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ABSTRACT Magnetic flux leakage (MFL) detection technology provides an effective method to conduct
high-speed detection of the damage suffered by rail surface. With regard to high-speed detection, there is
frequently a complex noise contained in the magnetic signal of railway leakage, which is similar to the
amplitude of defect and the overlaps of frequency spectrum. In this paper, an improved adaptive filtering
method is proposed to solve the problem caused by filtering the MFL signal on the rail top surface. Through
the characteristics of distribution shown by defects on the top surface of the railway and those of the data
collected by the rail top array sensor, this method is applied to construct a virtual channel containing almost
only interference signals but no defects. Then, in combinationwith the adaptive filtering algorithm, the virtual
channel signal is taken as the reference input of the adaptive canceller, each single channel MFL signal is
taken as the original input of the adaptive canceller, and the filtered MFL signal is taken as the output.
Then, the MFL signal of rail top is collected by the train at the speed of 30km / h on the manual calibration
line. According to the experimental results, the noise intensity of MFL signal is reduced by up to 81.44%.
In addition, the filtering method is adopted to process MFL signals with different directions and varying
detection speed. As indicated by the results, the noise intensity of MFL signal is reduced by more than 74%.

INDEX TERMS High speed rail detection, magnetic flux leakage signal, adaptive filtering algorithm,
reference signal, adaptive noise canceller.

I. INTRODUCTION
At present, the non-destructive testing technology of mag-
netic flux leakage (MFL) [1] has been widely applied to
conduct non-destructive test on the surface cracks of such
ferromagnetic parts as rails due to the simple structure of
its sensor, the high sensitivity of detection and the capability
of non-contact detection. In the course of high-speed MFL
inspection conducted on rails, there will be a lot of noise con-
tained in the signal ofMFL. Currently, the main problemwith
the MFL signal is that there are complex vibrations [2], [3]
and other forms of disturbances caused during the process of
high-speed inspection. As for the high-speedMFL inspection
on rails, there will be many kinds of noise contained in
the MFL signal. Firstly, the non-stationary random vibration
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caused to the mechanical structure of locomotive and the
rails with a certain degree of surface roughness can affect
the strength of leakage magnetic field and background mag-
netic field respectively, as evidenced by the change to the
lift-off value of the sensor from the rails surface and the
yoke lift-off value, as a result of which the vibration noise
is coupled [2], [3] to the signal of magnetic leakage detec-
tion. Secondly, with the increase of speed, the distribution
of magnetic field intensity in rails is made uneven due to
the impact of eddy current. Thirdly, it is inevitable for MFL
acquisition system to be affected by such electromagnetic
interference as white noise and power frequency interference
in the environment. In respect of MFL signal processing,
various methods have been proposed to extract the signal of
rail defects from the complex interference without changing
the shape of the defect. By means of time-frequency analy-
sis, median and adaptive filtering, as well as interpolation,
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Mao Bingyi preprocessed MFL detection signals [4].
Daniel J adopted a variety of different wavelet-based denois-
ing techniques to remove noise from the raw data [5].
However, the limitation is that there is no effective solution to
filtering out the noise overlapping with the power spectrum
of the defect. By means of Kalman filtering, Erazo Kalil
proposed Vibration-based structural health monitoring in the
context of ever-changing environmental conditions [6]. Based
on time-sequenced adaptive filtering, Fotiadou E proposed
the enhancement of low-quality fetal electrocardiogram [7].
Bai Liming applied an adaptive filter to eliminate ECG
motion artifact interference [8]. The limitation imposed on
this method lies in the ability to obtain effective reference
signals from the hardware. In the rail detection system, how-
ever, each sensor is allowed the opportunity to detect the
defect, which means that the output of each sensor is not
suitable as a reference signal. As mentioned above, MFL
signals contain complex noise under the condition of high-
speed rails inspection. These noises show large amplitudes,
with the power spectra of these noise overlapping those of
useful signals. Therefore, the aforementioned methods are
subject to various limitations, respectively. Moreover, most
of the above-mentioned methods are intended for an environ-
ment with relatively low levels of noise intensity, while the
frequency component of the interference signal is complex
and the noise intensity is high for the high-speed detection of
rails.

