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ABSTRACT Minimally invasive medicine has become mainstream because of its crucial clinical sig-
nificance in providing a low risk of postoperative complications, limited blood loss, short postoperative
recovery time, and small sizes of associated physiological tissue wounds. Endoscopic navigation systems
comprise a research hot spot in medical science and technology and are an essential means to achieve
precision medicine and improve surgical operation safety. As a core component in endoscopic navigation
during minimally invasive surgery, endoscopes play a critical role in disease diagnosis and treatment.
The development of endoscopic vision technologies has resulted in a renewed drive to further develop
endoscopic navigation systems. Multiple endoscopic optical imaging modalities provide data sources for
endoscopic vision technology, includingwhite-light endoscopy, contrast-enhanced imaging and technologies
involving magnified observation. Endoscopic vision is a specific application of computer vision involving
the use of endoscopes that include instrument tracking, endoscopic view expansion, and suspicious lesion
tracking in the application of endoscopic navigation. These techniques help surgeons or surgical robots
locate instruments and lesions and expand the field of view of the endoscope. Although these technologies
have been applied to various clinical and pre-clinical diagnoses and treatments, the use and combination
of these advanced technologies in endoscopic navigation system for specific clinical requirements remains
challenging. This review performs a broad survey of advanced endoscopic vision technologies and their
application in endoscopic navigation systems. Finally, we discuss the challenges and future directions in
implementing and developing endoscopic navigation systems.

INDEX TERMS Endoscopic navigation, endoscopic vision, endoscopic view expansion, instrument track-
ing, suspicious lesion tracking.

ACRONYMS
Acronyms Definition
AFI Autofluorescence Imaging
AR Augmented Reality
BE Binocular Endoscopy
BLI Blue-light Imaging
CADe Computer-aided Detection
CADx Computer-aided Diagnosis
CBCT Cone-beam Computed Tomography Systems
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CCD Charged-coupled Device
CF Close Focus
CLE Confocal Laser Endomicroscopy
CMOS Complementary Metal-oxide

Semiconductor
CNN Convolutional Neural Network
CT Computed Tomography
CV Computer Vision
EC Endocytoscopy
EM Electromagnetic
ESCC Oesophageal Squamous Cell Carcinoma
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ESCCs Early Oesophageal Squamous Cell
Carcinomas

EVE Endoscopic View Expansion
FICE Fujinon Intelligent Chromoendoscopy
GAN Generative Adversarial Networks
GC Gastric Cancer
GI Gastrointestinal
GPU Graphics Processing Unit
HOG Histogram of Oriented Gradient
HPs Hyperplastic Polyps
HRME High-resolution Microendoscopy
IC Indigo Carmine
ICG Indocyanine Green
iMRI Intraoperative Magnetic Resonance

Imaging
IOUS Intraoperative Ultrasonography
I-scan OE I-Scan Optical Enhancement
IT Instrument Tracking
LCI Linked Colour Imaging
ME Microendoscope
ETS Endoscopy with Tracking Sensor
MIS Minimally Invasive Surgery
MOET Multiple Optical Endoscopy

Technologies
MRI Magnetic Resonance Imaging
NA Not Applicable
NBI Narrow-band Imaging
NIR Near-infrared
NPs Neoplastic Polyps
ORB Oriented Fast and Rotated Brief
RCNNs Recurrent Convolutional Neural

Networks
Refs References
RGB Red, Green, Blue
ROBUST-MIS Robust Medical Instrument

Segmentation
SFM Structure from Motion
SIFT Scale-invariant Feature Transformation
SLAM Simultaneous Localization and Mapping
SLT Suspicious Lesions Tracking
SME Standard Monocular Endoscopy
SPIES Storz Professional Image Enhancement

System
SSD Single-shot Multibox Detector
US Ultrasound
VCE Virtual Chromoendoscopy
VO Visual Odometry
WLI White-light Image

I. INTRODUCTION
In the 21st century, minimally invasive medicine has become
a mainstreammedical process, overtaking traditional surgical
operations, which can cause severe trauma to patients during
diagnosis and treatment. Minimally invasive medical tech-
nology uses less traumatic or even non-invasive methods and

has many advantages, such as less pain for the patients, quick
recovery after surgery, a significantly shortened hospital stay,
and a reduction in medical resource uses [1]. With its rapid
progression, it has become an emerging medical discipline
alongside surgery, internal medicine, paediatrics, etc.

However, as Fuchs [2] described, most surgeons have
a precipitous learning curve with minimally invasive
surgery (MIS) that leads to a longer operating time than
with open surgery. Due to the limitations of human vision
and touch, it can be challenging to accurately locate sur-
gical instruments and lesions during the MIS procedure.
This affects the two fundamental issues in surgical naviga-
tion systems: ‘‘where to go’’ and ‘‘how to get there’’ [3].
In recent years, a number of commercialized surgical nav-
igation systems have been implemented in different hos-
pital departments. In orthopaedics and neurosurgery, the
current mainstream surgical navigation systems are pri-
marily obtained from Medtronic, Stryker, General Electric,
BrainLAB, etc. [4]. The superDimensionTM system and the
VeranTM system are two primary electromagnetic (EM) navi-
gational bronchoscopy platforms [5]. EDDA Technology has
developed a puncture surgery navigation system (IQQA R©-
BodyImaging; EDDA Tech., Princeton Junction, NJ, USA)
to support various types of MISs for chest and abdomen
tumours.

The endoscope is one of the key pieces of equipment in
MIS, serving as the ‘‘eye’’ of the surgical navigation sys-
tem. Since 1806, medical endoscopy has been widely used
in numerous parts of the body and has evolved over many
generations [6]. The traditional endoscope system generally
consists of a light source, a camera, an image controller,
a display, and the body of the endoscope. Endoscopes are
designed in different forms for different clinical applications.
Furthermore, they implement different signal transmission
methods (analogue or digital signal transmission), mechan-
ical structures for the inserted section (flexible or rigid), and
optical sensors (resolution and spectrum). In recent years, the
latest generation of endoscopes have been built based on a
variety of disciplines, such as optics, electronics, mechanics,
informatics, and graphics. Advanced endoscopic technology
introduces new surgical approaches to surgeons and serves as
the basis for minimally invasive surgical navigation systems.

Multiple optical endoscopy technologies are able to
obtain more information than ever before [7]. For example,
the binocular stereoscopic endoscope uses two calibrated
endoscope lenses to obtain stereo data. Then, depth infor-
mation can be extracted by the stereo matching method
after epipolar correction. Additionally, multispectral imaging
modalities help doctors observe the morphology of tissues
in non-white-light conditions, such as narrow-band imaging
(NBI, Olympus) and Fujinon intelligent chromoendoscopy
(FICE, Fujinon). Surgeons can also use technologies for mag-
nification observation to see more details regarding tissue
textures and even cellular objects, then call on their own expe-
rience or use algorithms to perform pathological detection.
In this way, multimodal optical endoscopes provide a diverse
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FIGURE 1. Overview of innovative/advanced endoscopic navigation techniques.

range of data forms for endoscopic navigation systems,
which also leads to new challenges in the field of computer
vision (CV).

CV is a type of science that investigates ways to enable
a computer to understand its environment from visual infor-
mation [8]. Early researchers in CV developed mathematical
techniques for recovering the 3D shape and appearance of
objects in imagery in an attempt to make computers under-
stand and interpret images the way humans do, which is very
difficult [9]. Recently, the development of deep learning has
led to great strides in a variety of CV problems, such as object
detection, motion tracking, and semantic segmentation [10].
Currently, CV based on deep learning is one of the most
popular research fields; as a result, a growing spectrum of CV
applications can be observed in minimally invasive surgery,
which are mainly based on endoscopes. Endoscopic vision
was developed to provide assistance in endoscopic surgery.
For example, with the help of endoscopic vision, laparoscopic
instruments can be located precisely inside the abdominal
cavity through visual feedback [11]. In short, endoscopic
vision is a specific application of computer vision involving
the use of endoscopes.

As a result, endoscopic vision technology has gradually
become the focus of research efforts by laboratories and
endoscope manufacturers [12]–[17]. Extracting key infor-
mation from the electronic signals collected by the various
sensors in the endoscope will assist physicians in diagnosis
and treatment at multiple stages. Three-dimensional surface
reconstruction technology extracts depth information from

the organ surface, which can extend the doctor’s field of
vision and provide a source of information for the precise
positioning and navigation of the surgical robot. Device track-
ing technology can evaluate the doctor’s surgical process,
and lesion identification allows doctors to achieve faster and
more accurate detection and diagnosis. These developments
have evolved significantly and can be applied in endoscopic
navigation systems.

