
Received February 13, 2021, accepted February 28, 2021, date of publication March 10, 2021, date of current version March 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3065067

Synchronization of Variable-Length
Constrained Sequence Codes
CONGZHE CAO AND IVAN FAIR , (Member, IEEE)
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Corresponding author: Congzhe Cao (congzhe@ualberta.ca)

This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada and Alberta Innovates
Technology Futures (AITF).

ABSTRACT We study the ability of recently developed variable-length constrained sequence codes to
determine codeword boundaries in the received sequence upon initial receipt of the sequence and if errors in
the received sequence cause synchronization to be lost. We first investigate construction of these codes based
on the finite state machine description of a given constraint, and develop new construction criteria to achieve
high synchronization probabilities. Given these criteria, we propose a guided partial extension algorithm
to construct variable-length constrained sequence codes with high synchronization probabilities. With this
algorithm we construct new codes and determine the number of codewords and coded bits that are needed
to recover synchronization once synchronization is lost. We consider a large variety of constraints including
the runlength limited (RLL) constraint, the DC-free constraint, the Pearson constraint and constraints for
inter-cell interference mitigation in flash memories. Simulation results show that the codes we construct
exhibit excellent synchronization properties, often resynchronizing within a few bits.

INDEX TERMS Constrained sequence codes, variable-length codes, capacity-approaching codes, construc-
tion, synchronization, error propagation.

I. INTRODUCTION
Constrained sequence (CS) codes have been widely used to
increase the efficiency and reliability of data storage and
digital communication systems such as optical recording,
magnetic recording, flash memories, DNA-based storage,
cable transmission, visible light communications and wire-
less energy harvesting, among other applications [1]–[4].
Since Shannon’s 1948 paper [5], the design of CS codes has
been an active research area where efficient CS codes that
satisfy a great variety of constraints have been proposed.
Although most CS codes in the literature are fixed-length
codes [1]–[4], [6]–[16], recent advances show that
variable-length CS codes have the potential to achieve higher
code rates with simpler codebooks [17]–[26]. Since CS codes
typically do not have strong error-correction capabilities,
decoding of CS codes may result in error propagation.
In practical systems CS codes are commonly used in con-
junction with an interleaver and an error control code (ECC)
such as an LDPC code [27], a polar code [28]–[31] or a

The associate editor coordinating the review of this manuscript and

approving it for publication was Rui Wang .

product code [32]–[35] to overcome error propagation that
may occur during CS decoding. Alternatively, automatic
repeat request (ARQ) could be used such that when errors are
detected at the output of the CS decoder, the system requests
retransmission until the decoded sequence is error free.

Apart from their advantages, variable-length CS codes
have the drawback that because of noise that occurs during
transmission, erroneously received sequences may result in
loss of codeword-boundary synchronization at the decoder.
Mis-synchronization typically results in insertion or dele-
tion errors, which may cause burst errors at the output of
the CS decoder that may be difficult for the ECC to cor-
rect. To enable practical implementation of variable-length
CS codes, we aim to develop codes with good synchroniza-
tion properties, to make it feasible for ECCs to correct errors
that occur at the output of the CS decoder. Alternatively
with ARQ, it is desired that error propagation be limited to
within the current received packet, to ensure that subsequent
packets are unaffected.

In this paper, we consider the variable-length CS codes
constructed by the approaches in [20]–[25] where the design
guideline in those papers has been to achieve the highest

45864 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4546-3255
https://orcid.org/0000-0003-1421-0220
https://orcid.org/0000-0002-2974-0972

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

possible code rate. We show that different strategies should
be considered when we aim to develop codes that achieve
both high efficiency and good synchronization properties.
We consider a variety of constraints, including the runlength
limited (RLL) constraint, constraints that mitigate ICI in flash
memories, the Pearson constraint, and the DC-free constraint.
The contributions of this paper are summarized as follows.
• We show that states selected based on the criteria
in [21]–[25] may not result in the best synchronization
properties, andwe develop criteria for selecting the spec-
ified state that results in superior synchronization.

• We develop an algorithm to perform partial extensions
that result in a set of codewords with high code effi-
ciency along with high synchronization probability.

• We evaluate the synchronization properties of the pro-
posed codes, including the number of codewords and
number of coded bits that the receiver typically requires
in order to regain synchronization once it is lost.

• We show that our proposed codes have good synchro-
nization properties because they regain synchronization
quickly in order to reduce the required error control
capabilities of the outer ECCs.

We begin with necessary background information.