With the development of MFL detection [9]–[11] tech-
nology intended for rail inspection, there have been various
requirements placed on rail inspection equipment, for exam-
ple, high speed, high efficiency and high resolution. In respect
of signal processing, it is inevitable for these require-
ments to result in the circumstance where high-intensity and
non-stationary random noise is made and the power spectrum
of the noise overlaps with useful signals. The noise of these
types can cause serious interference with signal analysis and
defect reconstruction. Besides, they play a major role in
hindering the application of MFL detection technology in the
field of rail inspection. Having a significant adverse effect on
signal analysis and signal inversion defect process, this is also
the main obstacle to the application of MFL nondestructive
testing technology in rail inspection. In order to address the
above-mentioned issues, this paper proposes an improved
adaptive filtering method by considering the limitations on
the above-mentioned methods, so as to extract pure defects
from a large amount of complex noise. The filtering algorithm
is verified by MFL data used for detecting rail surface cracks
at the speed of 10 km/h, 20 km/h and 30 km/h, respectively.
The rest of this paper is organized as follows. Section 2
introduces the theoretical background and methodology of
MFL detection and adaptive filtering. Section 3 elaborates
on the improved adaptive filtering method and experiments.
In Section 4, the analytical results obtained from the exper-
iment are presented. Section 5 introduces a method used
to conduct quantitative analysis of filtering effects and to
evaluate the filtering effect and suitability of the method.

With different processing results compared and discussed,
a conclusion is drawn and the future direction of works is
indicated in Section 6.

II. THEORETICAL ANALYSIS OF MFL DETECTION
A. PRINCIPLE BACKGROUND OF MFL DETECTION
As for the principle of MFL detection [12], it is based on the
fact that the magnetic permeability of ferromagnetic mate-
rials (such as steel) is clearly superior to other varieties of
non-ferromagnetic media, such as air. When the magnetic
field line of an item encounters an internal defect and there
is discontinuity occurring, the magnetic field line will be
distorted to cause change to magnetic field as can be detected
by the sensor. In general, the rail is made from ferromagnetic
material. After the railway is locally magnetized, a leakage
magnetic field will be formed on the surface if there is a
defect developing on the surface of the railway. There is a
close association between the size and distribution of the
leakage magnetic field signal and the defect, while the width
of the defect makes little difference to the amplitude of MFL
signal. Therefore, by picking up the leakage magnetic field
with a magnetic detecting element, such as a Hall element,
the information about various defects can be acquired for
subsequent analysis. Fig. 1 (a) shows the basic principle of
MFL detection of rail.

As shown in Fig. 1(a), after the magnetizing device is
partially magnetized, if there is no defect developing in the
rail, no overflow will occur to magnetic flux and magnetic
leakage field will be formed. Thus, it is unlikely for the Hall
sensor to detect MFL signal. Conversely, if the rail contains
defect, the Hall sensor is able to detect it.

Fig. 1(b) shows the flowchart of how the array sensor
conducts detection within the rail MFL detection system.
In order to prevent missed inspection, the array sensor covers
the top width of the rail. In the course of detection, the n Hall
sensors are deployed in a row perpendicular to the direction of
travel of the train to collect MFL signal from the top surface
of the rail. Then, the flowchart of signal conditioning for
MFL detection shown in Fig. 1(c) is used to perform signal
conditioning, with the signals amplified, stored, and finally
converted into a digital voltage signal.

B. ANALYSIS OF NOISE
When MFL detection method is adopted to detect the defects
of rail, a variety of noises are introduced in the collection and
transmission of MFL signals. Firstly, in the signal acquisi-
tion phase, due to the vibration of the high-speed train and
the vibration of the transmission equipment, the complex
mechanical vibration of the train will cause the detection
system to vibrate [13]–[15]. As a result, the yoke lift-off
and the sensor lift-off will change, thus making difference to
the background magnetic field. Due to the variation in back-
ground magnetic field acquisition, the vibration interference
with different frequency and large amplitude is superimposed
on MFL signal. Secondly, the leakage magnetic field of the
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FIGURE 1. MFL detection system: (a) Probe for MFL detection; (b) Array
sensor distribution map; (c) Flowchart of signal conditioning for MFL
detection.

defect is a spatial magnetic field. In case of other electri-
cal devices around the detection device, for example, trans-
former, motor, a magnetic field will be generated in space.
If there are no measures taken, it may suffer disturbance
when a defective leakage magnetic field signal is picked up
with a Hall element. In the data transmission phase, after the
magnetic field signal is converted into an electrical signal by
the Hall sensor, it needs to be processed by analog and digital
circuits, such as amplification, filtering, A/D conversion, etc.
In this process, circuit noise and power frequency interference
will be superimposed on the defect using various methods.