For this review, a PubMed and Springer Link literature
search was systematically performed for studies published
from 1990 to 2020 on novel endoscopic technologies for the
implementation of endoscopic navigation systems (Fig. 1)
by using the search terms ‘‘Endoscopy,’’ ‘‘Endoscopic
navigation,’’ ‘‘Endoscopic tracking,’’ ‘‘Endomicroscopy,’’
‘‘Endoscopic medical imaging,’’ ‘‘Endoscopic detection,’’
‘‘Endoscopic vision,’’ ‘‘Computer vision,’’ ‘‘Instrument
tracking,’’ ‘‘SLAM,’’ ‘‘3D surface reconstruction,’’ and
‘‘Depth estimation.’’ Additional articles were obtained
through a review of the quoted references from the selected
reference articles. Only full manuscripts and case reports
published in English were collected. We included studies that
first proposed novel endoscopic vision techniques that have
previously been applied or have the potential to be applied
in endoscopic navigation systems. In addition, we placed
special focus on technologies that have a variety of med-
ical applications. However, for new or emerging technol-
ogy where related pieces of literature are scarce, articles
with other study designs were also included. As the endo-
scope continues to evolve in the next generation, endoscopic
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navigationwill continue to be redefined. Therefore, we firmly
believe that this article will provide a broad technical vision
for the development of minimally invasive surgical navi-
gation systems and provide an important reference to sur-
geons and manufacturers of minimally invasive surgical
instruments.

The rest of the paper is organized as follows. In Chap-
ter II, multiple optical endoscopy modalities are reviewed,
including white-light endoscopy, contrast-enhancement tech-
niques, and technologies that implement magnified observa-
tion. Chapter III introduces endoscopic vision technologies,
including instrument tracking, endoscopic view expansion,
and suspicious lesion tracking. Chapter IV further intro-
duces endoscopic navigation system applications that com-
bine advanced vision technologies for different parts of the
body. Chapter V discusses significant research directions for
future works. Finally, a summary is provided in Chapter VI.

II. OPTICAL ENDOSCOPY MODALITIES
FOR ENDOSCOPIC VISION
Optical endoscopy technologies have great potential to imple-
ment endoscopic vision algorithms to extract multidimen-
sional information across several scales from the region of
interest. These modalities can also enhance the reliability of
the whole navigation system.

A. WHITE-LIGHT ENDOSCOPY
1) STANDARD MONOCULAR ENDOSCOPY
A standard monocular endoscope is a tube with a light and
lens that captures the scene in question with charge-coupled
device (CCD) or complementary metal-oxide semiconduc-
tor (CMOS) sensors. The endoscope can be inserted into
the body through a natural orifice or a small incision during
surgery. A flexible endoscope can bend easily around corners
of the body.With the aid of endoscopes, traditional operations
requiring large incisions can be performed with only minor
cuts. Endoscopy is also the most effective and least invasive
way to screen the precancerous lesions of gastric and colorec-
tal cancer.

2) BINOCULAR ENDOSCOPY
Binocular endoscopes, also known as stereo laparoscopes, are
the core surgical instruments of modern ‘‘precision’’ mini-
mally invasive surgery and surgical robots due to their ability
to obtain clear images, a wide field of viewwith flexible distal
portions, stereo measurements, precision positioning, and
high diagnostic efficiency. The 3D field-of-view real-time
reconstruction algorithms used in binocular endoscopy, based
on the stereo imaging method and the parallax principle,
restore spatial depth information from image pixels. We can
reconstruct the 3D view through binocular endoscopy, which
enhances the perception of stereovision and field of view
of the endoscopic examination scene [18]. The real-time
reconstruction algorithm for the 3D field of view can assist
the doctor in locating, tracking, and navigating the lesion.

Binocular endoscopy offers a new type of intraoperative nav-
igation technology for endoscopic surgery [19].

B. CONTRAST ENHANCEMENT
Endoscopists can diagnose lesions by assessing the following
characteristics: (i) mucosal morphology (ulcer, erosion, pro-
tuberance, etc.), (ii) mucosal colour (suspicious red or white
spots), and (iii) vascular information (thickness, distribution,
blood concentration, etc.). Additionally, according to the
images obtained of the mucosal capillaries microstructures,
endoscopists can differentiate between cancer and normal
tissue due to the significant differences in neoangiogene-
sis between the two. Contrast-enhanced endoscopic imaging
techniques (as shown in Fig. 2) are capable of highlighting
these targets. In this way, they can facilitate endoscopists in
reducing the miss rates of lesion detection and increase the
accuracy in characterizing the lesions [20].

1) FLUORESCENCE ENDOSCOPY
Fluorescence can provide comprehensive and detailed detec-
tion of the structure and dynamics of the targeted tissue.
Different fluorophores have different fluorescent properties,
and their, fluorescence spectra are often used in diagnos-
tics [21] because they provide detailed information on flu-
orescence molecules, such as conformation, binding sites,
and interaction within cells and tissues [22]. Fluorophores
can be divided into endogenous fluorophores and exogenous
fluorophores [23]. With customized optical filters blocking
false excitation light to a sufficiently low level, the sensors
implemented in fluorescence imaging optical platforms cap-
ture part of the emitted fluorescence from the tissue. This
part of the fluorescence will contribute to the formation of
the final images [24]. Existing clinically available fluores-
cent endoscopic systems include autofluorescence imaging
(AFI) [25]–[27] and near-infrared imaging with indocyanine
green (NIR/ICG) [28]–[30]. AFI uses violet light to excite
endogenous fluorophores, while NIR/ICG uses a modified
range of light to excite exogenous fluorochromes applied to
the region of interest.

2) VIRTUAL CHROMOENDOSCOPY
Virtual chromoendoscopy (VCE) augments and detects the
spatial variance in light absorption and the scattering proper-
ties of tissue and organs in diagnosis and therapy, improving
the contrast between abnormal and healthy tissue. Accord-
ing to the illumination light and image processing meth-
ods used, VCE can be categorized into three groups: (i)
pre-processing VCE (e.g., NBI [31] and blue-light imag-
ing (BLI) [32]), which uses a modified spectrum of light
that coincides with the central peak of the absorption char-
acteristics of haemoglobin in the blood vessels, enhancing
the contrast between capillaries and adjacent tissue from
the mucosa and submucosa; (ii) post-processing VCE (e.g.,
FICE, i-scan and the Storz professional image enhancement
system (SPIES) [33]), which processes digital images to
achieve a similar effect as pre-processing VCE via spectral
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FIGURE 2. Schematic diagram of contrast-enhanced endoscopic imaging techniques, illustrating their basic working principles and
corresponding example image results.

FIGURE 3. Schematic diagram of technologies used in magnified observation. The real objective imaging resolution
gradually increases from left to right. EC and CLE are in direct contact with the corresponding tissues during imaging.

reconstruction algorithms; and (iii) linked colour imaging
(LCI) [34] and i-scan optical enhancement (i-scan OE [35]),
which incorporate both pre- and post-processing methods.

C. MAGNIFIED OBSERVATION
Images with a higher objective resolution than the human
eye can perceive can be used to provide more effective diag-
nostic information to endoscopists. Fig. 3 illustrates several

technologies that have already been implemented for clin-
ical use. Close focus (CF) [36] and optical and electronic
magnification [37] provide a clearer vision to the physician
while permitting a low miss rate for small lesions. Addi-
tionally, surface details, including pit patterns and vascular
structures, can be further enhanced with zoom lenses, which
can magnify images by up to 150 times [38]. Moreover, with
endocytoscopy (EC) [39] or confocal laser endomicroscopy
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(CLE) [40], which enables real-time micron-level imaging,
endoscopists can characterize suspicious lesions by visualiz-
ing multicellular structures such as capillaries and villiform
structures; cellular morphologies (for example, crypt, goblet,
or epithelial cells); and subcellular organelles (nuclei and
cytoplasm). Thus, EC and CLE can facilitate in vivo ‘‘optical
biopsy’’ and are promising techniques for replacing ex vivo
histology, which is the current gold standard for endoscopic
diagnosis. Furthermore, these techniques can be integrated
into the distal end of conventional white-light endoscopy,
allowing endoscopists to visualize the mucosa both macro-
and microscopically [20].