II. PRELIMINARIES
A. CS CODING THEORY
RLL and DC-free codes are two widely used classes of
CS codes. RLL coded sequences have the property that the
number of bits between transitions is bounded. They can
be constructed by first generating a (d, k) sequence, where
d and k denote the minimum and maximum number of logic
zeros between consecutive logic ones, followed by differ-
ential encoding that encodes a logic one as a change in
value and a logic zero as no change [1]. DC-free codes are
designed so that the spectral components at low frequency
are suppressed to match the characteristics of the physical
channel. In the time domain, the running digital sum (RDS)
of the DC-free encoded sequence is limited to N different
values [1]. RDS is the ongoing summation of encoded bit
weights in the sequence, where a logic one has weight +1
and a logic zero has weight−1. Other constraints include the
Pearson constraint that is immune to unknown channel gain
and offset [13]–[15], and constraints that mitigate inter-cell
interference in flash memories [23], [36]–[39].

It is well known that a constraint can be described with
a finite state machine (FSM) that contains states, edges and
labels. For an FSM with S states, the directed graph underly-
ing the constraint is described by an S × S adjacency matrix
D = {dij}, where dij is the number of edges transitioning
from state i to state j. The transition probability matrix is
denoted by an S × S matrix Q = {qij}, where qij is the
probability of transitioning from state i to state j. Based onD,
the maxentropic transition probabilities and steady-state dis-
tribution can be evaluated to describe the statistical properties
when the maximum amount of information is represented
by the FSM [1], [40]. Based on the maxentropic transition

probabilities and steady-state distribution, it is possible to
obtain the maxentropic probability of each codeword, which
is the occurrence probability of the codeword in the coded
sequence when the maximum amount of information is
conferred.

As outlined in [1], maxentropic transition probabilities in
a FSM are given by

qij = λ−1maxdij
pj
pi

(1)

where 1 ≤ i, j ≤ S, and p is the eigenvector of D associated
with the eigenvalue λmax which is the largest real root of the
determinant equation

det[D− zI] = 0 (2)

where I is an identity matrix and z represents roots of the
determinant equation [1].

The maximum amount of information that can be carried
in a sequence that satisfies the constraint is the capacity of
the constraint C, which is defined as [5]

C = lim
m→∞

log2 N (m)
m

(3)

where N (m) is the number of constraint-satisfying sequences
of length m. Given the FSM description of the constraint,
the capacity can be evaluated as C = log2 λmax .

We denote C̃M as the maximum possible code rate of a
constrained coded sequence constructed with variable-length
codewords with lengths from the set M . LM denotes the set
of word lengths inM , and C̃M is determined as

C̃M = log2̃λmax (4)

where λ̃max is the largest real root of the characteristic
equation

∑
li∈LM

λ−li = 1 and li is the length of the i-th word

in M [1], [20]–[22]. We denote the maximum length of
words in the minimal set as lmax , and |M | as the number of
words in M . Note that a word length li could appear more
than once in LM since there may be multiple words with the
same length. The correspondingmaximum possible efficiency
is η̃ = C̃M/C.

B. CAPACITY-APPROACHING VARIABLE-LENGTH
CS CODES
1) MINIMAL SETS AND EXTENSIONS
We now briefly review the construction of single-state
capacity-approaching variable-length constrained sequence
codes introduced in [20]–[24]. As discussed in [20]–[22],
a critical step in construction of these codes is the formation
of a minimal set from which words can be concatenated
to generate constraint-satisfying codewords. A minimal set
Mi can be established by enumerating all words exiting and
re-entering a specific state i in the FSM. Codes constructed
based on different states in the FSM have different maximum
possible code rates, therefore as outlined in [21], [22] one
needs to adhere to certain criteria to select the specified state

VOLUME 9, 2021 45865

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

in the minimal set which has the highest maximum possible
code rate.

Let Mi be a minimal set that contains K words. A partial
extension ofMi, denotedMi,p, is formed by concatenating all
K words in Mi to any single word in Mi, generating 2K − 1
words. Subsequent partial extensions can be performed by
appending the K words from Mi onto any word from the
previous extension. We denote word U = W + V in the
updated partial extension set as the result of concatenating
word V inMi to wordW in the current set, where + denotes
concatenation. After performing partial extensions, we obtain
a set of codewords that are instantaneously decodable due
to the fact that no codeword in the minimal set Mi is a
prefix of another, which also holds for any of its partial
extensionsMi,p [21]–[25].

2) NORMALIZED GEOMETRIC HUFFMAN (NGH) CODING
NGH coding [41]–[43] is used to assign codewords in Mi,p
to corresponding source words such that the maximum infor-
mation density is approached. Starting with the desired code-
word probabilities as the input probabilities, NGH coding
merges the two smallest probabilities qi and qj according to
the following rule to obtain the merged probability:

qmerged =

{
2√qiqj if qi < 4qj
qi if qi ≥ 4qj.