The overall effect produced by the detection system is that
the defects are disturbed by complex noise, which makes
them difficult to distinguish between. As shown in Fig. 2,
the signals in ellipses are the defects and the other signals
are the interference signals showing no periodicity but similar
amplitude. This is clearly adverse to the effective detection

FIGURE 2. MFL signal with strong disturbance at 30km/h.

FIGURE 3. Spectrum analysis of the original signal.

and quantitative analysis of rail defects since the signals
of minor defect are easy to be submerged and difficult to
identify. Meanwhile, their frequencies overlap each other
according to the spectral analysis of theMFL signal, as shown
in Fig. 3. Therefore, it is difficult for the MFL signal to be
effectively filtered out through frequency domain filtering or
time-frequency filtering alone. In general, the noise of MFL
testing system of the rail involves not only electrical noise,
such as power frequency interference and ground potential
difference noise, but also mechanical noise, such as the vibra-
tion of the locomotive equipment, triboelectric effect, and the
movement of the conductor in the magnetic field. Therefore,
it is essential to ensure the effective filtering of MFL signals,
which is difficult to achieve though.

C. THE METHODOLOGY OF THE ADAPTIVE
NOISE CANCELLER
At present, adaptive filters [16], [17] have been widely
applied in such fields as signal detection, noise removal,
prediction, and so on. They are especially suitable for non-
stationary signal processing. This filter is characterized by
a learning function. With the desired signal as a ‘‘mentor’’,
the input signal is used to estimate the desired signal through
the filter output, and the filter coefficients are gradually
updated to make the filter increasingly approach the optimal
filter. In this study, one of the applications of adaptive filters
- adaptive interference cancellers are adopted. Fig. 4 shows
the structure of the adaptive canceller.

The original input dj as shown in the Fig. 4 is comprised of
the expected signal s of additive noise v0 pollution. Reference
input is noise v1, which is related to interference signal
v0 and s. System output is ej = dj − yj, yj = W T

j Xj.
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FIGURE 4. Adaptive canceller.

The adaptive process is the automatic regulation Wj,which
leads to E[e2j ] = min. From Fig. 4, it can be obtained that,

E[e2j ] = E[s2]+ E[(v0 − yj)2]− 2E[s(v0 − yj)] (1)

It is potentially desirable to set s, v0, v1 as stationary
stochastic processes with zero mean. Since s is irrelevant to
v0, and v0 is related to v1, the signal power E[s2] in the upper
formula is irrelevant toWj. Thus,

E[e2j ]min = E
[
s2
]
+ E[(v0 − yi)2]min (2)

E[
(
ej − yi

)2]min = E[(v0 − yi)2]min (3)

When E[(v0 − yj)2] is minimized, E[
(
ej − yi

)2] is mini-
mized, which means ej, as the minimum mean square error,
tends to be s, so that the best-case scenario is

yi = v0 (4)

So

ej = s (5)

From formulas (4) and (5), it can be seen that adaptive fil-
tering is capable to extract the defect from the noise as long as
the reference signal related to the noise in theMFL signal and
independent of the defect is obtained. However, it requires
some skills to find a reasonable reference signal [18]. In this
study, it is proposed that the MFL signals of the array sen-
sors are applied to extract the voltage amplitude with the
smallest absolute value at each moment to construct a virtual
channel, which is the complete reference signal. Next, it will
be demonstrated how to construct a virtual channel and an
adaptive noise canceller.