III. ADVANCED ENDOSCOPIC VISION TECHNOLOGY
There are diverse goals and perspectives in the domain of
endoscopic vision. This review intends to provide a broad
overview of related research in endoscopic navigation and
to combine research points from a variety of fields in solv-
ing practical problems. In our extensive literature research,
articles that met the inclusion criteria were divided into
three categories: (i) instrument tracking, (ii) endoscopy view
expansion, and (iii) suspicious lesion tracking.

A. INSTRUMENT TRACKING
Minimally invasive surgical instruments include endoscopic
cameras and surgical tools such as endoscopic ultrasound sen-
sors, biopsy forceps and minimally invasive surgical robots.
It can be difficult for the surgeons to visually track these
instruments due to the limited field of view. Therefore, instru-
ment tracking technology forms a very important component
of endoscopic navigation. This technology can be divided
into endoscopic camera tracking and surgical tool tracking
depending on the tracking methods implemented.

1) ENDOSCOPIC CAMERA TRACKING
a: VIDEO-BASED TRACKING
Video-based tracking is used to locate the endoscopic camera
by using video and photos only. This tracking technology is
also known as visual odometry (VO) and is mainly based
on simultaneous localization and mapping (SLAM) algo-
rithms [41], which are commonly used in the robotic and
autonomous driving fields. The movement of the camera can
be predicted by detecting the salient features in the video and
analysing the differences in the locations of those features in
different frames.

Fig. 4 shows two frames (I1, I2) of camera movement. P is
a point in 3D space, which can be written as [X, Y, Z]T. P1
and P2 are the projections of point P on the two imaging
planes, called feature points. The pixel coordinates of these
two projection points can be expressed as in (1):

p1 = KP, p2 = K (RP+ t) (1)

R and t are the homogeneous rotation and translationmatri-
ces for the camera pose, respectively, and K is the intrinsic
camera matrix. Letting x1 = K−1p1, x2 = K−1p2, the

FIGURE 4. Two frames of camera movement in visual odometry.

formula can be written as in (2):

t∧x2 = t∧Rx1 (2)

t∧ is the skew-symmetric matrix of t. If we then left mul-
tiply by xT2 , we obtain (3):

xT2 t
∧Rx1 = 0 (3)

We define E = t∧R, where E is called the essential matrix,
which can be solved with the pixel coordinates of feature
points, allowing us to then determine the translations of R
and t.

In the field of endoscopic tracking, Grasa et al. [12] pro-
posed a visual SLAM module to provide an up-to-scale 3D
map of the observed cavity and endoscope trajectory, which
was validated with synthetic data and human in vivo image
sequences corresponding to 15 laparoscopic hernioplasties.
Lin et al. [42] focused on the preoperative and intraoperative
data, adopted a parallel tracking andmapping framework, and
extended it for use in stereoscopy [42]. Mahmoud et al. [43]
applied ORB-SLAM to estimate the location of the endo-
scope and the 3D structure of the surgical scene. Later, he
proposed a monocular, quasi-dense reconstruction algorithm
through a depth propagation algorithm that used keyframe
images [44, 45]. This method is robust to severe illumi-
nation changes, poor textures, and small deformations in
endoscopic surgery. Prendergast et al. [46] used the ORB-
SLAM2 method in capsule endoscopy to diagnose gas-
trointestinal (GI) abnormalities. Their method was demon-
strated with a robotic endoscope and in an intestine model.
Turan et al. [47] used convolutional neural network (CNN)-
based vision odometry and depth learning methods in capsule
endoscopy and obtained good results. The performance of the
method was demonstrated by using ex vivo porcine stomach
models. Wang et al. [48] proposed a visual SLAM method
for bronchoscope tracking that obtained a large improvement
over ORB-SLAM.

No additional sensors are required for video-based tracking
methods. Therefore, the diameter of the endoscope can be
designed to be smaller. However, owing to the poor imaging
environment in the human body, pure video-based tracking
methods still have much room for improvement in accuracy
and application.

b: EXTERNAL SENSOR-BASED TRACKING
An external sensor is often used in endoscope tracking. Dur-
ing the surgery, the pose of the endoscope will be calculated
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FIGURE 5. Example of hand-eye calibration.

by the sensor tracker and the ‘‘hand-eye’’ calibration matrix,
which indicates the relative pose relationship between the
sensor tracker and the endoscope [49]–[52]. When using this
method, the endoscope and tracker must be rigidly connected.
The endoscope pose can be calculated as in (4):[

Re Te
0 1

]
=

[
Rs Ts
0 1

]
· X (4)

where Re and Rs are the rotation matrix of the endoscope
and the positioner relative to the world coordinate system,
respectively, Te and Ts are the respective translation vectors,
and X is the hand-eye calibration matrix. It is easy to obtain
the pose of the sensor tracker from Rs and Ts with high preci-
sion and accuracy. Therefore, obtaining an accurate hand-eye
calibration matrix becomes the primary problem.

The key to calculating the hand-eye calibration matrix is
to solve the formula AX = XB. In Fig. 5, {O}, {EM}, {C}
and {B} represent the tracking system, endoscope-attached
marker, endoscope camera and calibration board, respec-
tively. Ai and Bi represent, respectively, the transformations
from {O} to {EM} and from {C} to {B} in the ith movement.
The endoscope is moved to obtain different images of the
calibration board, which is kept still. It is then easy to obtain
the following equation:

AiXBi = Ai+1XBi+1 (5)

Let A′i = A−1i+1Ai,B
′
i = Bi+1B

−1
i . Then, the equation can

be rewritten as in (6):

A′iX = XB′i (6)

In the field of endoscopic tracking, Lee et al. [50] used
a checkerboard and an optical tracking system to complete
calibration and then analysed the error. He found that the
factors contributing to the error included the distance between
the sensor and the camera lens and the order of solving the dif-
ferent matrices. Thompson et al. [49] chose to use an invariant
point and compared the errors of optical and EM tracking
systems. He found that even if the error of the optical tracker
sensor was smaller than that of the EM tracker due to the
closer distance between the installation position of the elec-
tromagnetic tracker and the lens, the total error was smaller.

Ha et al. [53] used a checkerboard composed of triangles
rather than quadrilaterals to improve the accuracy of corner
image extraction, maintaining stability during video shooting
with a robot arm. Lai et al. [54] designed a 3D calibration
object and compared it with a 2D calibration plate. They
also sought to define the minimum number of poses required
to obtain a good calibration result. The EM waved-based
localization method was used with a wireless capsule endo-
scope [55]. Other methods have also been developed to per-
form ‘‘hand-eye’’ calibration for endoscopes [56]–[58], with
principles similar to those for solving the formula AX = XB

Due to the high accuracy of the additional sensor, the total
accuracy of external sensor-based tracking is better than that
of the video-based method. However, the current inability to
reduce the size of the sensor is an essential factor restricting
its development.

c: HYBRID TRACKING
Some methods combine external tracking sensors and visual
information. Turan et al. [59] proposed a non-rigid and
deformable RGB depth fusion method, which combines
magnetic positioning and RGB images to provide excel-
lent, precise tracking results for endoscopic capsule robots.
Charreyron et al. [60] integrated magnetic kinematic infor-
mation into a bundle adjustment procedure as a regularization
term to penalize deviations between camera poses. Their
method yielded a correctly scaled and lower-drift result com-
pared with visual-only methods. Yang et al. [61] introduced
a vision-based endoscope tracking method by combining 3D
ultrasonography with endoscopic vision, which solved the
problem of scale ambiguity and interest-point inadequacy.

2) SURGICAL TOOL TRACKING
Surgical tool tracking is an important concern in endo-
scopic navigation and is usually a prerequisite for computer-
and robot-assisted intervention [62]. Currently, surgical
tool detection and tracking data are provided through
image-based (also called vision-based) and sensor-based
technologies [63]. Sensor-based methods are now widely
used in clinical practice. After calibration and coordinate
system transformation, the position of the tip of the surgical
tool can be stably acquired in real time. In bronchoscopic
navigation surgery, biopsy forceps with EM sensors can be
rendered in the virtual endoscope in real time after an initial
calibration [64], [65]. Puncture needles with an optical sensor
can help the surgeon achieve precise ablation in liver naviga-
tion systems [49], [66].