(5)

The smaller probability is pruned from the Huffman tree
when the lower condition is satisfied. As in the well-known
Huffman construction technique, this process is repeated until
a single value remains, and source words are assigned based
on the merging pattern.

Given a one-to-one correspondence between variable-
length source words and variable-length codewords, and
assuming independent and equiprobable logic values in the
source stream, the average code rate R is

R =

∑
si
2−sisi∑

oi
2−sioi

(6)

where si is the length of i-th source word that is mapped to the
i-th codeword of length oi. The efficiency of a variable-length
code is defined as η = R/C. After obtaining R, NGH coding
repeats the above process with updated input probabilities
and with C replaced by R when calculating the maxentropic
probabilities in (1) – (2), until R̄ converges.
Since different partial extensions result in different code-

books with different η, we establish parameters such as the
maximum number of source words in the codebook nmax ,
or maximum codeword length lmax , and exhaustively search
over all codebooks that satisfy these limits to find the onewith
the highest η.
Example 1: ((d = 1, k = 3) RLL code [25]): the FSM of

the (d = 1, k = 3) RLL constraint is shown in Fig. 1. Accord-
ing to [21], [22], we choose state 1 as the specified state upon
which to construct the code; its minimal set is established as

FIGURE 1. FSM of a (d = 1, k = 3) RLL code.

M1 = {01, 001, 0001}. We may choose to directly perform
NGH coding over the minimal set to construct the simple
codebook shown in Table 1 which has efficiency η = 98.9%.
By performing extensions as illustrated in Fig. 2, we construct
the code shown in Table 2 with η = 99.25%. Note that the
encoding and decoding processes are instantaneous with the
words in this table. To compare, note that a widely used (1,3)
RLL code is theMFM (Modified FrequencyModulation) code
with η = 91% [1].

TABLE 1. Codebook of a (d = 1, k = 3) RLL code with efficiency of 98.9%.

FIGURE 2. Partial extensions over M1. Underlined words are codewords
in the final code listed in Table 2.

TABLE 2. Codebook of a (d = 1, k = 3) RLL code with efficiency
of 99.25%.

C. SYNCHRONIZATION
We wish to develop variable-length CS codes with good
codeword synchronization properties, in which their code-
books have as many synchronizing codewords as possible.
A synchronizing codeword guarantees that whenever it is
received, the decoder achieves synchronization because it is
guaranteed to correctly identify the end of this codeword and
therefore maintain or recover synchronization, regardless of
the correctness of the previously received codewords [44].
According to [44], a synchronizing codewordC = c1c2 . . . cn
in the set of codewords from codebook C must satisfy the
following two conditions:

45866 VOLUME 9, 2021

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

Condition 1: ∀X = x1x2 . . . xm in C such that m > n and
C is a substring of X , c1c2 . . . cn = xm−n+1xm−n+2 . . . xm and
c1c2 . . . cn 6= xixi+1 . . . xi+n−1 ∀i 6= m− n+ 1.
Condition 2: ∀j < n such that c1c2 . . . cj is a suffix of any

codeword in C , cj+1cj+2 . . . cn is a valid codeword in C .
In particular, Condition 1 indicates that if a synchronizing

codeword C is an internal bit string of any codeword X ,
the last bit of C must also be the last bit of X . This guarantees
that correct identification of C results in correct recogni-
tion of the end of a codeword, hence synchronization is
maintained or recovered. Condition 2 ensures that whenever
mis-synchronization occurs that results in the receiver incor-
rectly identifying cj as the end of a codeword, resynchroniza-
tion is guaranteed to occur at the end of codeword C because
cn will be identified as the end of C . It is shown in [44] that
some Huffman codes exhibit good synchronizing properties
because their codewords re-synchronize the decoder regard-
less of the previous synchronization status.

We denote the synchronization probability (denoted as
sync probability) P of a codebook C as the sum of occur-
rence probabilities of all synchronizing codewords. Note that
synchronizing codewords appear more frequently in coded
sequences constructed from codebooks with higher values
ofP, and therefore that decoders will typically re-synchronize
more quickly once synchronization is lost, resulting in fewer
burst errors for the outer ECC to correct. Our goal is therefore
to construct codes with high synchronization probability.

To construct these codes, we first consider the minimal
set, and then consider partial extensions of this minimal set
to achieve high efficiency and high sync probability. Note
that, prior to NGH coding, a minimal set and its partial
extensions are not codebooks because their words have not
been assigned source words, and therefore it is not possible
to obtain their occurrence probabilities. However, because
we expect good codes to have probabilities that are close to
maxentropic, in our construction approach we approximate
the sync probability P of a minimal set M and its partial
extensionsMp as the sum of the maxentropic probabilities of
each synchronizing word.