III. IMPROVED ADAPTIVE FILTERING METHOD
The advantage of adaptive filtering is reflected in its capa-
bility to filter random signals without knowing the apriori
statistical characteristics of signals and noise. However, it is
necessary to collect a piece of channel data containing only
interference information and no defect information as a ref-
erence signal to filter out leakage flux. To achieve effective
filtering, the interference information carried by the signal
includes the information about defect. In practice, however,
the existence of defects on the unknown section of railway is
randomized. Therefore, it is possible for each channel in the

array sensor to detect the defect. As a result, it can be found
out that only the interference information is contained and the
defect information is excluded. Thus, the channel presents an
urgent problem to resolve.

According to the characteristics shown by noise, the pro-
cedures of denoising the MFL signal are designed, as shown
in Fig. 5.

FIGURE 5. MFL signal denoising process.

Stage 1: Preprocessing
Through the MFL acquisition system shown in Fig. 1,

a MFL signal is obtained, including X (1),X (2), . . . ,
X (p), . . . ,X (n),. The MFL signal collected by each Hall sen-
sor is, where dim(X)=n and p denotes the channel number.
It is one of 1, 2 to n.

The MFL signals are denoised by means of amplifying
circuit and band-pass filtering to obtain X̃ [19]. The denoising
performed by preprocessing is purposed to filter out the detail
components (the high frequency noise and direct component)
fromMFL signal while preserving the contour information in
the signal (the low frequency defect).

Stage 2: Interference reconstruction
As is mentioned above, an appropriate reference signal is

required before adaptive filtering is performed.
When there is nothing but noise, all sensors can detect

noise simultaneously, which is because all sensors are situ-
ated in the background magnetic field with almost the same
background. However, due to varying degrees of impact
caused by noise, the amplitude of signal shows difference.
When a defect occurs, in order for the sensor to overcome
the defect, the MFL signal collected is affected by both the
magnetic field leakage and noise. While for the sensor not
overcoming the defect, the MFL signal collected is affected
only by noise. It is also found out that the amplitude of
defect MFL signals with noise is generally greater than that
of noise MFL signals. This is because the defect with noise
is consistently larger than the only noise at the same time,
while the minimum output value of all array sensors is the
noise at all times. Unless all sensors detect the same defect
at the same time, it is rare for the natural cracks in the state
of nature to show the regular defects that are perpendicular
to the direction of travel for train and cover the rail width
(the same distribution as transverse array sensors). Therefore,
the minimum absolute value of each moment is selected to
construct a virtual noise channel.
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FIGURE 6. The process of multichannel adaptive filtering.

Stage 3: Interference cancellation
An adaptive noise canceller is built in [20], [21]. Fig. 6

shows the process of multichannel adaptive filtering. Based
on the adaptive filtering algorithm, the virtual channel con-
struction algorithm is applied to construct the adaptive noise
canceller, and themagnetic signal of rail leakage is filtered for
a second time. With the virtual channel obtained above taken
as the reference signal of the adaptive filter, single channel
filtering is performed one by one for each channel, and a
matrix containing only defect but no noise is obtained.

IV. EVALUATION METHOD OF FILTERING EFFECT
A. THE INDICATOR OF FILTER EFFECT EVALUATION
The adaptive canceller is applied to filter the multi-channel
MFL signal. Before and after filtering, the information on
defect is retained and the noise interference is suppressed.
In this case, the quantitative analysis of the filtering effect
plays a vitally important role in evaluating the filtering
method.

Considering that the adaptive canceller removes the
noise-related part of the noisy signal, the defect is preserved
before and after filtering, while the noise intensity is weak-
ened. In the meantime, the data is made up of long signals as
the probability of rail damage is low. Among them, there are
a small number of defective signals, which makes the noise
relatively large when the signal-to-noise ratio is calculated.
Consequently, the result of signal-to-noise ratio calculation
is small, and the change to signal-to-noise ratio is unable to
reflect the degree of noise percentage attenuation. In sum-
mary, the rate of change in pure noise energy is used before
and after filtering as an indicator to evaluate the filtering
effect, which is expressed as:

η =
En0 − En1

En0
(6)

where En0 represents the original signal pure noise total
power, En1 indicates the pure noise total power of the filtered

signal, and η denotes the rate of change in pure noise energy
before and after filtering.