In early studies, some image processing methods were
proposed for the segmentation of colour markers on surgical
tools to track them [67]–[69]. Although the above methods
could be efficiently run on a computer, they also had obvi-
ous limitations. For example, the selected materials need
to have good biocompatibility, most of the existing endo-
scopic impact data do not meet the requirements, and they
are easily affected by light and shadow. [70]. Subsequently,
many studies have proposed a series of feature extraction
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methods to enhance the robustness of surgical tool tracking.
Colour is the most widespread natural feature, and almost
all existing surgical tracking methods use colour information
as input. Lee et al. [71] first proposed using RGB colour
space as part of the framework in a minimally invasive surgi-
cal context. Although colour features were more convenient
to use, they did not perform well in places with shadows
and highlights. Gradients are another very popular feature.
Typically, the Hough transform [72], [73] and histogram of
oriented gradients (HOG) descriptors [74] are widely used
to extract the edges of surgical tools. These gradient features
can extract the edges and corners of surgical tools well, but
noise easily interferes with them. Furthermore, texture feature
extraction methods such as scale-invariant feature transfor-
mation (SIFT) [75] andColour-SIFT [76] have been proposed
to improve the robustness of the tracking algorithm.

In recent years, with the continuous development of CNNs,
an increasing number of studies have begun to apply them
in surgical tool tracking. CNNs have been demonstrated to
have high feature extraction and expression capabilities. Ini-
tially, CNN methods were used to replace specific steps in
surgical tool tracking. Zhang et al. [77] proposed a method
that uses a line segment detector to detect the positions of
selected lines and a CNN to find the tip of the surgical tool.
Wang et al. [78] combined VGGNet [79] and GoogleNet [80]
to detect surgical tools and then used an average ensemble
learning method to avoid overfitting two deep neural net-
works. Recently, end-to-end CNN approaches have become
a popular research direction in surgical tool tracking. Red-
mon et al. [81] proposed a real-time detection method based
on the ‘You Only Look Once’ (YOLO) algorithm [82].
Methods based on U-Net [83] have been widely applied in
surgical tool tracking [84]. Colleoni et al. [13] proposed a
U-Net-based structure combined with 3D fully convolutional
neural networks (3D FCNNs) for detecting the locations
of surgical tools. In the 2019 Robust Medical Instrument
Segmentation (ROBUST-MIS) Challenge [62], the Haoyun
team used the DeepLabV3+ [85] architecture to focus on
high-level information; a pre-trained ResNet101 [86] was
used as an encoder and the focal loss was combined with the
Dice similarity coefficient to train the network [87], leading
the group to become the most successful participating team
in the challenge.

Sensor-based methods for tracking surgical instruments
require expensive equipment and hardware. Methods based
on endoscopic vision can directly infer the position of the tool
in the video frame through endoscopic image vision without
modifying the tool or the surgical procedure [88], causing
them to become states-of-the-art in surgical tool tracking
tasks in endoscopic navigation.

B. ENDOSCOPIC VIEW EXPANSION
Due to the limits of the field of view, doctors have very limited
sense of the environment in endoscopic surgery. Endoscopes
operate via visible-light optical camera imaging. Thus, inter-
nal information more than 10 mm below the surface of the

organ cannot be observed. Endoscopic view expansion can
effectively solve this problem. Three-dimensional surface
reconstruction can help to expand the field of view, and fusion
with other modalities, such as ultrasound, CT, and MRI, can
help expand the field of view to visualize deeper parts of the
tissue.

1) THREE-DIMENSIONAL SURFACE RECONSTRUCTION
Conventional endoscopy, which lacks 3D vision and is unable
to provide proper depth perception, severely limit the effect
of diagnostic examinations and the administration of therapy.
Via 3D surface reconstruction technology, doctors can better
enhance the perception of endoscopic displays on augmented
reality (AR) systems and avoid the surgical risks caused by
poor visibility and insufficient experience. The pipeline of 3D
reconstruction consists of camera calibration, depth estima-
tion, point cloud reconstruction, and point cloud registration,
as shown in Fig. 6. In this section, we will focus on camera
calibration and depth estimation, which have the greatest
effect on accuracy.

a: CAMERA CALIBRATION
Reconstruction of a 3D surface using a computer vision tech-
nique requires prior information on the relationship between
the pixel location of the camera image and the location of
the corresponding spot in the actual scene, which can be
obtained from camera calibration. Distortion calibration can
eliminate the effect of geometric deformation arising from
optical imaging systems. For binocular endoscopy, external
parameter calibration is needed for epipolar line rectification.
Accurate camera calibration is a prerequisite for synthesizing
accurate spatial information from relevant images. For ordi-
nary cameras, the pinhole model is a good approximation of
its projection relation. Equation (7) expresses the relationship
between point p in pixel coordinates and point P in real-world
coordinates. [R|t] is an external parameter matrix composed
of a rotation and a translation. Distortion is defined in the
normalized image coordinate. There are different kinds of
distortion models, but the most commonly used is radial dis-
tortion. Sometimes, tangent distortion is also added. Radial
distortion is derived from light bent away from the centre
of the lens, which is expressed by the first term of equation
(8). Tangent distortion is caused by assembly errors in which
the lens is not ideally parallel to the sensor [89], which is
represented in the last two terms of (8).

p = K [R|t]P (7)
xcorrected = x

(
1+ k1r2 + k2r4 + k3r6

)
+2p1xy+ p2

(
r2 + 2x2

)
ycorrected = y

(
1+ k1r2 + k2r4 + k3r6

)
+p1

(
r2 + 2y2

)
+ 2p2xy

(8)

where (xcorrected , ycorrected ) are the corrected, undistorted
image coordinates, (x, y) are the original, distorted image
coordinates, and r is

√
x2 + y2. k1, k2 and k3 is the radial

distortion factor, p1 and p2 is the tangential distortion factor.
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FIGURE 6. Process of 3D surface reconstruction of the abdominal cavity.

Calibration methods can be classified into self-calibration
and object-based calibration. Self-calibration is performed
by moving the camera in a static scene to obtain sufficient
images for parameter estimation. Object-based calibration,
as its name suggests, requires a standard target object and
is suitable for endoscopic scenes because of its high preci-
sion. Consequently, we will focus on object-based calibration
next.

Tsai et al. [90] pioneered using a 2D calibration target
with a two-step method that involves a closed-form solution
and nonlinear minimization. Weng et al. [91] developed a
two-step method to perform optimization that takes all the
parameters into account. Zhang et al. [92] proposed a brief
and effective calibration process that takes advantage of the
homographic transformation and orthogonality of the rotation
matrix. The work of Zhang et al has been most widely used,
and many subsequent works have made improvements within
their framework [93].

More-recognizable planar patterns and more effective con-
trol point estimation strategies are critical for accurate cal-
ibration. Therefore, they are the focus of many works [53],
[94]–[97]. Heikkila and Silven [94] first stressed that perspec-
tive projection was generally not a shape-preserving trans-
formation, and therefore the centre of a circle in an image is
usually not the projection of the circle centre on the plane.
Thus, they derived formulations [94], [95] to calculate the
real projection of the circle centre. Rufli et al. [98] proposed a
method to detect chessboards in blurred and highly distorted
images. Ouellet et al. [96] summarized existing circle centre
estimation methods, explained their applicable scopes and
proposed an improvement. Geiger et al. [97] developed an
effective method to estimate sub-pixel corners of a chess-
board pattern, which was adopted in MATLAB and OpenCV.
Ha et al. [53] used a deltille grid pattern with a polynomial
fitting-based method to detect monkey saddle points and
obtained excellent calibration accuracy. Additionally, phase-
based patterns [99]–[101] have been proposed that are robust
to out-of-focus images. The processes include the use of the
phase-shift method to encode stripe or circle patterns and
unwrapped phases in images taken by the camera to obtain
the corresponding points.

Recently, Zhu et al. [102] used a camera equipped with a
polarizer and obtained an image at an optimal polarization

angle in different spatial positions to eliminate the impact of
highlighted regions. Chen et al. [103] used random speckle
patterns as a calibration target and the digital image correla-
tion method to extract the corresponding points. This method
provides a large number of control points (up to 10e3) to
perform the calibration, improving the calibration accuracy.
Ramírez et al. [104] used a triangulation method to calculate
3D coordinates from the corresponding 2D points, which
performed an optimization and obtained a formulation to
compensate for the errors caused by image digitalization and
lens distortion when other camera parameters were omitted.

In the field of endoscopy, the accuracy of 3D reconstruction
is important, even at the appropriate expense of operational
convenience and computational efficiency. Advanced opti-
mization algorithms [105] and new projection or distortion
models are also desirable [106], [107].

b: DEPTH ESTIMATION
Monocular Depth Estimation: Reconstruction of the tis-
sue surface with a monocular endoscope does not have a
simple or direct solution, but it is attractive because 3D
structural information can significantly improve diagnostic
and surgical performance. Such reconstruction was initially
implemented with the traditional CV method, structure from
motion (SFM), and SLAM technology.

