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ABSTRACT We address the problem of direction-of-arrival (DoA) estimation for air targets using a compact,
multi-functional radar sensor. In order to enhance the angular resolution of such sensors while exploiting
the sparseness of typical air scenarios, we consider the combination of a multiple-input multiple-output
(MIMO) radar approach with suitable compressive-sensing (CS) techniques. In particular, we investigate
the combination of MIMO processing for two-dimensional (2D) antenna arrays with CS-based angular
processing for three-dimensional (3D) target localization and 2D DoA estimation in azimuth and elevation.
We analyze the benefits of randomized antenna element positions in one and two dimensions and devise
optimized array geometries for practicable aperture sizes. In particular, we take physical side constraints
into account, such as the smallest realizable/ desired element spacing as well as area restrictions for
antenna placement within the overall aperture. The aperture area reserved by this means could be used
to accommodate additional hardware components enabling a multi-functional sensor approach. Extensive
computer simulation results for different 3D target scenarios illustrate the advantages of our CS-based
compact MIMO radar approach with randomized antenna elements compared to fully randomized arrays,
given the same number of physical antenna elements.

INDEX TERMS Array optimization, compressive sensing, direction-of-arrival (DoA) estimation,
multi-functional sensor, multiple-input multiple-output (MIMO) radar, mutual coherence, target object
detection.

I. INTRODUCTION
Radar sensors are nowadays employed for various appli-
cations – ranging from target detection and measurement
instrumentation to remote sensing and high-resolution imag-
ing [1]–[4]. Generally, radars actively emit radio signals and
extract information from the environment by analyzing the
corresponding received echo signals. Compared to optical
cameras, radars are thus independent of external light sources,
rendering them suitable for day- and night-time operation
under diverse weather conditions. Moreover, range gating
allows to discriminate objects in range direction – typi-
cally with high resolution. One drawback of radar sensors,
however, is their limited resolution capability in cross-range
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direction, which is determined by the physical size of the
antenna aperture and the employed radar wavelength. For-
tunately, advanced signal processing techniques – notably
synthetic aperture radar (SAR) [5]–[7] and multiple-input
multiple-output (MIMO) radar [8] – are able to alleviate this
drawback.

MIMO radar employs multiple antenna elements in con-
junction with orthogonal transmit signals and performs joint
spatial processing of received signals in the digital domain.
As a result, it offers various advantages with regard to radar
imaging and target detection. MIMO radars with distributed
antenna elements were shown to provide improved detection
and parameter estimation performance for fluctuating targets
by exploiting spatial diversity effects [9]. MIMO radars with
co-located antennas, on the other hand, achieve enhanced
angular resolutions based on a virtual enlargement of the
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physical antenna aperture [8], which is particularly attractive
for compact radar sensors [10], [11].

Independently, compressive sensing (CS) [12]–[15] has
been identified as a promising signal processing paradigm for
radar applications [16], [17] – among various other applica-
tion areas ranging from medical imaging to digital commu-
nications and audio processing, to name a few. The reason
is that radar applications are often characterized by sparse
scenarios, where few targets are present in range, Doppler or
angular domain, embedded in background noise or clutter.
CS techniques are then able to detect such sparse targets
and provide estimates for corresponding range, velocity, and
direction parameters, while requiring a relatively small num-
ber of (generalized) samples compared to traditional Nyquist
sampling. Correspondingly, the amount of data generated at
the receiver side may be vastly reduced to relax demands on
memory space and real-time processing.

In this paper, focus is on direction-of-arrival (DoA) esti-
mation for air targets using a compact radar sensor, e.g.,
for airborne platforms. In particular, compact radar sensors
with a two-dimensional (2D) antenna aperture are consid-
ered, offering three-dimensional (3D) target localization in
range, azimuth and elevation. Such radar sensors are expected
to play a key role with regard to mandatory detect-and-
avoid solutions for future air traffic scenarios, especially
with regard to unmanned aerial vehicles (UAVs). Exam-
ples include autonomous flying taxis and larger cargo drones,
which are likely to disrupt traditional air traffic operation
within upcoming years. In order to enhance the angular reso-
lution of such radar sensors while at the same time exploiting
the sparseness of typical air target scenarios, it is there-
fore very attractive to combine MIMO radar and CS tech-
niques in a suitable fashion. However, such a combination is
not straightforward, since MIMO processing at the receiver
somewhat compromises CS-aided DoA estimation. The rea-
son is that conventional MIMO processing (e.g., based on
co-located linear antenna arrays) generates a virtual antenna
array (VAA), which exhibits a highly regular spatial struc-
ture, while CS typically relies on a quasi-random sampling
process. In the case of CS-aided DoA estimation, irregular
antenna arrays are therefore advantageous for sampling in the
spatial domain, which contradicts the conventional MIMO
paradigm.

CS for DoA estimation was, for example, addressed in
[18], [19], where focus was on conventional one-dimensional
(1D) antenna arrays (i.e., the aspect of MIMO processing
was not addressed). It was noted that for DoA estimation
the resulting measurement matrix is tightly linked to the
antenna array geometry. It is well known that the measure-
ment matrix in CS should be random-like, in order to attain
good performance results. Using a uniform linear antenna
array (ULAA), however, the (mutual) coherence of the mea-
surement matrix was found to be generally close to one,
which leads to poor detection and DoA estimation perfor-
mance under CS. In order to mitigate this effect, it was
therefore proposed in [18], [19] to randomize the positions

of the antenna elements, which was shown to reduce the
resulting coherence significantly.

The combination of MIMO radar and CS was proposed in
[20], [21] and was further studied in [22], [23] with emphasis
on 1DMIMO arrays and DoA estimation. In particular, it was
noted that a combination of MIMO processing and CS-based
detection and DoA estimation is challenging, since the inher-
ent structure of the resulting VAA entails high coherence val-
ues, similar to an ULAA. Randomizing the antenna element
positions was shown to remedy this effect.