B. η FOR CALCULATING RAILS MFL SIGNALS
The data to be filtered is the leakage magnetic data on the
known section of railway. Therefore, the position and number
of the damage on the rails can be determined, and the position
of the defect in the data can be calibrated, as a result of which
what can be removed is only the defect in the data. With pure
noise collected, the rate of change of pure noise energy is
calculated before and after filtering according to formula (6),
and the degree of noise suppression by the filtering method
can be known. Fig. 7 shows the calculation process for the
filter effect indicator:

FIGURE 7. Flowchart of filter effect indicator calculation.

The length of data of the defect changes with the intensity
of the signal. At the same time, the length of defect is defined
as from the second zero left to the first zero right of the
maximum point according to the characteristics of magnetic
field distribution corresponding to the defect. The defect is
shown in Fig. 8.

FIGURE 8. MFL signal of the defect.
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V. RESULTS AND DISCUSSIONS
A. EXPERIMENTS AND RESULTS
At the speed of 30km/h, the Z-direction MFL signal of the
measured rails with 8 pits is selected for signal processing.
This data can reflect the complex vibrations occurring during
MFL high-speed inspections and the defect in the Z-direction
leakage magnetic field shows easy-to-view bimodal charac-
teristic. The railway line consists of rail with artificial pit
defects. As shown in Fig. 9, there are artificial defects found
in the rail and MFL detecting probe. The calibration line of
the artificial damage is shown in Fig. 10.

FIGURE 9. On-site rails and MFL detecting probe.

FIGURE 10. Artificial damage diagram.

In order to verify the rationality of the virtual channel and
the filtering effect produced by the method, the correlation
analysis is first performed on the virtual channel and the
general channel in the absence of useful signal. Then, a com-
parison is performed in the MFL signals before and after the
filtering. The filtering process and its effects are detailed as
follows:

(1) The MFL signals of rail are collected by MFL detec-
tion system, and the original signal containing 13 signals
are obtained. The single channel signal (green line) and
the multi-channel signals as shown in Fig. 11 and 14(a),
respectively. It can be seen from the figures that it is difficult
to distinguish the defect from the vibration signal, so the
adaptive filtering method is needed to process the data.

(2) The virtual channel construction algorithm is applied
to obtain the virtual channel. As shown in Fig. 11, the virtual
channel signal constructed by the algorithm is the red line in
the figure. It can be seen from the figure that the virtual chan-
nel signal shows a low correlation or even no correlation with
the defect in the place where the defect occurs. By contrast,
it exhibits a close association with the noise in other places.

In order to analyze the correlation between virtual chan-
nels and other channels, their correlation coefficients are

FIGURE 11. Contrast figure of the 13th channel MFL signal before and
after filtering.

FIGURE 12. The relative position of virtual channel signal and
multichannel signal.

FIGURE 13. Correlation coefficients of virtual channels with other
channels.

calculated according to Equation (7), as shown in Fig. 13.
From Equation (4), it can be known that the closer the corre-
lation between the reference signal and the noise in the noisy
signal, the more satisfactory the adaptive filtering effect. The
signal of the virtual channel is related to the signal of the
13 channels, where the correlation coefficient of the signal
in channels 5∼11 exceeds 91%, followed by the signal in
channels 1∼4 (85-90%) and the signal in channels 12∼13
(less than 80%). Since there are 10 holes distributed on both
sides of the rail, the intermediate sensor is unable to detect
the defect leakage magnetic field. The 13 signals are classi-
fied as follows. Channels 1∼4 collect two defects, channels
12∼13 collect up to eight defects, channels 5∼11 contain
only interference signals. It can be seen that the signal of the
virtual channel is closely correlatedwith the noise in the noisy
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signal, suggesting that the signal of the virtual channel can be
applied as a reference signal for the adaptive filter.

ρxi, x0 =
E (xix0)− E (xi) (x0)√

E
(
x2i
)
− E2(xi)

√
E
(
x20
)
− E2(x0)

(7)

(3) Based on the adaptive filtering algorithm, the virtual
channel construction algorithm is applied to construct the
adaptive noise canceller, and the rail leakage magnetic sig-
nal is filtered for a second time. With the virtual channel
obtained above as the reference signal for the adaptive filter,
single-channel filtering is performed one by one for each
channel. Finally, the filtering of the entire MFL matrix X̃
is made relatively pure. The adaptive filtering algorithm is
applied to perform the single-channel comparison before and
after filtering, as shown in Fig. 11. The multi-channel com-
parison is shown in Fig. 14(b). It can be seen from these com-
parisons that the noise of the original signal is significantly
weakened after the filtering method proposed in this paper
is adopted. Moreover, the defect submerged by the noise is
clearly observed. There are 10 defects distributed on both
sides of the top surface of the rail.