The SLAM method [41], [108] can be expressed by (9):{
xk = f (xk−1, uk ,wk)
zk,j = h

(
yj, xk , vk,j

) (9)

where f is the motion function and h is the observation
function. In the case of endoscopy, xk denotes the location of
the endoscope; uk denotes the pose transformation between
xk−1 and xk ; yj is the 3D location of key points on the tissue,
zk,j is a photo of the tissue snapped by the endoscope at xk ,
wk and vk,j is noise. We can build a series of functions f and h
as the endoscope is moved in the space of interest and obtain
the 3D tissue structure and the motion of the endoscope by
solving these functions.

Early works used general, well-performing SLAM algo-
rithms [43] or those designed to be suitable for endo-
scopic conditions [12]. Mahmoud et al. [44] and Qiu
and Ren [109] used methods based on ORB-SLAM.
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For deformation, Turan et al. [110] used Surfel-based scene
reconstruction to cope with non-rigid deformations through-
out the frame sequence. Mahmoud et al. [45] segmented
video frames into clusters during live tracking, outperforming
pure stereo methods.

If we have only the equations of motion in (7)–in other
words, given photos without order–this becomes an SFM
problem, which is suitable for a specific space. Recently,
Sun et al. [111], Widya et al. [112] first used chromoen-
doscopy video after spreading indigo carmine (IC) dye on
the stomach surface to reconstruct the whole 3D shape of
the stomach with details of the mucosal surface by the SFM
method and found that the red channel data provided the most
complete and densest result.

A learning-based method used for monocular depth esti-
mation was first proposed by Eigen et al. [113]. Since an
accurate depth value is difficult to obtain in large-scale train-
ing, an unsupervised frame was developed that could use spa-
tial (between left-right pairs) or temporal (forward-backward
pairs) photometric warp error [114]–[116] or both [117].
The latest research [118] sought to obtain clear boundaries
in estimating depth by resampling pixels around occlusion
boundaries. One obstacle in training is the patient-specific
nature of the texture of the tissue when first used in depth
reconstruction in colonoscopy [119]. Early works taught their
models on a per-patient basis [120], [121], while some later
works used a synthetic training set [122], [123] or a gen-
erative adversarial network (GAN) [124] with a generator
and discriminator pre-trained on real video frames. Unsuper-
vised attempts have also been made [47], [125]–[127]. CT or
video-CT registration data are often used as ground truths to
test trained networks.

Recently, SFM/ SLAM and learning methods, espe-
cially GAN, were combined to obtain acceptable results
[128], [129]. Rau et al. [124] proposed an unsupervised
learning-based approach for estimating depth and motion
with monocular endoscopy videos. This work jointly trained
an EndoMotionNet and an EndoDepthNet, and the depth
information of the previous frame can be used as a priori
information for obtaining the depth information of the next
frame. Widya et al. [128], Chen et al. [129] expanded their
prior work by training a network for image-to-image style
translation from a no-IC image to an IC-sprayed image.
Therefore, whole stomach 3D reconstruction can be per-
formed without the need for IC dye. In poorer environments,
such as during colonoscopy, the paucity of distinguishing
features and tissue homogeneity can lead to insufficient fea-
tures for tracking or dense reconstruction. To address this,
Widya et al. [128], Chen et al. [129] used an adversarial
CNN to predict depth from monocular endoscopy images
and proposed a framework for performing SLAM endoscopy
by fusing monocular RGB images with corresponding depth
predictions.

Although monocular methods are most convenient when
they lack other attachments, the images obtained for the
motion of the monocular camera, zooming trail, and scene are

the same for the samemultiplier (since the epipolar constraint
is equal to 0 [130]). Therefore, we cannot obtain the scale of
the object with monocular methods.
Stereo Matching: For binocular endoscopy, we can obtain

the 3D structure of the tissue surface along with the scale by
the stereo matching method with a pre-determined baseline
distance. Traditional stereo matching methods [131]–[133]
have been proposed to match corresponding points between
two images, usually with a four-step pipeline–cost cal-
culation, cost aggregation, parallax calculation, and post-
processing–in order to minimize function (10):

E (dx) = C (x, y, dx)+
∑

x,y∈Nx,y

Es (C (x, y, dx)) (10)

where C is the cost of pixel I (x, y) having a disparity of dx ,
Es is a cost aggregation term calculated according to a set of
pixelsNx,y around I (x, y) that is used to impose constraints of
smoothness, consistency between two images, etc. The task
of stereo matching is to find dx for all pixels I (x, y).

The stereo matching method was first used in endo-
scopic research to localize two coronary arteries on a beat-
ing heart [134]. Some early works designed a matching
method strategy applicable to the minimally invasive surgical
environment [135], [136] as well as a GPU-enhanced strat-
egy [137]. The attractive results of the application of learning
methods in stereo matching led to their natural transfer to
binocular endoscopy [35]–[38]. Due to the lack of labelled
data, a self-supervised network based on ideas from the non-
endoscope area was used. Ye et al. [138] proposed a net-
work that optimized the combination of reconstruction loss
and disparity consistency loss. Armin et al. [139] took the
motion of two image points and visible areas into consid-
eration. Luo et al. [51] used a simple architecture with an
encoder-decoder network to predict two disparity maps and
then estimated the original images. Wang et al. [14] built a
precise GI environment via software to provide training data
for their network.

Recently, Chen et al. [140], Zhou et al. [141] pro-
vided a comprehensive approach that includes enlarging
the radius of the constraint of low texture regions, screen-
ing inliers from feature matching results with a histogram
voting-based method, and tracking camera motion with a
novel random sample consensus-based (RANSAC-based)
perspective-n-point (PnP) algorithm. Luo et al. [51] presented
an AR-assisted navigation system for liver resection based
on stereoscopy. In their study, an unsupervised convolutional
network was used to estimate the depth and generate an
intraoperative 3D liver surface. A V-Net architecture was also
used to segment volumetric image data from preoperative
CT images. Finally, the preoperative model and intraopera-
tive model were registered to the same space by a globally
optimal iterative closest-point algorithm, providing detailed
information during surgery. Due to the lack of binocular
endoscopic images with ground truths, Wang et al. [14] built
a precise GI environment with software to provide training
data for their network. They proposed a 23-layer deep CNN
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to generate depth from stereo images and introduced a novel
scale-invariant loss function to increase precision.

Because of the limited diameter of the endoscope,
the binocular design is only used laparoscopically. Both
monocular and binocular endoscopy encounter similar obsta-
cles that limit the performance of depth estimation: (i) a
limited field of view and low signal-to-noise ratio, (ii) com-
plicated reflections and weak textures, and (iii) deformation
of soft tissue.

2) FUSION WITH OTHER MODALITIES
Although endoscopy can provide clear images of the internal
organs and tissues of patients, some limitations remain. First,
it is difficult to accurately locate and differentiate the target
tissue (for example, distinguishing cancerous from normal
tissues or assessing the distribution of the subcutaneous blood
vessel network) with endoscopic images alone. Second, doc-
tors typically take much time to predict the real-time position
of the endoscope with video, which makes it difficult to shift
the endoscope to the target location. Fortunately, many detec-
tion options exist, such as CT, MRI, and ICG. By fusing other
modalities with endoscopic images, the insufficiency of the
endoscope can be improved, leading to better performance in
the clinic.

a: MULTIMODAL DATA
Multimodal data mainly come from preoperative and intra-
operative medical images. The former are mainly obtained
from CT and MRI, while the latter involves CBCT, ICG,
ultrasound, iMRI, etc.

CT and MRI are considered morphological imaging
modalities, that is, imaging of the appearance of the tissue
structure. CT is a type of high-density imaging that involves
penetrating the human body with X-rays and obtains images
according to the difference in the absorption rate of radiation
by different tissues of the human body and tomographic
images. MRI is a type of tomography that obtains human
body structure information by magnetic resonance phenom-
ena. Compared with CT, MRI can achieve better resolution of
soft tissues. Through the segmentation and rendering of CT
andMR images, we can obtain a 3Dmodel of the target tissue
and its anatomical structure, which is the primary method
to obtain surgical navigation data. This process is called
anatomical reconstruction.

Compared with preoperative data, intraoperative data can
provide real-time anatomical information and observations
that can enable physicians to make an accurate diagnosis and
administer interventional treatments.