MIMO processing can readily be extended to 2D antenna
arrays for 3D target localization and DoA estimation in
azimuth and elevation [10], which is a pre-requisite with
regard to future air traffic applications. DoA estimation for
2D MIMO arrays was considered in [24], where a sparse
Bayesian learning based imaging algorithm was investigated,
which addresses the aspect of off-grid targets. In the context
of radar imaging, a genetic algorithm was used in [25] to
reduce the mutual coherence of a 2D MIMO array. However,
to the best of our knowledge, an optimization of 2D MIMO
arrays by improving the degree of randomness – while addi-
tionally considering various restrictions regarding antenna
element positioning – has not yet been addressed in the liter-
ature. Furthermore, in the previously mentioned publications
[19]–[25] the investigations are limited to relatively large
array sizes, whereas the influence of practicable 2D MIMO
array sizes (e.g. for the use in airborne platforms) on CS
performance and the resulting mutual coherence has not been
addressed.

A. CONTRIBUTIONS AND OUTLINE
Motivated by the previous works outlined above, we inves-
tigate the combination of MIMO radar processing for 2D
arrays with CS-based angular processing for 3D target local-
ization and 2D DoA estimation in azimuth and elevation.
In particular, we investigate in detail the benefits of random-
ized antenna element positions in one and two dimensions
and devise optimized array geometries for practical aperture
sizes. Novel aspects of our investigations are as follows:

• Regarding CS-based DoA estimation, we characterize
the effect of improving the degree of randomness regard-
ing antenna element positions on the resulting coherence
of the CS measurement matrix. To the best of our know-
ledge, this has not yet been addressed for 2D MIMO
arrays.

• While previous publications are limited to relatively
large array sizes, we focus on 2D MIMO antenna arrays
with practicable form factors fostering compact sensors
for the use in airborne platforms and investigate the
influence of small aperture sizes on the mutual coher-
ence and on CS reconstruction.

• We propose different types of randomized 2D MIMO
arrays and investigate the resulting performance differ-
ences with regard to CS-based DoA estimation using
the Orthogonal Matching Pursuit (OMP) algorithm
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[12, Ch.1], [14, Ch.3], [26]. Moreover, optimized array
configurations are found for different side constraints,
including practical limitations regarding the smallest
realizable/ desired element spacing. Furthermore, area
restrictions regarding antenna placement are considered
to enable accommodation of additional components,
thus fostering multi-functional sensors. Such compact,
multi-functional MIMO radars might, for example,
accommodate additional sensor elements within the
aperture area of theMIMO array (e.g. aminiature optical
or infrared camera) or additional hardware components
for wireless communication applications [10], [27].

• When comparing the performance of MIMO arrays
with conventional (randomized) antenna arrays, we dis-
tinguish between the number of physical and virtual
antenna elements and demonstrate that the MIMO
approach is clearly superior compared to fully random-
ized arrays, if the same number of physical antenna
elements – and therefore similar hardware cost – is
considered. On the other hand, the performance of fully
randomized arrays with the same number of virtual
antenna elements serves as an upper bound, which can be
closely approached by our proposed randomized MIMO
arrays.

• Based on the finding that the coherence of the measure-
ment matrix is closely related to the maximum side-lobe
level in the angular domain, which was shown in
[18], [19] for conventional 1D arrays, we investigate
the influence of a wide main lobe and the resulting
low angular resolution on the CS DoA reconstruction
performance, which is relevant for very compact form
factors of the MIMO radar.

Extensive computer simulation results for different 3D target
scenarios illustrate the advantages of our CS-based approach
for multi-functional and compact MIMO radars using ran-
domized antenna elements.

The remainder of this paper is organized as follows: In
Section II, we derive the MIMO radar system model and
extend it to describe a sparse target scenario. In Section III,
the above mentioned novel aspects are addressed. In par-
ticular, we devise different types of randomized 2D MIMO
arrays and investigate the influence of the corresponding
random antenna configurations on the mutual coherence.
In Section IV, corresponding numerical results are presented
demonstrating the positive influence of improved antenna
randomization on the reconstruction performance. Finally,
conclusions are drawn in SectionV, and interesting directions
for future work are pointed out.

B. MATHEMATICAL NOTATION
Throughout this paper, vectors are represented in lower-case,
bold-face and matrices in upper-case, bold-face fonts. For
a vector x, the i-th entry is denoted by x(i), while for a
matrix X the (i, j)-th entry is described as X(i, j). 1N denotes
a length-N row vector with unit entries. Furthermore, (.)∗ is

the complex conjugate operator, (.)T is the transpose operator
and (.)H denotes the complex conjugate-transpose operator.
Additionally, ‖.‖p represents the `p-norm, while ‖.‖0 is a
pseudo-norm, which is defined as the number of non-zero
elements of a matrix or vector. Finally, vec(X) describes a
column-wise vectorization of a matrix X.

II. SYSTEM MODEL
A. ASSUMPTIONS AND SIGNAL PROCESSING CONCEPT
Before deriving the system model in detail, we want to intro-
duce the underlying assumptions concerning the air target
scenario and the signal processing order.

• Far field approximation: It is assumed that the signal
reflected from a target arrives as a planar wavefront
at the radar antenna array. This assumption applies in
general, if the distance r between the array and the target
is larger than the Fraunhofer distance dF = 2D2

λ
, with D

being the aperture size of the antenna array and λ being
the radar wavelength [28].

• Point targets: Throughout this contribution, it is assumed
that all targets exhibit the characteristics of point targets.
Correspondingly, targets are assumed to span a single
angular sampling interval.

• Clutter: Clutter components caused by extended back-
ground structures (such as clouds) are not taken into
account. Received radar signals are thus only corrupted
by additive noise components.

• Concept for radar signal processing: It is assumed
that all received signals are available in digitized form,
i.e., each receive antenna element is equipped with a
dedicated analog-/digital converter (ADC). Upon arrival
of an echo signal at the radar receiver, analog signal
processing is performed in the radar front-end. After-
wards, the received signal is Nyquist-sampled in the
fast-time domain (representing the radial distance to a
target) and in the slow-time domain (representing the
radial velocity/ Doppler shift of a target after Fast-
Fourier-Transform/ FFT-processing). Thus, the range-
Doppler-matrix is obtained, which contains the received
signal energy for each range-Doppler cell. At this point,
a suitable detection algorithm may then be employed,
in order to determine, in which range-Doppler cells a
target is actually present. DoA estimation is then only
performed for relevant range-Doppler cells containing
target objects. Obviously, the chosen signal process-
ing order fosters a sparse target scenario, since typical
air scenarios contain only few targets and, after range
compression and Doppler processing, point-like targets
ideally appear as single samples in the range-/Doppler
domain. Furthermore, it is rather unlikely that multi-
ple targets are found within the same range-Doppler
cell. Correspondingly, the number K of targets to be
discriminated in the angular domain is usually either
zero or one for a given range-Doppler cell. In the con-
ventional processing scheme, DoA estimation is finally
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FIGURE 1. Schematic representation of the signal processing order for a
radar utilizing DBF (top) or CS (bottom) in the angular domain.

performed by means of digital beamforming (DBF)
and subsequent peak detection in the angular domain
(Fig. 1, top). In the CS-based processing scheme, con-
ventional DBF is replaced by a suitable CS-based algo-
rithm (Fig. 1, bottom).