Lastly, we note that existence of synchronizing codewords
is a sufficient but not necessary condition for the receiver to
regain synchronization, since in some situations the receiver
may correctly regain synchronization on nonsynchronizing
words, as we will show in our simulation results. Thus,
we expect there to be a strong correlation, but not necessarily
a direct relationship, between the sync probability and syn-
chronization performance.

III. MINIMAL SET CONSTRUCTION
Three criteria are introduced in [21], [22] to select the spec-
ified state that results in the minimal set with the highest
possible code rate. In situations where we wish to construct
codes with good synchronization properties, criteria should
be developed that result in codebooks with high sync proba-
bilities. In this section we consider selection of the specified
state from the minimal set, and illustrate our selection criteria

with a variety of constraints. In the next section we consider
partial extensions of this minimal set.

Observation 1: In the FSM description of a constraint, if a
state has a loop associated with itself, then selection of this
state as the specified state is likely to correspond to a minimal
set with a small sync probability, unless the loop corresponds
to a synchronizing word.

Observation 1 arises when a single bit 1 or 0 that is associ-
ated with the specified state appears as a word in the minimal
set. The word 1 or 0 is likely to violate Condition 1, therefore
this case should be avoided unless codeword 0 or 1 is a
synchronizing word. We demonstrate Observation 1 with the
following examples.
Example 2: ((d,∞) constraint): the FSM of the

(d, k = ∞) RLL constraint is shown in Fig. 3. We consider
the (d = 2, k = ∞) RLL constraint as an example.
To maximize the efficiency of the code, in accordance with the
criteria in [21], [22] we would select state 1 as the specified
state, and find the minimal set to be M1 = {0, 100}. More
generally, as is evident from Fig. 3, the minimal set of a
(d,∞) constraint is M1 = {0, 1 00︸ ︷︷ ︸

d zeros

}.

It can be verified that the second word is a synchronizing
word. However, it can be observed that word 0 in M1 is not a
synchronizing word since it does not satisfy Condition 1. But
it can also be verified that, if we select any other state as the
specified state, the minimal set will have a sync probability
of 100%. For example in the FSM of the (d = 2, k = ∞)
RLL constraint, M2 = {001, 0001, 00001, 000001, . . .} in
which every word in M2 is a synchronizing word. However
this minimal set contains an unlimited number of words,
and therefore will result in a less efficient code than that
constructed using M1 [21], [22]. This demonstrates that a
code optimized for efficiency may not be optimized for sync
probability, and vice versa.

FIGURE 3. FSM of the (d , k = ∞) RLL constraint.

Example 3: ((0, k) constraint): the FSM of the (d = 0, k)
RLL constraint is shown in Fig. 4. We consider the (d = 0,
k = 3) RLL constraint as an example. To maximize
the efficiency of the code, in accordance with the criteria
in [21], [22], we select state 1 as the specified state, and
establish the minimal set as M1 = {1, 01, 001, 0001}. It can
be observed that for the (d = 0, k = 3) RLL constraint, and

FIGURE 4. FSM of the (d = 0, k) RLL constraint.

VOLUME 9, 2021 45867

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

more generally for any (d = 0, k) constraint, every word in
M1 is a synchronizing word, and hence the sync probability
is 100%. In this case, the selection criteria in [21], [22] also
result in the minimal set with the highest sync probability.
Note that this is in agreement with Observation 1 since the
single-bit word 1 associated with state 1 is a synchronizing
word.

Observation 2: In the FSM description of a constraint,
if outgoing edges and incoming edges of a state correspond
to the same bit sequence, it is likely that selection of this
state as the specified state results in a minimal set with few
synchronizing words. This occurs because the prefix of a
codeword W will be suffix of one or more codewords in the
minimal set, and the remaining bits of W may not be a valid
codeword, thus violating Condition 2.

Observation 2 arises when a word in the minimal set (that
corresponds to the outgoing edges) can be divided into a
suffix of another word (that corresponds to the incoming
edges) plus the remaining bits, and therefore it might occur
that these remaining bits are not a valid word, which violates
Condition 2. We explain Observation 2 with the following
example, in which we use the notation W\ζ to represent
a substring of codeword W where the prefix ζ of W is
excluded, and denoteM\W as the set of words in the minimal
set M where wordW is excluded.
Example 4: (general (d, k) constraints): we consider gen-

eral (d, k) constraints where d 6= 0 and k 6= ∞. The
corresponding FSM is shown in Fig. 5. According to the
criteria in [21], [22], any state from states 1 to d + 1 can
be selected as the specified state because they all result
in the highest maximum possible code rate. For example,
the minimal set with state 1 as the specified state is M1 =