Cone-beam computed tomography (CBCT) systems can be
used intraoperatively by obtaining data using a cone-shaped
X-ray beam rotated around the patient. The resulting sig-
nals can then be used to reconstruct the 3D structure of the
patient’s anatomy.

Indocyanine green (ICG) is a type of clinically fluorescent
dye that is injected into veins for NIR fluorescence imaging
of human tissues.

Endoscopic ultrasound refers to the use of a miniature
ultrasound probe installed on the top of the endoscope to
directly detect the mucosal surface of the digestive tract and
its lesions. This technique obtains the histological features
of all levels of the digestive tract wall, intracavitary lesions,
and surrounding tissue with the help of ultrasound scan-
ning methods. Mainly used for disease diagnosis, endoscopic
ultrasound can significantly improve upon the resolution of
ultrasound and display lesions at the end of the common bile
duct and the head of the pancreas in the deep part of the
abdominal cavity, resulting in increased image resolution and
accuracy of endoscopic and ultrasonic diagnosis.

Intraoperative magnetic resonance imaging (iMRI) has
demonstrated a significant benefit in surgery. Addition-
ally, fast MRI techniques have been developed for clinical
real-time requirements and have great application potential
for fusion with endoscopic images.

b: FUSION WITH PREOPERATIVE DATA
Compared with open surgery, endoscopic-based MIS has
great advantages. However, surgeons often have to operate
within the narrow field of view of the endoscope during
MIS. Preoperative data, such as CT and MR images, contain
anatomical information that could enhance the stereo per-
ception and inspection of the visual field of the endoscopic
examination.Many studies have emerged that mainly focused
on accurate matching between preoperative models and the
intraoperative scene. Dey et al. [142] fused endoscopic video
images obtained from a tracked neuro-endoscope to polyg-
onal surfaces extracted from preoperative CT images of a
standard brain phantom to assist in surgical planning, train-
ing, and guidance. Thoranaghatte et al. [143] developed an
AR endoscope system for paranasal and transnasal surgeries
based on landmarks defined by the surgeon in preoperative
CT volumes, which were augmented onto the endoscopic
video stream and helped in orienting and navigating the
surgical field. The deformation correction of themiddle regis-
tration model effectively reduced the model registration error
under large-scale deformation by 30 mm [144].

On the one hand, preoperative CT/MR images have high
resolution and quality. On the other hand, due to the inability
to intraoperatively image tissue deformation, real-time imag-
ing of the tissue interior cannot be performed, which increases
the complexity and risk of navigating during endoscopic
surgery.

c: FUSION WITH INTRAOPERATIVE DATA
Because of the deformation of non-rigid tissues such as the
liver, some scholars have studied the registration of real-time
intraoperative images and endoscopic images to guide opera-
tions in the corresponding parts of the body. Methods for the
fusion and registration of intraoperative CBCT images with
endoscopic video have been established. Prisman et al. [145]
developed custom software to integrate intraoperative CBCT
images with endoscopic video for surgical navigation and
guidance and tested it on a cadaveric head. Lai et al. [15]
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presented a method based on a surgical navigation system
(Philips, Eindhoven, NL) for intraoperative CBCT image
fusion on endoscopic views for endonasal skull-base surgery,
allowing submillimetre accuracy. Clinically approved fluo-
rescent dyes, such as fluorescein and ICG, are also useful
in intraoperative guidance. Harada et al. [146] developed a
method for visualising the placental vascular network in
detail in the presence of turbid amniotic fluid by a rigid-type
fluorescence endoscope coupled with intravenous adminis-
tration of ICG. Intraoperative ultrasound images are also
helpful. For example, the navigation system under the da
Vinci surgical robot from Intuitive Surgical uses a binocular
stereoscopic laparoscope to track the movement of an abdom-
inal ultrasound probe in real time. After positioning and
registering the separate laparoscope and ultrasound probes,
the resulting 2D ultrasound image and optical image are
fused and presented. Fast MRI techniques have also been
developed that can achieve acquisition times down to 139 ms
per slice [147]. As a result, the fusion of iMRI data and
endoscopic images in real time will be a meaningful research
direction in the future.

The fusion of CBCT images with endoscopic video can be
of great benefit for intraoperative registration accuracy. How-
ever, fusion with endoscopic images still cannot be performed
in real time. With the help of fluorescent dyes, such as ICG,
fluorescence endoscopy can visualize the vascular network
with high resolution. However, the detection depth of this
method can only reach 10 mm under the skin. In contrast,
endoscopic ultrasound can obtain deep structure information
beneath the surface of human tissue, but it has poor image
resolution.

In summary, the fusion of images from different modal-
ities with endoscopic images has different effects resulting
from their relative advantages and disadvantages. Fusion with
preoperative data has a substantial guiding effect on MIS
navigation, but it cannot solve the problem of intraoperative
tissue deformation. Intraoperative fusion also has great poten-
tial value, but there remains much room for improvement
before it can be implemented in real time. Multimodal data
fusion is expected be one of the main directions for the future
development of endoscopic navigation systems.

C. SUSPICIOUS LESION TRACKING
Endoscopes are standard tools for detecting and locating
lesions. In minimally invasive surgery, quickly and accurately
locating lesions has become a key research issue for cur-
rent computer-aided diagnosis (CAD) systems. Suspicious
lesion tracking technology has gradually become one of the
core components of endoscopic navigation systems [148],
especially for the GI system. Based on white-light imag-
ing (WLI), contrast-enhancement techniques can be used to
enhance the detectability of lesions. Magnified observation
techniques can improve the resolution of the object image
and allow visualization ofmicroscopic structures. These tech-
niques provide a basis for accurately locating lesions in endo-
scopic navigation systems. Within the field of endoscopic

suspicious lesion tracking, CAD algorithms can be generally
divided into two classes: computer-aided detection (CADe)
and computer-aided diagnosis (CADx) [149].

1) COMPUTER-AIDED DETECTION
CADe is a subfield of CAD in which the aim is the auto-
matic detection of lesions missed the an endoscopist [149].
To date, different CADe systems for lesions in different parts
of the GI tract have been developed. For the oesophagus,
Horie et al. [16] designed a CNN-based CADe algorithm
for conventional WLI gastroscopy. They used 8428 endo-
scopic images of oesophageal cancer from 384 patients as a
training set, obtaining a model that provided 98% sensitivity
in detecting oesophageal squamous cell carcinoma (ESCC).
Guo et al. [150] developed a model based on SegNet for
the automated detection of precancerous lesions and early
oesophageal squamous cell carcinomas (ESCCs) in real time.
They used a total of 6473 NB images, including those of pre-
cancerous lesions, early ESCCs, and noncancerous lesions,
as a training set, and tested their algorithm using a dataset
containing 1480 malignant NBI images from 59 consecutive
cancerous cases and 5191 noncancerous NB images from
2004 cases. The authors ultimately achieved a sensitivity of
98.04% and a specificity of 95.03% with their algorithm.
They also used video datasets of precancerous lesions or
early ESCCs, including 27 non-magnified videos and 20
magnified videos, to evaluate their model. The model was
capable of processing at least 25 frames per second with a
clinically meaningful latency of less than 100 ms in real-time
video analysis. For the stomach, Hirasawa et al. [151] devel-
oped an SSD-based system for gastroscopy capable of uti-
lizing a WLI, NBI, or CE modality. They used a dataset
of 51558 images to train a CNNmodel and tested it on another
dataset of 2296 images, achieving a sensitivity of 92.2% in the
detection of gastric cancer (GC). Itoh et al. [152] developed
an algorithm based on GoogleNet for detecting Helicobacter
pylori infection. They used a total of 179 upper gastrointesti-
nal endoscopy images obtained from 139 patients to train
and test their model, achieving a sensitivity and specificity
of 86.7% and 86.7%, respectively, and an area under the
curve of 0.956. In colonoscopy, Wang et al. [149] devel-
oped a CNN model based on SegNet for conventional WLI
colonoscopy. They used 3634 static images with polyps and
1911 static images without polyps as a training set and tested
with 3 testing datasets: set A (5541 static images with polyps
and 21,572 static images without polyps), set B (29 public
videos with polyps), and set C (54 videos without polyps).
Across all testing datasets, the model achieved a sensitivity
of over 90% in the detection of polyps.