B. MIMO RADAR SYSTEM MODEL
In the first step, we consider a conventional, two-dimensional
antenna array consisting of M transceivers distributed uni-
formly along two baselines in the xz-plane. The resulting geo-
metrical model of the air target detection scenario is shown
in Fig. 2. In this context, we define θel = φaz = 0◦ as
boresight direction, where the elevation angle θel is defined
as the angle between the xy-plane and the projection of the
range vector r onto the yz-plane and the azimuth angle φaz as
the angle between the yz-plane and the projection of r onto
the xy-plane. According to [29], the resulting 2D array fac-
tor (AF) is a multiplication of the azimuth pattern AFaz with
the elevation pattern AFel. For M antennas with coordinates
(xm, zm) and antenna weightings am, the AF can be written as

AF = AFaz · AFel =
M∑
m=1

am ej
2π
λ
[zm sin(θel)+xm sin(φaz)], (1)

where λ = c
fo
is the operating wavelength of the radar and c

is the speed of light. In the next step, we expand the system
model to a wideband MIMO radar array withM transmitters
in z-direction and N receivers in x-direction. It is well known
from the literature that if the M transmitted signals exhibit
orthogonal characteristics, which for two signals si(t) and
sj(t) (i 6= j) is defined as

1
T

∫ T

0
si(t) · s∗j (t) dt = 0 (2)

for a suitable integration interval T , the individual contribu-
tions ofM transmitting antenna elements can be separated at
the receiver [8]–[11]. As a consequence,MN rather thanM+
N received signals are available for joint spatial processing
(which would be the case for a conventional antenna array
withM +N physical transceiver antenna elements). This not
only results in a virtual enlargement of the physical antenna
aperture, but also in an enhancement of the angular resolution.
As an example, Fig. 3 shows an antenna array with M = 4
transmitting (Tx) and N = 16 receiving (Rx) antennas,
resulting in a VAA with MN = 64 virtual elements, which
can subsequently be utilized for DBF on receive – just as in

FIGURE 2. Geometrical model of the target detection scenario utilizing a
two-dimensional antenna array.

the case of a physical array with MN = 64 elements. Signal
orthogonality can, in principle, be realized in time domain,
in frequency domain or in the signal domain, using orthogo-
nal modulation schemes such as CDMA (code-division mul-
tiple access), OFDM (orthogonal frequency division multi-
plexing) or orthogonal codes [11]. Within the scope of this
paper, we assume that ideal signal orthogonality is given.
Consider a general MIMO antenna array withM transmitters
and N receivers located on the baseline area in the xz-plane
with coordinates (xm, zm) and (xn, zn), where m = 1, . . . ,M
and n = 1, . . . ,N . Furthermore consider a target scenario,
where K targets are located in the same range-Doppler cell
with distance rk to the antenna array. The angular coordinates
of the k-th target are given as (θk , φk ) and its radar cross
section (RCS) is denoted as σk . According to the geometrical
model and the AF (1), the transmit and receive steering
vectors for the k-th target can be described as

t(k) =
[
ejζ (1,k) · · · ejζ (m,k) · · · ejζ (M ,k)

]T (3)

r(k) =
[
ejζ (1,k) · · · ejζ (n,k) · · · ejζ (N ,k)

]T (4)

with

ζ (m, k) =
2π
λ
[zm sin(θk )+ xm sin(φk )] (5)

ζ (n, k) =
2π
λ
[zn sin(θk )+ xn sin(φk )] . (6)

Let s(t) = [s1(t), . . . , sM (t)]T denote the vector consisting of
M transmit signals. Then, after signal reflection by K targets,
the received vector at the output of the N receive antenna
elements can be expressed as [23]

d(t) ∝
K∑
k=1

r(k) tT(k) s (t − τk) σk , (7)

where τk =
2rk
c denotes the round trip delay associated with

the k-th target. Since the antenna array has N physical Rx
antennas, d(t) = [d1(t), . . . , dN (t)]T consists of N measure-
ments. In order to generate the VAA and thus MN virtual
measurements, d(t) is cross-correlated with matched filters
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FIGURE 3. Example design of a 2D MIMO array with M = 4 Tx antennas
(×), N = 16 Rx antennas (◦) (left) and the resulting VAA (right).

for every transmit signal sm(t). Because it is assumed that
all transmit signals are mutually orthogonal, the resulting
measurement vector y has the dimension [MN × 1] and can
be described as [23]

y = vec

[
K∑
k=1

r(k) tT(k) σk

∫
s (t − τk) sH (t − τk) dt

]
(8)

= vec

[
K∑
k=1

r(k) tT(k) σk

]
(9)

=: A σ . (10)

A is an [MN ×K ] matrix with the (mn, k)-th element defined
as

amn,k = ej
2π
λ
[(zm+zn) sin(θk )+(xm+xn) sin(φk )], (11)

and σ is a [K × 1] vector containing the RCS values of K
targets.

C. COMPRESSIVE SENSING SYSTEM MODEL
Finally, we expand the derived MIMO radar system model
(10) to describe a sparse target scenario, which is a key
condition for CS reconstruction. To this end, we discretize
the half-space in front of the MIMO antenna array to obtain a
grid with Q grid points and uniform spacing δφ in azimuth
and P grid points with uniform spacing δθ in elevation,
see Fig. 2. This results in a structure with Z = PQ grid
points. For simplicity, it is assumed that potential targets are
always located exactly on a grid point. For an unambiguous
allocation of the grid points we define two dictionaries

ϕ = vec
(
1TP ·

[
0 δφ 2δφ . . . (Q− 1)δφ

])
(12)

ϑ = vec




0
δθ

2δθ
...