{00 . . . 0︸ ︷︷ ︸
d zeros

1, 00 . . . 0︸ ︷︷ ︸
d+1 zeros

1, 00 . . . 0︸ ︷︷ ︸
d+2 zeros

1, . . . , 00 . . . 0︸ ︷︷ ︸
k zeros

1}. Since every

word is a synchronizing word, the sync probability is 100%.
However, different from the criteria in [21], [22], as intro-
duced in Observation 2, state σ, 1 < σ ≤ d should not be
selected as the specified state. Consider state 2 as an example.
One of the wordsW in its minimal set is 00 . . . 0︸ ︷︷ ︸

d−1 zeros

10 which is

not a synchronizing word, since 0 is a suffix ofW itself but the
minimal set does not contain the word W\0 = 00 . . . 0︸ ︷︷ ︸

d−2 zeros

10.

Therefore, Condition 2 is not satisfied and henceW is not a
synchronizing word, making the sync probability of M2 less
than 100%. A similar observation can be made for states
σ, 2 ≤ σ ≤ d, where we can see that these states have both
an outgoing edge and an incoming edge that are associated
with bit zero, which violates Condition 2. W could be a

FIGURE 5. FSM of general (d , k) RLL constraints, d 6= 0, k 6= ∞.

synchronizing word iff W\0 was a valid word, which is not
the case.

Based on the above observations and examples, we propose
the following criteria to select the specified state that results
in high sync probability.

Criterion 1: if a state has a loop associated with itself, this
state should not be selected as the specified state unless the
loop corresponds to a synchronizing word.

Criterion 2: if outgoing edges and incoming edges of a
state correspond to the same bit sequence, this state should
not be selected as the specified state.

Note that these two criteria are guidelines for general
constraints when selecting the specified state. Therefore one
should consider the specific characteristics of each constraint
when selecting the specified state. In addition to the (d, k)
RLL constraints that we have discussed, we now illustrate
state selection for a variety of other constraints.

A. CONSTRAINTS THAT MITIGATE ICI IN FLASH
MEMORIES
In flash memories, one of the dominant errors is due to
inter-cell interference (ICI) [23], [36]–[39], because varia-
tions of the electrical charge on one floating-gate transistor
impacts the voltages of its neighboring transistors via the
parasitic capacitance-coupling effect. Many constraints have
been exploited in ICI mitigation [23], [36]–[39]. CS codes
that forbid the pattern 101 have been designed to limit
ICI [23], [36]–[39]; the FSM describing this constraint is
shown in Fig. 6.

FIGURE 6. FSM of the constraint that forbids pattern 101 for ICI
mitigation.

According to the criteria in [21], [22], states 1 and 3 are
equally preferred as the specified state due to the fact that
they both result in the highest maximum possible code rate.
However, according to Criterion 1, state 3 is inferior to
state 1 in terms of sync probability since state 3 has a
loop associated with itself that corresponds to word 0, and
the word 0 is not a synchronizing word. A closer look at
M3 = {0, 100, 1100, 11100, . . .} reveals that word 0 is not
a synchronizing word, since 0 does not satisfy Condition 1.
However, every word in M1 = {1, 001, 0001, 00001, . . .}
is a synchronizing word, including the one-bit word on the
self-loop on state 1, resulting in the sync probability of M1
to be 100%. Therefore, considering the criteria in both [21],
[22] and in this paper, state 1 is preferred.

Now consider ICI mitigation in multi-level cell (MLC)
flash memories, where each coded symbol can be 0, 1,
2 or 3 and the pattern 303 is forbidden by the constraint.
The FSM that represents this constraint is shown in Fig. 7.

45868 VOLUME 9, 2021

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

FIGURE 7. FSM of the constraint that mitigates ICI in MLC flash
memories.

Different from the FSM in Fig. 6, according to the study
in [21], [22], state 3 is better than state 1 in terms of maximum
possible code rate. As demonstrated in the previous example,
however, based on Criterion 1, M3 has the word 0 that is
not a synchronizing word whereas as we demonstrate below,
every word inM1 is a synchronizing word. This results in the
sync probability of M1 to be 100%. Therefore, we note that
in general there is a tradeoff between the maximum possible
code rate and the sync probability, and it is the choice of the
system designer as to which to optimize when selecting the
specified state and constructing the corresponding minimal
set.