Although these CADe algorithms achieved good results,
many problems remain. First, the current indicators for evalu-
ating algorithm performance are technically simplistic. How-
ever, to reflect the actual effect of a CADe algorithm, some
clinical measurement metrics need to be created, such as
the adenoma detection rate (ADR) and polyp detection rate,
in colonoscopy. In addition, most current research on CADe
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algorithms is retrospective, and their effect on real-time video
has not been well verified. We also note that several prospec-
tive CADe studies have been performed recently in the field
of colon polyp detection [153], [154]. However, similar stud-
ies for other lesions need to be verified.

2) COMPUTER-AIDED DIAGNOSIS
CADx is a subfield of CAD also referred to as an optical
biopsy, focusing on the prediction of histology results without
the need for tissue biopsy. CADx is performed based on
CADe; if a lesion is missed by CADe, then it would be
irrelevant to a CADx system [149]. Unlike CADe, CADx
always uses endoscopy images with advanced optical modal-
ities such as NBI, ME, CE to train CNNs to perform his-
tological diagnosis. In the oesophagus, Quang et al. [17]
constructed a CADx system based on a 2-class linear
discriminant algorithm for high-resolution microendoscopy
(HRME). Using 104 biopsy-sampled sites from 54 patients as
a training set and 104 biopsy-sampled sites from 45 patients
as a test set, this CADx algorithm achieved a sensitivity and
specificity of 95% and 91%, respectively, in evaluating the
malignancy of oesophageal squamous cell neoplasia. In the
stomach, Zhu et al. [155] developed a CADx algorithm
based onResNet for conventionalWLI gastroscopy. A dataset
of 790 conventional endoscopy images was used for training
the network, and an independent dataset of 203 images was
used for testing its performance. The results showed 95.56%
specificity in the discrimination of SM2 status or worse
from M/SM1, relative to the invasion depth of the gastric
cancer and significantly higher than that of expert endo-
scopists. Some CADx systems have also been developed for
colonoscopy inspection. Chen et al. [156] used a pre-trained
CNNbased on a natural image dataset and fine-tuned the clas-
sifier layer with a dataset composed of 1476 NB images with
neoplastic polyps (NPs) and 681 NB images with hyperplas-
tic polyps (HPs) to build a CADx system for differentiating
the two kinds of polyp. Then, they tested the model using
another colonoscopy NB image dataset, in which 188 images
were NPs and 96 images were HPs. The system achieved
96.3% sensitivity and 78.1% specificity in differentiatingNPs
from HPs. Takenaka et al. [157] developed a model for eval-
uating the status of ulcerative colitis (UC) based on Inception
v3. They used a training dataset of 40578 images to train
their model and tested it using a dataset of 4187 images. The
algorithm identified patients with endoscopic and histologic
remission with 90.1% and 92.9% accuracy, respectively, and
required less than 0.2 seconds to obtain a result from the input
of an endoscopic image using a GTX 1080 Ti GPU.

In recent studies, researchers combined CADe algorithms
with CADx algorithms to develop clinically meaningful
integrated systems that perform sequential detection and
diagnosis [158]. Moreover, some researchers are working
on developing a computer-aided monitor (CADm) system,
which can perform quality control during endoscopy [159].
For example, one CADm system can monitor the time of
caecal incubation and withdrawal speed during colonoscopy.

This would allow physicians to perform more detailed exam-
inations and minimize the number of blind spots [160].
Although CADx systems are capable of producing satisfac-
tory results onmany types of lesions, some issues remain. The
performance of CADx systems is overly reliant on advanced
endoscopic imagingmodalities such as NBI, CE, and HRME;
under the most common endoscopy modality, WLI, the per-
formance is not as acceptable.

IV. APPLICATION
According to a study published by The Lancet in 2020 on
global diseases from 1980 to 2017, cardiovascular disease
and cancer were listed as the main causes of death from
non-communicable diseases [161]. For example, in 2017,
cardiovascular diseases accounted for 43.3% of deaths caused
by non-communicable diseases, and cancer accounted for
23.3%. Among the causes of cancer deaths, lung cancer,
gastrointestinal cancer, and liver cancer accounted for more
than half; brain tumours and urinary system cancers also
account for high proportions of deaths. Endoscopy is widely
used in departments focused on the abovementioned diseases.
Combined with advanced endoscopic navigation technology,
endoscopy can play a vital role in clinical and pre-clinical
applications (in Table 1).

A. CARDIOVASCULAR
Endoscopy plays a very important role in the field of car-
diovascular disease treatment and diagnosis. Angioscopy
enables the macroscopic pathological diagnosis of cardio-
vascular diseases from the arterial wall [162]. Multimodel
scanning fibre endoscopy has been reported to identify throm-
bogenic lesions and define the risk of plaque rupture in the
diagnosis of atherosclerosis [163], [164]. The method is com-
bined with fluorescence emissions to classify atherosclerotic
plaques in different stages of development. Intravascular pho-
toacoustics is considered a promising imaging modality for
atherosclerosis, as it could provide chemical-specific optical
information on the arterial wall [165]. The cardio-endoscopic
technique is a useful adjunct in the resection of left ven-
tricular tumours and thrombi [166]. A cardiovascular virtual
endoscopy system was applied to support a diagnosis of con-
genital heart disease [167]. This system uses preoperative CT
and MR images to reconstruct a 3D model of blood vessels
and simulates the entry of an endoscope for surgical path
planning.

B. RESPIRATORY TRACT
There are many types of endoscopes used in the diagnosis and
treatment of diseases in the respiratory tract, such as sinus-
copes, laryngoscopes, and bronchoscopes. In sinuscopic nav-
igation, self-supervised learning for dense depth estimation
with a monocular endoscope has achieved good results in the
absence of CT images [125], [168]. For laryngoscopic navi-
gation, in combination with a tracking sensor, Wu et al. [169]
utilized deformation modelling to improve accuracy and
reliability in laryngoscopic surgery. Yamamoto et al. [170]

41156 VOLUME 9, 2021



Z. Fu et al.: Future of Endoscopic Navigation: A Review of Advanced Endoscopic Vision Technology

TABLE 1. Clinical and pre-clinical endoscopic navigation system using those above technologies in the different regions of the human body.
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TABLE 1. (Continued.) Clinical and pre-clinical endoscopic navigation system using those above technologies in the different regions of the human body.

developed a method for the transoral removal of schwan-
noma using a laryngoscope with the help of nerve integrity
monitoring (NIM) and NBI. Endoscopic navigation systems
have also been widely used in bronchoscopic surgery [171].
Many commercial platforms, such as superDimensionTM and
VeranTM, can help guide surgery by registering CT images
reconstructed before surgery with intraoperative instruments,
and a large number of experiments have been conducted with
these systems in the clinic. Recently, early clinical trials have
been conducted utilizing fluoroscopy with novel algorithms
in the LUNGVISIONTM system [172]. Chang et al. [173]
utilized a CADx system with 39899 AFI video frames to
detect bronchial lesions.

C. GASTROINTESTINAL TRACT
In GI navigation, some systems similar to the
superDimensionTMbronchial navigation system have been
tested in the early stages of development [174]–[176]. How-
ever, due to the large deformation of the stomach and its
relatively simple shape, this type of system is used for approx-
imated tracking. However, CAD technology has been widely
used in the GI tract [177] and has been combined with many
advanced imaging technologies in clinical trials. In the upper
GI tract, CAD has been used in the detection of early neo-
plasia in Barrett’s oesophagus (BE). Putten et al. [178], [179]
proposed a patch-based deep learning algorithm combining
the WLI and BLI modalities for early neoplasia in BE.
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In their research, CAD was used for the multi-frame analysis
of volumetric laser endomicroscopy (VLE) images from
oesophageal wall layers, improving BE neoplasia detection.
In other studies, a microendoscope with narrow-band imag-
ing (ME-NBI) and EC were used in the classification of
ESCC [180], [181]. FICE and ME-NBI were used in the
diagnosis of GC [182], [183]. BLI and LCI were employed
in the prediction ofH. pylori infections. In the lower GI tract,
CAD systems have been widely used in the detection and
characterization of polyps. In reference [184], 112199 images
of 69716 polyps from 150 patients were used in the detection
of colorectal polyps. ME-NBI, AFI, ME-AFI, EC, LCI,
and CLE have also been employed in the diagnosis of
polyps [185], [186].