(P− 1)δθ

 · 1Q
 , (13)

which consist of column- or row-wise repetitions of the cor-
responding grid spacings. The vectorization process, which
generates two vectors ϕ and ϑ with dimension [Z × 1], can
be understood as an implementation of columnwise sampling

in angular domain. Introducing an auxiliary variable

ξi = [ϕ(i) ϑ(i)] (14)

with i = 1 . . . Z , a convenient and unique reference to Z
angle pairs is then possible. According to (3) - (6) and (11)
the steering vector for a target with angular position ξi can be
described as

ψ(ξi)=
[
ejζ (1,1,ξi) · · · ejζ (m,n,ξi) · · · ejζ (M ,N ,ξi)

]T
(15)

with

ζ (m, n, ξi) :=
2π
λ
[(zm + zn) sin(ϑ(i))+(xm + xn) sin(ϕ(i))].

(16)

Since the target locations are generally unknown, steering
vectors ψ(ξi) for all possible target positions ξi are generated
and inserted column wise into a matrix

9 =



ejζ (1,1,ξ1) · · · ejζ (1,1,ξi) · · · ejζ (1,1,ξZ )
... · · ·

... · · ·
...

ejζ (m,n,ξ1) · · · ejζ (m,n,ξi) · · · ejζ (m,n,ξZ )
... · · ·

... · · ·
...

ejζ (M ,N ,ξ1) · · · ejζ (M ,N ,ξi) · · · ejζ (M ,N ,ξZ )


(17)

with dimension [MN ×Z ]. In the context of CS,9 is denoted
as sensing matrix in the sequel. As stated in Section II-
A, it is very unlikely that multiple targets occupy the same
range-Doppler cell. Therefore, within one range-Doppler
cell, only K � Z (and typically, K = 0 or K = 1) pos-
sible angular positions will actually contain targets, whereas
Z − K grid points remain empty (apart from noise, which is
incorporated below). Let X denote a matrix with dimension
[P× Q] that contains the RCS values for all Z grid points in
the absence of noise. Correspondingly, X will consist of K
non-zero and Z − K zero entries. In other words, ‖X‖0 = K
applies [14]. After vectorization, X is transformed into a
K -sparse vector x with dimension [Z × 1] containing the
RCS values for Z possible angular positions. Since we want
to conduct CS-based DoA estimation, the goal is to recon-
struct x. For this purpose, we identify matrix A in (10) as the
sensing matrix 9 and σ as the K -sparse vector x. Moreover,
we add a vector n containing MN complex-valued, Gaus-
sian distributed noise values, so as to capture the impact of
ambient noise and receiver noise. The resulting matrix-vector
equation

y
(MN×1)

= 9
(MN×Z )

· x
(Z×1)
+ n

(MN×1)
(18)

represents the fundamental CS equation, where y and 9 are
known and can be used to reconstruct the sparse vector x.
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III. INFLUENCE OF MIMO ANTENNA ARRAY DESIGN ON
MUTUAL COHERENCE
The following section is divided into three parts. First, impor-
tant conditions are introduced, which, if satisfied, guarantee
reconstruction of a unique solution to (18). Next, as a new
contribution, different 2D MIMO antenna array designs with
increasing degree of randomness regarding antenna element
positions are presented. In this context, special attention is
paid to minimum antenna spacings as well as restricted areas
for antenna placement. The latter is particularly attractive
in order to foster a multi-functional sensor approach. In the
last section, the influence of the array designs on mutual
coherence is addressed. Here, as new contribution, arrays
with practicable form factors are studied. In this context,
it is found that the resulting wide main lobe of the antenna
diagram has a significant influence on the resulting mutual
coherence.

A. RECONSTRUCTION GUARANTEES
Since the main goal of compressed sensing is to reconstruct
a sparse vector x from significantly less measurements (in
our case MN ) than the Nyquist rate suggests [12], [14],
the resulting sensing matrix 9MN×Z consists of much fewer
rows than columns (MN � Z ). This property causes (18) to
be underdeterminedwith infinitelymany solutions. Neverthe-
less, under certain conditions (one of which being the sparsity
of x) it is possible to reconstruct a unique solution x. A well-
known sufficient condition is the incoherence of the sensing
matrix 9, which can be described by the mutual coherence
µ(9). It is defined as

µ(9) = max
1≤i6=j≤Z

|〈ψ∗i ,ψ j〉|

‖ψ i‖2 ‖ψ j‖2
(19)

and determines the largest inner product between two
`2-normalized column vectors ψ i and ψ j of the sensing
matrix 9. The mutual coherence µ(9) is confined to the
interval µ(9) ∈

[√
Z−MN
MN (Z−1) , 1

]
and reaches its maximum

for two identical column vectors (ψ i = ψ j). The minimum
is determined by the Welch bound [15]. Assuming that the
mutual coherence is known, one can formalize the following
condition on the sparsity of x for guaranteeing perfect recon-
struction in the absence of noise [14], [15]:

‖x‖0 <
1
2

(
1+

1
µ(9)

)
. (20)

Correspondingly, the mutual coherence µ(9) should be as
small as possible in order to perfectly reconstruct as many
targets K as possible.

B. MIMO ANTENNA ARRAY DESIGN
It is well known from CS literature that independent iden-
tically distributed Gaussian or Bernoulli matrices are best
suited for CS reconstruction [14], [15]. However, in our
case the structure of the sensing matrix is determined by
the antenna array geometry, which results in a deterministic
sensing matrix 9. In [18] and [19], the authors proposed

to randomize the positions of the antenna elements, which
was shown to reduce the resulting coherence significantly,
thus improving the reconstruction rate. Before examining the
influence of randomization on the mutual coherence, we first
introduce a reference MIMO array, as shown in Fig. 3. It con-
sists of M = 4 Tx antennas and N = 16 Rx antennas,
which are located on a baseline area with a size of 11 λ
(0.25m) in x-dimension. The antenna spacings amount to
dx = 0.5 λ and dz = 1.2 λ in the considered example. The
peculiarity of this layout is that the resulting VAA exhibits
the properties of a filled array with N = 64 antennas,
even though the physical antennas are placed exclusively at
the edge of the aperture. This creates the possibility of fill-
ing the unused space with additional hardware components,
such as optical sensors or wireless communication modules
[10], [27]. In order to investigate, whether this advantage can
possibly also be used in conjunction with CS-aided DoA,
we start with the configuration ‘‘MIMO Array I’’ depicted
in Fig. 4a, where the structure of the reference Array is
only marginally modified. Compared to the other proposed
antenna array designs, this layout therefore offers the largest
possible installation space for additional hardware compo-
nents (red dashed area). In the first step, the physical antennas
are positioned at the maximum possible distance from each
other (Tx antennas in z-direction, Rx antennas in x-direction).
Next, a random shift is added in z-direction to the position
of each transmitting antenna, while each receiving antenna
is re-positioned by a random shift in x-direction. In this
context, a constraint ensures that a pre-defined minimum
antenna distance – in this example chosen as λ

