergence. Xia et al. [29] used the structural characteristics of
CNN to skillfully implement the sensor information fusion
during fault diagnosis. The input of CNNwas all the informa-
tion collected by multiple sensors, which was represented by
matrix. Abdeljaber et al. [30] proposed an adaptive method
based on 1-D CNN to realize structure health monitoring
based on vibration signals. Guo et al. [31] constructed a
model named deep convolution transfer learning network,
which consists of two modules. One is a health recognition
module; the other is a domain adaptation module. The health
recognition module is completed using 1-DCNN, and the
domain adaptationmodule is convenient for 1-DCNN to learn
domain invariant features bymaximizing the domain recogni-
tion error andminimizing the probability distribution distance
of domain recognition. The effectiveness of the method is
verified in six migration fault diagnosis experiments. Based
on CNN and multi-layer perceptron, Li et al. [32] trained
some basic models with a large number of source data, then
migrated the basic models to the target data of different
workloads and different mechanical parts, and finally realized
the fault diagnosis model trained by mechanical part A to
predict the fault of mechanical Part B. Li et al. [19] intro-
duced attention mechanism in the combination of CNN and
LSTM (Long Short Term Memory) to achieve mechanical
fault diagnosis, which can more effectively locate the typical
fault features in the original data.

In the aspect of fault diagnosis of RNN, Yuan et al. [33]
studied the performance of four different recurrent neu-
ral network models applied to aero-engine fault diagnosis
tasks, including standard RNN, GRU (Gate Recurrent Unit),
AdaBoost LSTM and standard LSTM. The experimental
results showed that the standard LSTM outperformed the
other three models. Zhao et al. [34] constructed a tool wear
monitoring health model based on LSTM, and predicted the
corresponding tool wear by encoding the original sensor
signals. In addition, a convolutional bidirectional long short
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term memory network was designed based on afore model,
where the convolution network was used to extract local
features of time series, and the bidirectional LSTM model
was used to encode the extracted features. Finally, a stacked
full connection network and a linear regression layer are
used to predict tool wear. The experimental results showed
that the proposed method had good prediction performances.
Malhotra et al. [35] proposed a LSTM Encoder-Decoder
(LSTM-ED) scheme to predict the residual life of mechanical
components. By training LSTM-ED to reconstruct the time
series of the health state of the mechanical system, the health
index values of the mechanical components were estimated
using the reconstruction error, and the residual life of the
mechanical components was predicted by the health index.

Although the above existing methods achieved better per-
formances in fault diagnosis, the heavily dependence of deep
learning on the hardware platform and the intensive com-
puting process are not considered. In fact, the application of
these methods is very difficult under the limited computing
resources and storage space, which hinders the use and pop-
ularity of the intelligent fault diagnosis system from being
severe working conditions. Therefore, the MobileNet [36],
which focus on the lightweight CNN network in mobile
or embedded devices, has begun to receive attentions. The
MobileNet can balance the latency and accuracy of the net-
work. Since 2017, it has been researched and applied in some
fields such as image recognition [37], health care [38], auto-
matic driving [39] and so on. Inspired by these applications,
we investigate how to build a fault diagnosis model based
onMobileNet from the perspective of end-to-end application,
and deploy an application that starts with model creation and
terminates at the web application.

In this study, we propose an end-to-end intelligent classifi-
cation solution for fault diagnosis based on MobileNet which
is a lightweight CNN. Users can run our proposed model
on the browser without installing any software, and get the
classification results with over 95% in real time. To the best
of our knowledge, this is the first end-to-end solution which
performs fault diagnosis recognition and achieves the state-
of-the-art performance.

In summary, in this paper we make the following
contributions:

1) We propose to study fault diagnosis classification using
a lightweight CNN, which aims to build an end-to-end fault
diagnosis classification application.

2) We build a fault diagnosis classification model based
on MobileNet. An improved activation function ReLU was
investigated for the performance of our built model.

3)We conduct two kinds of experiments on a public rolling
bearing dataset from Western Reserve University. One is to
test the performance of the proposed model; the other is to
implement the end-to-end application of the proposed model.
Experimental results on two tasks prove the effectiveness
and efficiency of the proposed approach, which provides
a possible way for enterprises to realize online monitoring
under the severe working conditions.

FIGURE 1. The basic convolutional structure of MobileNet.