D. CHEST AND ABDOMEN
Laparoscopic surgery is the most popular MIS, and surgi-
cal navigation technology for the thoracic and abdominal
cavities has been continuously improved in recent years.
However, due to the dynamic, unstructured nature of the
abdominal cavity environment, the abdominal soft tissue
experiences large deformations and displacements during
surgery, which remains the major challenge in accurate navi-
gation. In thoracoscopy, Anayama et al. [187] combined ICG
injections, intraoperative NIR fluorescence thoracoscopic
detection, and EM tracking sensors and achieved acceptable
results in locating pulmonary nodules in a resected porcine
lung. Lee et al. [188] developed a thoracoscopic surgical nav-
igation system utilizing CBCT and optical tracking sensors
to guide the search for chest wall tumours in real time,
significantly improving the localization accuracy for tumour
margins. In laparoscopy, optical tracking sensors combined
with CT were used to guide the microwave ablation of
liver tumours for 54 patients, which resulted in low com-
plication rates and thus a feasible option for patients with
hepatic disease [189]. In laparoscopic hepatectomy, intra-
operative ultrasonography (IOUS) and ICG were employed
and fused with CT to achieve real-time surgical navigation
during hepatic resections on 27 and 64 patients, respectively,
achieving high efficiency and accuracy [190]. In addition,
binocular endoscopy was employed in an AR-3D naviga-
tion system [191] that merged preoperative cross-sectional
imaging with laparoscopic images in liver resection, verify-
ing the feasibility of AR-3D laparoscopic liver surgery with
landmark-based registration.

E. URINARY TRACT
In ureteroscopy, endoscopic navigation is usually applied
to detect, measure, and track kidney stones. At present,
it is difficult to accurately detect kidney stones and
measure their size during flexible ureteroscopy. Conse-
quently, Ludwig et al. [192] developed novel intraoperative
software to measure the size of stone fragments based
on an external fixed-length tool, the accuracy and preci-
sion of which reached 0.17 and 0.15 mm, respectively.
Aldoukhi et al. [193] applied a deep learning CV algorithm

for automatically detecting the composition of kidney stones
from their images with high accuracy.

F. OTHERS
Endoscopic navigation technology is also being used in other
departments. For instance, video-based navigation technol-
ogy in knee arthroscopy can be used for anterior cruciate
ligament reconstruction [194]. Moreover, hysteroscopy, cys-
toscopy, nephroscopy, and otoscopy systems have also been
used in virtual reality simulators [195]–[198].

V. DISCUSSION
In recent years, endoscopic navigation systems have grad-
ually become one of the core instruments in MIS. After a
period of development, endoscopic navigation systems have
effectively solved many issues encountered in the clinic.
However, different clinical applications have diverse goals
and encounter different challenges:

1) In cardiovascular endoscopy, advanced imaging tech-
nology has reached the stage of clinical trials in lesion
identification. Instrument tracking technology has been
widely used in vascular interventional surgery, which
mostly uses radiography technology (such as ultra-
sound and MRI) and magnetic tracking technology.
Future research should focus on ways to use endo-
scopic vision technology to guide and accurately track
cardiovascular endoscopes.

2) Some clinical applications and commercial products
have been developed in the application of endoscopic
navigation to the respiratory tract. The branched struc-
ture of the respiratory tract is complex and narrow,
and therefore the main concern in the endoscopic nav-
igation of the respiratory tract is the guidance of the
endoscope through the complex branches to reach the
target, such as a biopsy location at the distal end
of the bronchus. Currently, the most commonly used
navigation system for the respiratory tract is based
on electromagnetic tracking technology, which has
high accuracy but is expensive. Navigation methods
based on endoscopic vision technology are attractive,
low-cost solutions. As developments in deep learn-
ing technology continue, this method will increasingly
become the focus of research.

3) The main goal of digestive endoscopy navigation sys-
tems at present is to help doctors comprehensively
and accurately detect and characterize lesions in the
gastrointestinal tract. This raises three key questions:
how can the endoscope be made to traverse the entire
gastrointestinal system completely, how can advanced
sensor technology be used to obtain more information
about the lesion, and how can the lesion be accurately
detected, characterized and located? Endoscopic vision
technology has shown great potential in attempting to
solve these problems. Deep learning-based methods
can effectively increase the detection rate of BE, ESCC,

VOLUME 9, 2021 41159



Z. Fu et al.: Future of Endoscopic Navigation: A Review of Advanced Endoscopic Vision Technology

GC, and other lesions, and can reduce the number of
blind spots in gastrointestinal endoscopy.

4) In laparoscopic navigation, methods based on the
fusion of preoperative data (such as CT and MRI)
cannot cope with the large-scale deformation of intra-
operative organs. Intraoperative modalities, such as
IOUS, may provide real-time structural details on deep
tissues, but the image resolution is low, and therefore
the doctor’s experience and spatial visualizing ability
are required. ICG fluorescence endoscopes can per-
form high-resolution angiography, but the detection
depth is only approximately 10 mm below the tissue.
Navigation technologies focused on the multimodal
image fusion of preoperative and intraoperative data
could potentially solve the problem of lesion navigation
under conditions of large-scale changes. The primary
challenge is the high-precision registration between the
multiple modalities.

5) Endoscopic navigation systems have been widely used
in clinical treatment during neurosurgery. Because of
the strict safety requirements, the accuracy of the reg-
istration between preoperative data and the endoscopic
visualization is a key indicator for evaluating the endo-
scopic navigation system. During navigation, changes
in the anatomical structures during the operation could
still affect the registration accuracy; however, the stiff-
ness of the brain tissue is relatively high. As an evolving
technology, the fusion of intraoperative data, such as
CBCT and iMRI, with endoscopic images can poten-
tially reduce the impact of intraoperative anatomical
structure changes on registration accuracy, which can
also be improved by the real-time identification of
critical anatomical structures with endoscopic images.

6) Ureteroscopic navigation is currently in the research
and development stage. The main problem lies in deter-
mining methods to completely traverse the endoscope
through the renal pelvis structure to and accurately
identify, locate and measure the lesion or stone. Future
research should identify ways to improve the flexibility
of the ureteroscope and ways to locate it in an environ-
ment with limited textures and feature points.

Below, we summarize future issues for common technologies
in endoscopic navigation:

Multiple optical endoscopy technologies provide more
information than ever before. Nevertheless, these tech-
nologies are currently limited to some departments. For
example, binocular endoscopes are generally only used for
laparoscopy, while EC is generally only used in GI applica-
tions. This is mainly limited by the sizes of the tips of differ-
ent endoscopes. Miniaturization of these modules and wider
application in other departments will significantly improve
disease diagnosis.

In endoscopic navigation, many sensor modules, including
the EM sensor and CLE probe, must pass through the instru-
ment channel to function, which can affect the surgeon’s sur-
gical procedures. For example, in urinary navigation surgery,

these sensors and laser fibres have to be exchanged frequently
through the instrument channel. Therefore, integrating these
sensors into existing endoscopes may lead to greater conve-
nience during the surgical procedure.

In 3D reconstruction, monocular endoscopes cannot mea-
sure scale without a fixed-size reference object. Therefore,
it is necessary to use binocular cameras or external position-
ing sensors to obtain scale information. However, this can
lead to errors from just the initial calibration. High-precision
camera and hand-eye calibration for endoscopes will effec-
tively minimize these errors.

Deep learning has become an important technology in
navigation systems. Today, it is extensively used in a variety
of fields and has achieved feasible performance. Constructing
a standard dataset with a large number of labelled endoscopic
images is important for the performance of endoscopic artifi-
cial intelligence-assisted diagnosis algorithms.

Finally, in MIS, movement interference and the large-scale
deformation of soft tissue remain vital issues. Many previous
studies were based on registration algorithms using preoper-
ative data. With the improvement in endoscopic imaging and
fast MRI technology, combining intraoperative data to track
and visualize lesions in real time is expected to be the primary
research direction in the future.

VI. CONCLUSION
Endoscopic navigation provides surgeons with more accu-
rate, effective, and reliable diagnoses and treatments in
MIS. Combined with advanced endoscopic vision technol-
ogy, the next generation of endoscopic navigation systems
are already under development. In this paper, we sum-
marized multiple optical endoscopy modalities, including
white-light imaging, contrast-enhancement and advanced
endoscopic vision technologies that are currently or will
potentially be used in endoscopic navigation systems. Endo-
scopic optical imaging modalities include white-light imag-
ing, contrast-enhancement techniques, and technologies of
magnifying observation. Meanwhile, endoscopic vision tech-
nologies consist of instrument tracking, endoscopic view
expansion, and suspicious lesion tracking. All these technolo-
gies will bring changes to future surgical navigation systems.
Combining diverse and complex clinical needs, it is neces-
sary to integrate these advanced endoscopic technologies to
achieve more precise navigation.
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