2 – is not
violated. One reason for maintaining a minimum antenna
distance is to prevent mutual coupling effects. Another rea-
son is that if antenna elements are separated by λ

2 or more,
the rows of 9 are approximately orthogonal. Thus, ‘‘each
component of y captures unique information about x’’ [19].
Fig. 4b shows an alternative configuration denoted ‘‘MIMO
Array II’’ in the sequel, in which the Rx antennas are subject
to an additional random shift in z-direction, while still leaving
the maximum possible installation space for additional hard-
ware components (red dashed area). A third MIMO antenna
configuration is shown in Fig. 4c. The difference to the pre-
vious layout is that now the area between −5.5 λ and 0 in
x-direction is made available for additional random shifts
of the Tx antennas. By this means, additional degrees of
freedom are gained with regard to virtual array formation,
leading to improved reconstruction results, as will be seen in
Sections III-C and IV. At the same time, a free installation
area for multi-functional components (red dashed area) is
preserved, although its size is reduced by 50% compared
to MIMO Array I and II. As a further result, after MIMO
processing some antennas of the VAA may exceed the phys-
ical baseline area, thus potentially increasing the size of the
virtual antenna aperture. By this approach, the aim of rather
decreasing the additional sensor area than simply removing
it, is to find out, whether a multi-functional sensor approach,
as e.g. in [10], [27] can be combinedwith CS-aidedDoA.As a
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FIGURE 4. Designed MIMO antenna array configurations I-IV with M = 4 Tx antennas (×) and N = 16 Rx antennas (◦) (top) and the resulting VAA
(bottom). The red dashed rectangle represents the restricted area for antenna element placement.

reference, we introduce the fourth configuration (Fig. 4d),
where the free installation space is sacrificed completely
in favor of further increased degrees of freedom regarding
virtual array formation. In other words, ‘‘MIMO Array IV’’
employs the highest possible randomness regarding antenna
element placement that can be achieved with MIMO signal
processing. For this purpose, the Tx antennas are distributed
in such a way that the subsequently added random shift in
x- and z-direction is maximized, while the minimum distance
of λ2 is preserved. Afterwards, the Rx antennas are randomly
distributed on the baseline without violating the minimum
distance to one another and to the Tx antennas. In a final
step, MIMO-processing is performed, resulting in a VAA
that extends well beyond the physical baseline area. As a
benchmark configuration, we finally define a fully random
antenna array without MIMO signal processing, which will
have the best properties with regard to a randomized sensing
matrix.

To ensure a fair comparison, two configurations are consid-
ered, see Fig. 5. On the one hand, Random Array I consists of
N = 64 randomly distributed Rx antennas, thus matching the
number ofM ·N = 64 virtual antennas of the configurations
MIMO Array I - IV. On the other hand, Random Array II
consists of N = 20 randomly distributed Rx antennas, which
corresponds to the number ofM +N = 20 physical antennas
of the configurations MIMO Array I - IV. It is important
to mention that both random array configurations are not
limited by any restrictions (such as pre-defined minimum
element distance), so as to capture characteristics of full
randomization. The reason is that in [30] pure randomization

FIGURE 5. Random Array I with 64 Rx antennas (left), Random Array II
with 20 Rx antennas (◦) (right).

was shown to outperform other forms of conventional antenna
randomization. Although pure randomization is unsuitable in
practical applications, it serves primarily as a benchmark in
this contribution. Note that RandomArray II yields the fairest
comparison with the different MIMO array configurations
proposed above when it comes to hardware cost. Random
Array I, on the other hand, gives an impression of what could
be achieved if the number of virtual antenna elements of the
proposed MIMO array configurations was distributed across
the 2D physical baseline in an entirely random fashion.

C. INFLUENCE ON THE MUTUAL COHERENCE
In this section, the influence of the proposed antenna array
configurations on the mutual coherence µ(9) is examined
with focus on practicable aperture sizes. For all subsequent
investigations, the radar field of view is confined to the
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interval [−45◦, 45◦] in elevation and azimuth. Furthermore,
a uniform grid spacing of 1◦ is assumed, if not stated other-
wise. It is well known from radar literature that increasing the
radar antenna aperture results in an enhanced angular resolu-
tion. This relation is commonly described by the dependence
between the 3 dB-beamwidth of the main lobe 1φ3dB and
the radar antenna aperture Dx in azimuth and elevation Dz.
For example, for a uniform 2D-array with uniform illumi-
nation across the antenna elements, this relation is given by
[1, Ch. 13.2]:

1φaz,3dB =
50.8 λ
Dx

[◦], 1φel,3dB =
50.8 λ
Dz

[◦]. (21)

Moreover, in [19] an interesting relation between the antenna
pattern of an array antenna and the mutual coherenceµ(9) of
the resulting sensing matrix 9 is reported. It was shown that
themutual coherence is a measure for themaximum side-lobe
level (SLL). At this point, we want to further develop this
relationship: The SLL may also include parts of the main
lobe, if the lobe is relatively wide and extends over several
spatial sampling points. Since the width of the main lobe in
turn depends on the radar aperture, the mutual coherence is
examined not only for the introduced antenna array config-
urations but also for different radar aperture sizes. On top
of that, it is investigated, whether a wide main lobe has an
influence on the mutual coherence. Because all configura-
tions contain randomly generated antenna positions, the cor-
responding plots are obtained by calculating the arithmetic
mean of 104 runs, in which only the antenna positions are
re-allocated within each run. The resulting mutual coherence
of the introduced antenna array configurations is illustrated
in Fig. 6 by solid lines for a grid spacing of 1◦. First of all,
we note that up to a baseline area of (0.25m)2 all curves show
a similar decreasing slope. However, for larger baseline areas
the mutual coherence of MIMO Array I deteriorates signifi-
cantly compared to the other array configurations. A possible
cause for this is the high restriction on randomization of the
antenna positions combined with the additional constraint
that preserves a minimum antenna distance of λ2 . For base-
line areas larger than (0.5m)2, first differences between the
remaining antenna configurations become visible. It can be
observed that the sensing matrix of Random Array II exhibits
the highest coherence, followed closely by MIMO Array II.
Contrary to expectations resulting from the challenge issued
in [23], the sensingmatrix of RandomArray I does not always
achieve lower coherence values than the other configura-
tions. In fact, this only applies for baseline areas larger than
(0.75m)2. For an area of (0.5m)2, the lowest coherence val-
ues are achieved byMIMOArray III and IV. At the end of this
section it will be investigated whether this behavior is caused
by the fact that the virtual aperture of MIMO Array III and
IV is larger than the (physical) aperture of Random Array I
(Fig. 4 & Fig. 5). When the baseline area is further increased
to (1m)2, the curves start to flatten, making the differences
between the configurations particularly clear. Now, Random