The rest of the paper is organized as follows. We
describe the principles of MobileNet in Section 2. Section 3
presents the network structure and training of fault diagnosis
classification model based onMobileNet. Section 4 describes
the experimental dataset in detail. Section 5 analyzes exper-
imental results from different angles. Section 6 demon-
strates the end-to-end solution for the proposed model and
Section 7 concludes the paper.

II. PRINCIPLES OF MOBILENET
MobileNet is a lightweight CNN proposed by Google
in 2017, which can be used in mobile terminals and improve
the real-time performance of deep learning under limited
hardware conditions [36]. Figure 1 shows the basic convo-
lution structure of the MobileNet. A standard convolution
operation can be decomposed into a depth-wise convolution
and a point-wise convolution by using deep and separable
convolution. The function of the depth-wise convolution layer
is to filter the input channel, while the point-wise convolution
layer is to combine the output of the depth-wise convolution
layer linearly in order to obtain a new feature map. After
each convolution operation, batch normalization algorithm
and ReLU activation function are used to realize automatic
adjustment of data distribution. Deep and separable convo-
lution network can accelerate the training of MobileNet and
greatly reduce the amount of computation. The reasons are as
follows:

The standard convolution structure can be described as (1).

Gs =
∑
m

Fm,n · Inputm (1)

where m and n are respectively the number of input chan-
nels and output channels. Fm,n is the filter, Inputm denotes
the input, including feature map, which use the fill style of
zero padding. If the size of Inputm is DInput × DInput , it is
necessary to have n filters with m channels and the size
of Doutput × Doutput before outputting feature maps of the
size Doutput × Doutput . So the computing cost of standard
convolution is shown in (2).

Cs = DOutput × DOutput × m× n× DInput × DInput (2)
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TABLE 1. The network structure of fault diagnosis classification model
based on MobileNet.

By contrast, the depth-wise convolution structure can be
expressed as (3).

GM =
∑

F̂1,m · Inputm (3)

where F̂1,m is the filter, Inputm has the same meaning as (1).
During the depth-wise convolution, there must have m filters
with 1 channels and the size of Doutput × Doutput . During the
point-wise convolution, it is necessary to have n filters with
m channels and the size of 1× 1. In this case, the computing
cost of the deep separable convolution structure is computed
using (4).

CM = DOutput × DOutput × m× DInput × DInput
+m× n× DInput × DInput (4)

Comparing with standard convolution operation, the comput-
ing cost is reduced by 1

n +
1

D2
output

.So the deep and separa-

ble convolutional structure enables the MobileNet to speed
up the training process and greatly reduces the amount of
calculation.

III. NETWORK STRUCTURE AND TRAINING OF FAULT
DIAGNOSIS CLASSIFICATION MODEL BASED ON
MOBILENET
The network structure of the fault diagnosis classification
model based on MobileNet is shown in Table 1, where all
different types of layers used, the filter shape of each layer,
and the input shaped in each layer are described in great
detail.

In this work, we selected 2500 data points as a sample.
Therefore, the input of our proposed model is a one-channel

raw vibration signals with 50 × 50. Firstly, Zero Padding
is used to fill the corner and boundary information of the
vibration signals to prevent the loss of boundary information
during convolutions. Then, after using a 3 × 3 filter and a
stride with 2, the output of standard convolution is executed
to get 32 feature maps of size 25 × 25. Secondly, thirteen
depth-wise convolution layers and point-wise convolution
layers are stacked to form themain body of the fault diagnosis
classification model. Finally, the convolution layer of the
13th point-wise is connected with the full connection layer
to realize the classification of fault classification.

Each depth-wise convolution operation in the model uses
a filter of size 3 × 3. After each depth-wise convolution
and point-wise convolution, batch normalization and ReLU
activation functions are performed successively to prevent
gradient disappearance, adjust network parameters, and speed
up network training. In order to prevent information loss
during depth-wise convolution, Zero Padding was performed
between the second and the third deep convolution layer,
the fifth and the sixth deep convolution layer, the eleventh and
the twelfth deep convolution layer, respectively. To prevent
over-fitting in the process of model training, the dropout
mechanism is adopted.