FIGURE 14. All channel MFL signals: (a) The original signal before
filtering; (b) The filtering result of the method in this paper.

B. EVALUATION AND ANALYSIS OF FILTERING EFFECT
According to the method proposed above, the filtering effect
achieved in this paper is evaluated with the 13th channel of
detecting eight defects as an example.

First of all, the defect location is marked, as shown
in Fig. 15. The purple line indicates the single-channel fil-
tered data, and the blue line represents the location of the
artificially marked defect. In Figures 16 to 18, the horizontal

FIGURE 15. Marking the defect.

FIGURE 16. Single channel pure noise signal before filtering.

FIGURE 17. Single channel pure noise signal after filtering.

axis denotes the number of sampling points and the vertical
axis indicates the voltage amplitude.

Then, the pure noise signals before and after filtering are
obtained, respectively. Fig. 16 shows the single channel pure
noise signal before filtering, while Fig. 17 shows the single
channel pure noise signal after filtering. In Figures16 and 17,
the purple line indicates pure noise signal and the green line
denotes filtered signal.

Finally, the rate of change in pure noise energy before
and after the 13th channel filtering is 81.44%, which means
that the adaptive filtering method reduces the noise intensity
by 81.44%. It is thus indicated that the filtering effect is
significant.

C. ANALYSIS OF THE APPROPRIATENESS OF
THE FILTERING METHOD
In order to demonstrate the capability of generalization
achieved by this filtering algorithm, the experimental data
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FIGURE 18. η at different speeds and directions.

of different speeds and directions are selected to filter and
calculate the filtering effect, as shown in Fig. 18.

It can be seen from the figure that the noise intensity of
MFL signals at different speeds and sensor directions (X,
Y and Z directions) is reduced by 74%∼82%. As shown
in Fig. 18, the filtering effect is made more significant by the
increase of speed, which is because the η decreases as speed
is on the rise. Also, it can be known that the filtering method
proposed in this paper shows a more significant advantage in
processing high-speed MFL signals.

VI. CONCLUSION AND FUTURE WORK
In this paper, an improved adaptive filtering method is pro-
posed, to reduce the interferences caused by vibration in the
high-speed inspection process by more than 80%, which indi-
cates the significant filtering effect. According to the analysis,
the noise in the rail leakage magnetic high-speed inspection
system is vibration interference, and it shows similarity to
the power spectrum overlap of the defect. Firstly, based on
the analysis conducted of the relationship between the noise
and the defect in the high-speed MFL detection process,
combined with the characteristics of the array sensor signal,
the virtual channel with the similarity of the actual channel
without the defect exceeds 90%. Additionally, an adaptive
reference canceller is constructed to filter the high-speed
MFL detection signal. Then, in order for quantitative eval-
uation of the filtering effect, the energy change rate of the
noisy signal with the useful signal before and after filtering
is proposed as an index for the evaluation of the filtering
effect. In the meantime, to verify the generalization ability
of the algorithm, the algorithm is applied at different speeds
and directions. According to the results, the noise intensity
remains above 74%, and the filtering effect is made more
significant with the increase of speed, which is conducive
to addressing the filtering problem with high-speed MFL
detection signal. The adaptive filtering method of the MFL
signal on the top surface of the rail makes the defect easy
to observe, which plays a significant role in improving the
detection rate of the rail top surface defect and facilitating
the subsequent quantitative analysis or state reconstruction.

The improved adaptive filtering method proposed in this
paper is verified as reasonable only when two preconditions
are satisfied. One is that the defects whose directions are

parallel to the rail joint and whose length is the same as the
width of the rail will be filtered out as noise. The other is that
the signals of all channels are filtered by the same reference
signal. To improve the filtering effect, it is necessary to con-
sider the spatial difference between the sensors. Therefore,
the future work will be focused on finding a way to obtain
the optimal reference signal for each channel. In doing so,
each channel can produce the best possible filtering effect.
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