FIGURE 6. Mutual coherence µ(9) of the sensing matrix 9 for an
increasing baseline area with a grid spacing of 1◦ (solid) and 2◦ (dashed).

Array I achieves the smallest coherence values, followed
by MIMO Array IV, III, II and Random Array II. Despite
considerable enlargement of the baseline area, MIMOArray I
does not achieve coherence values below 0.95. Furthermore,
for a baseline area larger than (0.75m)2, it can be observed
that the slope of the MIMO array curves starts to decrease,
until a further enlargement of the baseline area results in
constant coherence values. Additional investigations have
shown that the decrease of the slope can be shifted towards
lower coherence values by employing more antennas.

From Fig. 4 & Fig. 5 it can be seen that the virtual aperture
of MIMO Array III and IV is larger than the (physical)
aperture of Random Array I. Consequently, the main lobe
of MIMO Array III and IV is narrower compared to the
main lobe of Random Array I. Since we have previously
found that the SLL (which is related to µ(9)) may also
include parts of the main lobe, we now investigate, whether
a wide main lobe has an influence on the mutual coherence
of the sensing matrix. Therefore µ(9) is calculated for a
grid spacing of 2◦. Taking (21) into account with Dx =
Dz ≈ 11 λ, it becomes clear that this adjustment excludes the
main part of the main lobe from the calculation by causing
neighboring grid points to be ignored. The results are shown
in Fig. 6 with dashed lines. First of all, it can be seen that
especially for small baseline areas the mutual coherence is
significantly reduced for most antenna configurations. It can
also be observed that, although the curves have a much
steeper slope, they still approach the same constant value as in
the 1◦ grid spacing case. Accordingly, an improvement is only
achieved for small apertures, where the relative influence
of the main lobe is the highest. Finally, it can be observed
that Random Array I always achieves the smallest coherence
values. In other words, if the influence of the main lobe is
removed, also the advantage of the larger (virtual) aperture of
MIMO Array III and IV over Random Array I is eliminated.
Thus, the assumption made previously is confirmed. The
relationship between the main lobe width and the mutual
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coherence has not been investigated so far, because previ-
ously published papers ( [19]–[25]) are limited to relatively
large array sizes. This inherently prevents the generation
of a wide main lobe, influencing the mutual coherence.
In this section, it was shown that an enlargement of the
baseline area and thus the radar aperture generally results in a
smaller mutual coherence. Furthermore, considering MIMO
Array I - IV, it was shown that an improvement of antenna
randomization results in smaller coherence values. Regarding
Random Array I and II, two observations are important to
note. First of all, MIMOArrays II - IV always generate lower
coherence values than Random Array II. Second, Random
Array I achieves the smallest coherence values, for a suffi-
ciently large baseline area. Finally, it was shown that a wide
main lobe, caused by a small radar aperture, has a significant
impact on the mutual coherence of the sensing matrix.

IV. NUMERICAL RESULTS
After our initial comparisons based on mutual coherence,
various performance aspects of the proposed MIMO array
configurations are investigated in the sequel using results
from extensive computer simulations.

A. NUMBER OF RECONSTRUCTIBLE TARGETS
It is known from the CS literature [12]–[15] that the mutual
coherence µ(9) of the sensing matrix 9 determines how
large the sparsity K may be, for the solution of (18) to be
unique with high probability. Since in the previous section
it was found that different configurations and increasing
apertures have an influence on the mutual coherence, their
impact on the number of reconstructible targets K will be
studied in this section. To separate the influences from each
other, the simulations are carried out without additive noise.
Furthermore, it is important to note that a reconstruction is
considered error-free only if all angular positions of the K
targets have been estimated correctly. Contrary, a reconstruc-
tion is considered incorrect if at least one of K targets has
been estimated incorrectly. In order to ensure reliable results,
the curves are obtained by calculating the arithmetic mean of
105 runs, with random antenna positions and random target
positions being regenerated within each run (along the lines
of a Monte-Carlo simulation). Fig. 7 shows the results for a
baseline area of (0.25m)2. It can be seen that all configura-
tions are able to reconstruct K = 1 target error-free (solid
lines). This result can also be deduced from (20), since for
K = 1 only µ(9) < 1 must apply. This relation is fulfilled
for all considered array configurations (cf. Fig. 6). Next, it can
be seen that the majority of the curve progressions differ
only slightly. This is due to the fact that for a baseline area
of (0.25m)2, all configurations generate an almost identical
coherence value of µ(9) ≈ 0.97. One reason why Random
Array II shows particularly poor reconstruction results could
be that the configuration has an insufficient number MN of
antennas to reconstruct more than one target without errors.

FIGURE 7. Number of perfectly reconstructible radar targets for a
baseline area of (0.25 m)2 with an error tolerance of ε = 0◦ (solid) and
ε = 1◦ (dashed).