To show that the sync probability ofM1 is 100%, consider
first the quaternary bit 3 in M1. It can be observed that 3
does not violate the synchronization conditions and hence is a
synchronizing word. Consider the setM1\3. All words inM1
end with a quaternary bit 3, and no word in M1\3 starts with
a quaternary bit 3, therefore Condition 2 is satisfied for all
words in M1\3. Furthermore, since the quaternary bit 3 only
appears at the end of each word, Condition 1 is satisfied for
all words inM1\3. Thus,M1 has a sync probability of 100%.

B. THE PEARSON CONSTRAINT
The Pearson constraint that is immune to unknown channel
gain and offset can be regarded as a type of T -constrained
codewhere each of the T pre-defined symbols appears at least
once in every codeword [45]. As discussed in [14], [18], [24],
a known construction for q-ary Pearson codes is to ensure that
every q-ary codeword has at least one symbol ‘‘0’’ and one
symbol ‘‘1’’.

The FSM of the binary Pearson constraint is shown
in Fig. 8 [24]. According to the criteria in [21], [22], we select
state N as the specified state to achieve the highest maximum
possible code rate. However, it can be observed that state N
does not satisfy Condition 2 since both an outgoing edge and
an incoming edge correspond to bit 0 (and bit 1). Therefore,
state N results in a sync probability lower than 100%. The
minimal set is MN = {01, 10, 001, 110, 0001, 1110, . . .}.
It can be verified that every word in MN other than the

FIGURE 8. FSM of the binary pearson constraint.

words 01 and 10 is a synchronizing word, and the sync
probability is 50%.

State N − 1 and N + 1 are inferior to state 1 in terms of
the maximum possible code rate [21], [22], [24], however,
it can be verified that only words 01 and 101 are not syn-
chronizing words inMN−1, and the sync probability ofMN−1
(and MN+1) is 62.5%. Therefore, it is again observed that a
tradeoff exists between the maximum possible code rate and
the sync probability.

C. DC-FREE CONSTRAINTS
We consider DC-free constraints with N different RDS val-
ues, as depicted in the FSM shown in Fig. 9. According
to [21], [22], state dN/2e should be selected as the specified
state since its minimal set has the highest possible code rate.
We first consider the case of the DC-free constraint with
N = 5. We have thatM3 = {10, 01, 1100, 0011, 110100,
001011} with lmax = 6. Unfortunately it can be verified that
M3 does not contain a synchronizingword, thusM3 has a sync
probability of 0%.

FIGURE 9. FSM of a DC-free constraint with N RDS values.

Now we consider the general case where N > 5. The
detailed construction algorithm of minimal sets can be found
in [22]. To illustrate, in Table 3 we list a minimal set when
N = 7; this is Table 8 in [22]. Note that since state dN/2e
has sequences 11 and 00 associated with both its outgoing
and incoming edges, it does not satisfy Criterion 2 and thus
may not be preferred in terms of sync probability. In fact,
we can prove that with N ≥ 5, the minimal set MdN/2e has
sync probability 0%. The proof is as follows.

TABLE 3. Words in the minimal set of a DC-free code with N = 7,
lmax = 10, C̃M = 97.65% (from [22]).

It is clear that words 01 and 10 are not synchronizing words
since they violate Condition 1. Furthermore, we observe that

VOLUME 9, 2021 45869

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

any of the remaining wordsW inMdN/2e ends with 00 or 11.
Therefore, W is a synchronizing word iff W\00 is a valid
word when 00 is the prefix of W , and similarly iff W\11
is a valid word when 11 is the prefix of W . However, W\00
cannot be a valid word since a valid word inMdN/2emust have
an equal number of zeros and ones, whileW\00 has twomore
ones than zeros. A similar argument can be made for W\11.
Hence none of the words in MdN/2e is a synchronizing word
and therefore the sync probability is 0%.

However, we note that state 1 does not violate Crite-
rion 2, and that the minimal set associated with state 1 has
a nonzero sync probability. For N = 5 and lmax = 6,
M1 = {10, 1100, 110100, 111000}, where it can be verified
that 110100 and 111000 are synchronizing words, resulting in
a sync probability of 7.4% which is equal to what is possible
withM5 and is higher than that can be achieved in other states.
We also note that with additional prior knowledge at the

decoder, performance can be improved in terms of sync prob-
ability. For example, assume the decoder exploits its knowl-
edge that all DC-free codewords are of even length. With
N = 5, the sync probability ofM1 is improved since onemore
word, 1100, becomes a synchronizing word. In Section V we
present more results assuming that the decoder has additional
knowledge related to the constraint.

In this section we investigated the sync properties of a
variety of constraints, and demonstrated that states that satisfy
Criteria 1 and 2 can result in minimal sets with high sync
probabilities. In the next section, we show that variable-length
CS codes constructed via partial extensions of minimal sets
can achieve both high efficiency and high sync probability.