After building the classification model of fault diagnosis
based on MobileNet, we choose Keras framework to train it
in this study. The free GPU is provided by Google Colab-
oratory. The weight of model is initialized by the Gaussian
distribution. In order to highlight the sensitivity of the model
to the three types of rolling bearing faults (BF, IF, and OF),
the initial weights of the three types of rolling bearing faults
were set to be greater than that weights of normal rolling
bearings. The initial batch size is set to 100 samples during
training and validation. Theweight of themodel is updated by
Adam optimizer with an initial learning rate of 0.01, the size
of the validation set is the 10 percent of the training set and the
classification cross-entropy is selected as the loss function.
The metric of Precision, Recall, F1-score and Accuracywere
used to evaluate the proposed model performance.

IV. DATA DESCRITPION
The original fault data of rolling bearing studied in this paper
are collected by Case Western Reserve University (CWRU),
which includes 4 health types and 10 different health condi-
tions. The four health types are respectively normal, rolling
ball fault (BF), inner fault (IF) and outer fault (OF), and the
corresponding diameters of each fault degree are 0.007mm,
0.014mm and 0.021mm respectively. There are three data
acquisition points of each fault state, including drive end,
fan end and base accelerator end. To validate the proposed
method, all raw vibration signals are randomly selected from
the original datasets with load of 1, 2 and 3 horsepower
and sampling frequency of 12 kHz to form three different
datasets D1, D2 and D3 in this work. D1, D2 and D3 all
contain 17500 training samples and 2500 test samples, and
each sample contains 2500 data points, as shown in Table 1.
In addition, D4, which is the union set of D1, D2, and D3, has
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TABLE 2. Description of the rolling bearing fault datasets.

600000 samples under all the loads. The detailed information
is shown in Table 1, and the vibration signals under the
different health conditions are shown in Figure 2.

V. EXPERIMENTS AND RESULTS
A. EVALUATION METRICS
Fault diagnosis is generally regarded as a classification prob-
lem that is implemented by supervised learning. Follow-
ing [40], we use Precision, Recall, F1-score, and Accuracy
for taxonomy evaluation in this study. Precision is the ratio
tp / (tp + fp) where tp is the number of true positives and
fp the number of false positives. Precision is intuitively the
ability of the classifier not to label as positive a sample that
is negative. Recall is the ratio tp / (tp + fn) where tp is the
number of true positives and fn the number of false negatives.
Recall is intuitively the ability of the classifier to find all
the positive samples. The F1-score can be interpreted as a
weighted average of the precision and recall, where F1- score
reaches its best value at 1 and worst score at 0. In multilabel
classification, Accuracy means the set of labels predicted for
a sample must exactly match the corresponding set of labels
in its true labels.

B. RESULTS DISCUSSION
We design three experiments for the proposed model in order
to find the optimal parameters. The experimental results are
represented in this section.

1) BATCH SIZE
The batch size is the number of training instances observed
before the optimizer performs a weight update. Table 3 shows
performance of different values of batch size. It can be
observed that the model achieves the best classification when
batch size is equal to 400. When batch size is greater than
400, although the average convergence time of the model is
shorter, other metrics show a downward trend.

2) DROPOUT
Dropout is a well-known form of regularization. We further
study the influence of different dropout values on model.

TABLE 3. Performance of model w.r.t. different batch size.

TABLE 4. Performance of model w.r.t. different dropout value.

Table 4 presents the results. We can see that the value of
dropout has a great impact on the performance of the model.
When dropout equals 0.4, the model has the best performance
in Precision, Recall and F1-score.

3) LOSS AND ACCURAY
In addition, in order to examine learning and performance
of the model, we conduct some experiments to observe the
change of the loss function and classification accuracy of
the model when batch size and dropout are equal to 400 and
0.4, respectively. Figure 3 shows that the loss function curves
of training set and validation set. It can be observed that
the proposed model shows a good learning as the training
accuracy increase with the number of iterations along with
symmetric downward sloping of training loss curve. The
small gap between training and validation curves represents
a good-fit, indicating model can generalize well on fresh
unseen fault.