This assumption is based on the sufficient condition

MN > 2K ln
(
Z
K

)
(22)

derived in [14] for large dimension random Gaussian matri-
ces. Taking (22) as a rough reference, it is found that for a
reliable reconstruction of K = 2 targets at least MN = 34
measurements are required. The fact that the number of mea-
surements has an influence on the number of reconstructible
targets is also supported by results from [19]. Finally, we note
that Random Array I does not yield the best performance –
in fact, all proposed MIMO arrays offer higher probability
of perfect reconstruction, as soon as more than one target is
supposed to be discriminated. In Section III-C, it was shown
that a wide main lobe resulting from a small radar aperture
has a significant negative impact on the mutual coherence.
Besides, for conventional arrays it is well known that a wide
main lobe leads to a low angular resolution and thus to
inaccurate estimates of a target position. For this reason,
subsequently the influence of a wide main lobe on CS DoA
estimation is investigated. To this end, we allow an estimation
error of ε = 1◦, i.e., angular position estimates within
±1◦ from the true target position are considered correct,
which accounts for estimation inaccuracies caused by a wide
main lobe. The results are displayed in Fig. 7 with dashed
lines. As can be seen, the probability of reconstruction is
increased significantly for all curves, when the requirements
on the angular estimation accuracy are relaxed. Interestingly,
the biggest improvement results for Random Array I, which
now shows a similar reconstruction performance as MIMO
Array III and IV. When the baseline area is increased to
(0.5m)2 (Fig. 8), it is found that except for MIMO Array I,
all configurations show an improved reconstruction perfor-
mance compared to Fig. 7, because the mutual coherence
is reduced accordingly (cf. Fig. 6). In particular, MIMO
Array IV and III show the best performance. They are able
to reconstruct four targets with a probability of about 0.92,
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FIGURE 8. Number of perfectly reconstructible radar targets for a radar
baseline area of (0.5 m)2 with an error tolerance of ε = 0◦.

while Random Array I achieves a reconstruction probability
of about 0.89, followed by MIMO Array II with a probability
of about 0.75. This result can again be deduced from the
coherencemeasurements in Fig. 6, as it shows an almost simi-
lar behavior. However, as before, the performance of Random
Array II is worse than expected. Already for two targets the
reconstruction probability drops below 0.8. Increasing the
baseline area to (1m)2, results in a significant improvement of
the reconstruction performance of all configurations, except
for MIMO Array I (Fig. 9). Now, as expected from Fig. 6,
Random Array I shows the best reconstruction performance,
followed by MIMO Array IV, III and II. Considering the
configurations MIMO Array I - IV, it becomes particularly
clear that an optimization of antenna randomization results
in a better reconstruction performance. Interestingly, in most
cases better results are obtained than predicted by (20), which
for example indicates that to reconstruct K = 2 targets
perfectly, a mutual coherence of µ(9) < 1

3 is required.
Yet, none of the configurations reaches such low values, but
still significantly more targets can be reconstructed without
errors. In this context, the authors in [12] and [19] stated
that results from the mutual coherence ‘‘are often overly
pessimistic’’. Reexamining Fig. 7 – Fig. 9, one will notice
that the performance difference betweenMIMOArray III and
MIMO Array IV is rather marginal, whereas the difference
to MIMO Array II and especially MIMO Array I is much
more significant. Accordingly, maximal randomization as in
MIMO Array IV, while sacrificing the free installation space,
does not provide a significant advantage. On the other hand,
allocating the largest possible installation space leads to a
strong degradation of reconstruction performance. Therefore,
it seems that MIMO Array III offers the best compromise for
a multi-functional sensor approach that performs CS-aided
DoA. Moreover, if integrated patch antenna elements are
supposed to be employed, routing will be much simplified
compared to MIMO Array IV, since in MIMO Array III
antenna elements are not randomly distributed across the

FIGURE 9. Number of perfectly reconstructible radar targets for a
baseline area of (1 m)2 with an error tolerance of ε = 0◦.

entire physical aperture area. Thus, they can be connected
relatively easily via the upper and the left edge of the physical
aperture, which enables a simplified fabrication process.

In this section, it was shown that increasing the baseline
area and improving antenna randomization both have a pos-
itive effect on the number of reconstructible targets. On top
of that, it was shown that antenna array configurations with
MIMO processing outperform pure random configurations,
if the number of antenna elements in the random array cor-
responds to the number of physical antenna elements in the
MIMO array.

B. RECONSTRUCTION WITH ADDITIVE NOISE AND ARRAY
OPTIMIZATION
In this section, the influence of improved antenna randomiza-
tion on the reconstruction in the presence of additive white
Gaussian noise (AWGN) is investigated. Since the signal
processing order mentioned in Section II-A fosters a sparse
air target scenario, where usually K ≤ 1 targets are present
within a given range-Doppler cell, the subsequent investiga-
tions are carried out for a scenario with K = 1 target. Instead
of simply averaging the curves from 105 different, randomly
generated array configurations as in the previous section,
an exhaustive search was conducted for every antenna con-
figuration and for the baseline areas (0.25m)2, (0.5m)2 and
(1m)2 in order to find an antenna arrangement in each case,
which offers improved performance in reconstruction with
additive noise. Fig. 4a-5 show the optimized antenna arrays
for a baseline area of (0.25m)2. Comparisons with averaged
curves have shown that for a given error probability of 10−4

the required signal-to-noise ratio (SNR) was reduced by
3 dB for (0.25m)2, 2 dB for (0.5m)2 and 0.5 dB for (1m)2

apertures on average. As in the previous section, the curves
are obtained by calculating the arithmetic mean of 105 runs.
However, now the optimized, random antenna positions are
fixed and only the random target positions and the random
noise vectors were generated within each simulation run.
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FIGURE 10. Reconstruction error probability for K = 1 target at a baseline
area of (0.25 m)2 with an error tolerance of ε = 0◦ (solid) and ε = 1◦
(dashed).

Fig. 10 shows the results for a baseline area of (0.25m)2.
First of all, it can be seen that Random Array II requires a
significantly higher SNR of up to 6 dB to achieve the same
error probability as MIMO Array I and II. As in the previ-
ous investigations, MIMO Array IV and III show the best
reconstruction performance for a baseline area of (0.25m)2.
For example, at an SNR of 6 dB, the error probability of
MIMO Array IV is almost a decade smaller compared to
that of MIMO Array I. However, as in the previous section,
the performance of Random Array I is worse than MIMO
Array III and IV. This result is examined in the following by
allowing an error of ε = 1◦ regarding target reconstruction
in order to account for estimation inaccuracies caused by a
wide main lobe associated with the small aperture size. The
corresponding results are shown in Fig. 10 by dashed lines.
It can be seen that a 1◦ error tolerance leads to significantly
better reconstruction results for all array configurations. For a
given error probability of 10−4, an SNR improvement of up to
8 dB can be observed. Consequently, it becomes obvious that
the main reconstruction error source for a small baseline area,
e.g. (0.25m)2, is the low angular resolution resulting from a
wide main lobe. Furthermore, it can be observed that Random
Array I exhibits the best reconstruction performance closely
followed by MIMO Array IV and III. Generally, MIMO
Array III and IV have a significant advantage over Random
Array I, since they achieve larger (virtual) apertures. This
inherently decreases the main lobe width, thus mitigating
the main source for estimation inaccuracies. However, if an
angular estimation error of ε = 1◦ is allowed, the main
error source of Random Array I is basically excluded. Conse-
quently, the advantage of MIMO Array III and IV over Ran-
dom Array I disappears. It is important to mention that this
advantage is only noticeable for small baseline areas, where
the impact of a wide main lobe is most significant. When the
baseline area is increased to (0.5m)2 (Fig. 11), it is generally
found that the reconstruction performance of all configura-
tions is significantly improved compared to Fig. 10. Still,