IV. PARTIAL EXTENSIONS
Using words in the minimal set as the set of codewords
may not result in capacity-approaching codes since higher
efficiency is often achievedwith larger codebooks. Therefore,
we perform partial extensions over the minimal sets to gen-
erate larger codebooks. However, different from [20]–[26]
where partial extensions are exhaustively performed and the
one that has the highest efficiency is selected, in this section
we introduce an algorithm that efficiently guides the partial
extension process such that the resulting codebook has a
high sync probability. Note that performing partial extensions
without care can reduce the sync probability, as we show in
the following example.
Example 5: (d = 1, k = 3 RLL constraint) As discussed

in the previous section, we select state 1 in Fig. 5 as the
specified state that results in a minimal set of sync probability
100%, i.e., M1 = {01, 001, 0001}. If we extend word 0001,
we have M1,p = {01, 001, 000101, 0001001, 00010001}
where 01, 001 and 00010001 are not synchronizing words,
resulting in a sync probability of only 17%. In contrast,
extension of the words 01 and 001 results in sync probabilities
of 78% and 43% respectively.

This example motivates us to design a guided partial exten-
sion algorithm that aims to simultaneously achieve both high
code efficiency and high sync probability.

A. EXTENDING SYNCHRONIZING VERSUS
NONSYNCHRONIZING WORDS
We first consider whether to extend synchronizing words or
nonsynchronizing words when our aim is to keep the sync
probability high. We consider the following proposition and
observation.
Proposition 1: Extending a synchronizing word lowers

sync probability.
Proof: Consider a synchronizing word W in M .

If we extend W , the |M | resulting words from extension
of W cannot all be synchronizing words since one of the
resulting words is W ′ = W + W . W becomes a suffix
after this extension, and W ′\W = W can no longer be
a valid word. Therefore, W ′ is not a synchronizing word,
which lowers the sum of maxentropic probabilities of all
synchronizing words. �
Observation 3: Extending a nonsynchronizing word may

increase the sync probability.
It is often the case that an extended word W ′ constructed

through an extension of a nonsynchronizing word W is a
synchronizing word, since W ′ consists of W concatenated
with a valid word.W becomes the suffix of the extendedword
W ′′ = W + W , hence any W ′ 6= W ′′ is likely to satisfy
Condition 2.

For example, consider the ICI constraint in Fig. 7. M3 =

{0, 1, 2, 31, 300, 301, 302, 331, 332, 3300, 3301, 3302 . . .}
where word 0 is not a synchronizing word. If we extend word
0, the resulting set is {00, 01, 02, 031, 0300, 0301,︸ ︷︷ ︸

partial extension
032, 0331, 0332, 03300, 03301, 03302,︸ ︷︷ ︸

partial extension

1, 2, 31, 300, 301,

302, 331, 332, 3300, 3301, 3302, . . .} where only 00 is not
a synchronizing word. Note that the extended words
{01, 02, 031, 0300, 0301, 032, 0331, 0332, 03300, 03301,
03302} are synchronizing words, thus the sync probability
has increased.

Based on Proposition 1 and Observation 3, we propose
extending nonsynchronizing words whenever possible. Only
when the minimal set does not contain a nonsynchronizing
word do we recommend extending synchronizing words.
Selection of synchronizing words that will be extended is
discussed below.

B. THE GUIDED PARTIAL EXTENSION ALGORITHM
We start from theminimal setM , i.e.,Mp = M . In each partial
extension we first obtain the set of suffixes S where ∀S ∈ S
is a suffix of a synchronizing wordW inMp, i.e.,W = ζ +S
where ζ denotes any suffix that exists inMp. We search for a
nonsynchronizing wordN such thatN /∈ S is the target word
that we would like to extend. The reason for this is as follows.
Suppose a synchronizing word W can be represented as
W = ζ +N ′,N ′ ∈ Mp∧S. In this case, extendingN ′ would
make W nonsynchronizing since N ′ is not a valid word any
more, which would reduce the sync probability. Therefore,
we extend a nonsynchronizing word N /∈ S. At the same
time, N should not have a synchronizing word as its suffix,

45870 VOLUME 9, 2021

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

i.e.,N = 3+W (where3 denotes any sequence) should not
be extended since extension of N will result in W violating
Condition 1 and becoming a nonsynchronizing word. If we
cannot find such a word N , then a partial extension will
result in a synchronizing word becoming nonsynchronizing.
In this case we choose to perform extension for each of the
nonsynchronizing words and choose the one that results in
the highest synchronization probability.