4) IMPORVED ACTIVATION FUNCTION
Activation functions are crucial elements in deep learning
neural networks. To observe the effect of activation function
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FIGURE 2. Vibration signals of bearings with different conditions from one sensor.

on the performance of the proposed model, we introduce tws
improved ReLU activation functions shown in (4) and (6) to
replace the standard ReLU activation function in Section 3.
According to Figure 4, it is found that (1) when the coeffi-
cients of the improved ReLU activation function are 0.01 and
0.25, the accuracy of the model reaches 100% after about
one epoch. When using the standard ReLU activation func-
tion, the accuracy of the model can only reach over 96%
after about 18 epochs. This indicates that the performance
of the proposed model can be improved significantly by
introducing the improved ReLU activation function; (2) when
the standard ReLU activation function is used in the pro-
posed model, the loss convergence is about 18 epochs, but
when the improved ReLU function is used, the loss of the
model is very fast, about 5 epochs. Moreover, the func-
tion with coefficient of 0.25 converges faster than that with
coefficient of 0.01.

f (x) = max(0.01x, x) (5)

f (x) = max(0.25x, x) (6)

VI. THE END-TO-END SOLUTION

In order to achieve the end-to-end intelligence diagnosis for
rolling bearing faults classification, we use the TensorFlow.js
machine learning framework in this paper. Developers can
use the JavaScript language to model and train in the browser
using various APIs provided by TensorFlow.js [41]. The core
of these APIs is the concept of models and layers. The Layers
API provided by Tensorflow.js better reflects the Kreas API.
Therefore, Keras and TensorFlow.js can be converted to each
other, and developers can easily load the pre-trained Keras
model in Tensorflow.js.

To load the pre-trained rolling bearing fault diagnosis clas-
sification model in Tensorflow.js, we have to convert it to
the Tensorflow.js Layers format using the program statement
converters.save_keras_model(model, ’tfjs_dir’). The param-
eter tfjs_dir represents the directory where the file is output.
The converted Tensorflow.js Layers contains the model.json
file and the directory of a set of weighted file fragments in
binary format. The model.json file contains the structure of
the pre-trained rolling bearing fault diagnosis classification
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FIGURE 3. Performance of the rolling bearing fault diagnosis
classification based on MobileNet.

model and its corresponding weight file. After the rolling
bearing fault diagnosis classification model is converted into
the format of Tensorflow.js, the model information can be
obtained using JavaScript.

The pseudo code of using the pre-trained rolling bearing
fault diagnosis classification model to implement the intelli-
gent diagnosis in browser is as follows:

Input: skin lesion images
Procedure:

1. import@tensorflow/tfjs library
2. extracting the input size of the rolling bearing fault

sample containing 2500 data points
3. normalize the input
4. load model.json file
5. obtain the predicted s rolling bearing fault and its prob-

ability
6. rank the probability in descending

Output: top3 rolling bearing fault diagnosis

Finally, the prediction results are returned to the client
via JavaScript. This end-to-end application begins with
model building, ending with a live web application, and
all operations are carried out on the user side, greatly
convenient to use for enterprises in the severe working
conditions.

FIGURE 4. Performance of the rolling bearing fault diagnosis
classification based on MobileNet with improved ReLU.

In addition, we randomly selected some rolling bearing
fault samples from the test set and record the diagnosis time
for each fault sample based on the configuration in Table 5,
The experiment results of the diagnosis time are listed ten
different fault types as shown in Table 6. It can be observed
that the longest average diagnosis time is 2.2ms and the
shortest average diagnosis time is 1.4ms. It means that the
application can provide user with a real-time diagnosis result.
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TABLE 5. The configurations of the proposed model application.

TABLE 6. The diagnosis time for randomly selected fault samples.

VII. CONCLUSION
In this paper, we built a rolling bearing diagnosis classifica-
tion model based on MobileNet and performed experiments
on tens types of faults. The results show that the proposed
model has an ability to achieve intelligent classification in
real time. Based on experiments, we find that although the
standard ReLU activation function can obtain a good perfor-
mance on our proposed model, the improved ReLU is better.
Therefore, the activation function is still critical to the classi-
fication performance of the model. In addition, we deployed
an end-to-end solution based on the proposed the rolling
bearing diagnosis classification model combining with web
applications.

On the other hand, we reiterate that the effective acqui-
sition and collation of high-quality rolling bearing faults is
a key prerequisite for the successful application of artifi-
cial intelligence technology in the manufacture. With the
increase of fault data and the improvement of neural network
structure, the classification model of fault diagnosis based
on MobileNet will continue to improve its performance.
We believe that in the future, enterprises can use this solution
to check the health state of the rolling bearings under the
severe working conditions.
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