FIGURE 11. Reconstruction error probability for K = 1 target at a baseline
area of (0.5 m)2 with an error tolerance of ε = 0◦.

in accordance with the results presented in Section IV-A,
Random Array II showed by far the poorest reconstruction
results, whereas MIMO Array IV and III showed the best
reconstruction performance, followed by Random Array I.
To achieve an error probability of 10−4, Random Array II
required an SNR of 8 dB, MIMO Array I required an SNR
of 3 dB and MIMO Array II required an SNR of 1.8 dB. Ran-
dom Array I required an SNR of at least 0.5 dB, followed by
MIMOArray III with an SNR of 0.3 dB and MIMOArray IV
with an SNR of 0 dB. Comparing the error probabilities of
the MIMOArrays at 0 dB SNR, we found that the error prob-
ability of MIMOArray IV was more than one decade smaller
than that of MIMO Array II and almost two decades smaller
than that of MIMO Array I. Accordingly, it can be con-
cluded that improving the randomization of antenna elements
results in a significant improvement of the reconstruction
performance. When the baseline area is further increased to
(1m)2, the reconstruction performance of all configurations,
except for MIMO Array I, is further improved (Fig. 12).
As in the previous case, Random Array II shows the worst
reconstruction performance, even though for a given error
probability the SNR improvement is up to 4 dB compared to
a baseline area of (0.5m)2. Now, as expected from the results
in Section IV-A, Random Array I achieves the best recon-
struction performance, closely followed by MIMO Array IV
and III, which show only slightly inferior results. As in
the previous section, when re-examining Fig. 10 – Fig. 12,
it can be observed that the performance difference between
MIMO Array III and MIMO Array IV is relatively small,
whereas the difference to MIMO Array II and especially to
MIMO Array I is much more significant. Due to the fact
that MIMOArray III offers good reconstruction performance
while still leaving a relatively large fraction of free installa-
tion space for additional sensors, it is therefore well suited
for a multi-functional sensor approach performing CS-aided
DoA. In this section, it was shown that improving the antenna
randomization as well as increasing the radar aperture have
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FIGURE 12. Reconstruction error probability for K = 1 target at a baseline
area of (1 m)2 with an error tolerance of ε = 0◦.

a significant impact on the CS reconstruction performance
in the presence of noise. It was found that by improving the
antenna randomization the resulting error probability can be
reduced by up to two decades. Furthermore, it was found that
by increasing the baseline area from (0.25m)2 to (1m)2 the
SNR, which is required for a specific error probability could
be reduced by 8 dB for some antenna configurations.

V. CONCLUSION
We have investigated the problem of DoA estimation for
air targets using a compact MIMO radar sensor in combi-
nation with CS techniques, so as to enhance the angular
resolution while at the same time exploiting the sparseness
of typical air scenarios. To this end, we have proposed and
optimized different types of MIMO antenna arrays with
increasing degrees of randomness regarding the positioning
of antenna elements, while taking practical constraints into
account concerning a pre-defined minimum antenna element
spacing as well as reserved areas within the overall antenna
aperture for additional sensor or wireless communication
modules, to enable a multi-functional design.We investigated
the performance of the proposed MIMO array configurations
with regard to the mutual coherence of the resulting sensing
matrix, the number of simultaneously detectable targets in
the absence of noise, and the reconstruction error probability
in the presence of a single target in AWGN. It was shown
that an increased degree of randomness consistently improves
the performance of our MIMO arrays, which is in line with
common findings fromCS theory advocating random sensing
matrices. Moreover, increasing the physical size of the array
baseline also offers performance improvements, when the
grid size in angular domain is fixed, which is similar to con-
ventional digital beamforming. Interestingly, our proposed
MIMO Arrays II-IV significantly outperform fully random
arrays with the same number (M + N ) of physical antenna
elements at comparable hardware cost. Moreover, MIMO
Array III and IV even offer a performance typically close
to a fully random array employing MN antenna elements,

which corresponds to the number of virtual antenna elements
in the MIMO arrays (and would therefore entail consider-
ably higher hardware costs for the random array). Although
the reserved installation space within the physical baseline
area of MIMO Array III has been reduced, it could still be
used for accommodating an additional sensor or a wireless
communication module. This feature was dropped for MIMO
Array IV in favor of an increased degree of randomness.
Yet, the additional performance gain of MIMO Array IV
compared toMIMOArray III was usually rather small, so that
MIMO Array III seems to be a practicable configuration,
if a compact multi-functional sensor is desired. Furthermore,
we investigated the impact of a wide main lobe on the mutual
coherence, caused by small aperture sizes typical for air-
borne applications. In particular, it was found that fundamen-
tal limits regarding angular estimation accuracy, which are
well-known from conventional arrays, also apply for our CS
reconstruction results obtained with the randomized MIMO
arrays. Therefore, similar to conventional arrays, suitable
tolerance intervals regarding angular estimates need to be
accepted also in this case, in order to account for the impact
of a relatively wide main lobe.

For future work, it will be interesting to investigate alter-
native CS techniques in addition to the OMP algorithm
considered within the scope of this paper. By this means,
the detection performance of the MIMO arrays might be
further improved. Moreover, off-grid effects have not been
considered so far, and corresponding investigations will be
subject for future work. Of particular interest it will be to
perform similar MIMO array optimization steps, in order to
learn the benefits of increased degrees of randomness under
practical array design constraints. Another interesting aspect
for future investigations is the application of optimization
algorithms that might further improve random positioning of
antenna elements, taking into account the reserved areas for
multi-functional sensors.
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