Data: words inMp, the recursion depth J
Result: the updatedMp
Initialization: S, the set of nonsynchronizing words P,

the set of synchronizing words Q, the set
of words 0 that will be extended in the
current recursion, 0 = 8

Sort(P) // sort by length from shortest to longest;
Sort(Q) // sort by length from shortest to longest;
if P 6= ∅ then

foreach word N ∈ P do
if N ∈ S or N = N ′′ +W ∃W ∈ Q then

continue;
else

if 0.empty() or
N .size() == 0.back().size() then

0.push_back(N);
else

break;
end

end
end
if 0.empty() then

construct 0 with all words in P;
end

else
construct 0 with the shortest words in Q;

end
/* recursion with depth J + 1 */;
foreach word γ ∈ 0 do

extend γ in Mp, obtain Mp,γ and the corresponding
synchronization probability; call Algorithm 1
(Mp,γ , J + 1); undo the extension of γ in Mp,γ ,
backtrack toMp;

end
Output:Mp,γ that has the highest synchronization
probability ∀γ ∈ 0;
Algorithm 1 The Guided Partial Extension Algorithm

If there are no nonsynchronizing words in Mp, we must
extend a synchronizing word.We note that extending a longer
synchronizing word is more likely to reduce the sync proba-
bility than extending a shorter synchronizing word, since a
longer synchronizing word W may correspond to a greater
number of valid wordsW ′′ whereW = 3+W ′′, and exten-
sion of W results in W ′′ violating Condition 1. Returning to
Example 5, it is straightforward to confirm that extension of
word 0001 is not preferred since it results in words 01 and
001 violating Condition 1. On the other hand, extension of

word 001 only excludes word 01 from being a synchroniz-
ing word, and extension of the word 01 does not result in
any word violating Condition 1. Therefore, we choose to
extend the shortest synchronizing word, and we propose
Proposition 2 based on the following lemma.
Lemma 1: Under the condition that Mp does not contain

nonsynchronizing words, the shortest synchronizing word
cannot be represented as a suffix plus a valid word.

Proof: The proof is straightforward and is omitted. �
Proposition 2: Under the condition that Mp does not con-

tain nonsynchronizing words, extending the shortest synchro-
nizing wordW reduces the sync probability by λ−2lWmax where
lW is the length of wordW .

Proof: Since W is a synchronizing word, it satisfies
Condition 1. Therefore words resulting from extension ofW
also satisfy Condition 1. From Lemma 1 we know that these
words also satisfy Condition 2 except for the extended word
W ′′ = W + W . It can be easily checked that all words
in Mp\W remain synchronizing words, because they satisfy
both Conditions 1 and 2. The reduction of sync probability
as the result of extending W is therefore the maxentropic
probability of wordW ′′, which is λ−2lWmax . �
Based on the above discussion, the proposed guided partial

extension algorithm is shown in Algorithm 1. This algorithm
is initialized with Mp = M and J = 0 where J is the
recursion depth, and is recursively called a number of times
until J exceeds the pre-established limits.With each recursion
depth the algorithm outputs a codebook with the highest
synchronization probability at the current depth.

V. NUMERICAL RESULTS
In this section, we present results regarding the efficiency and
sync probability of codes constructed based on the procedures
outlined above. We evaluate, under the case of a binary
symmetric channel (BSC), the sync properties in terms of
the average number of bits and average number of codewords
that the decoder requires to regain synchronization once syn-
chronization is lost. We consider the BSC because a BSC
is a general channel model that, with appropriate extension,
can represent a wide range of scenarios where coded bits
are corrupted in digital transmissions due to various factors
such as additive noise, fading, interference, etc. The decod-
ing algorithm that we consider is the conventional bit-by-bit
decoding algorithm described in the Appendix of [26], and
which is reproduced here as Algorithm 2.

A. UPPER BOUNDS OF THE AVERAGE NUMBER OF
CODEWORDS AND BITS BEFORE RESYNCHRONIZATION
We first derive an upper bound on the number of code-
words and the number of coded bits that are required for the
decoder to regain synchronization once synchronization is
lost. We denote the upper bound on the number of codewords
Nc and the number of coded bitsNb as Ñc and Ñb, respectively.
To evaluate Ñc, under the condition that there are no errors

in the received symbols during synchronization, we consider
the case when synchronization occurs only as a result of the

VOLUME 9, 2021 45871

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

Data: the received sequence v̂
Result: the decoded output, an estimation of the source

sequence
Initialization: the codebook, lmax ,

cur_pos_head ← 1, cur_pos← 1
while cur_pos_head ≤ |v̂| do

if cur_pos− cur_pos_head + 1 ≤ lmax then
if v̂cur_poscur_pos_head is a valid codeword then

decode v̂cur_poscur_pos_head into the corresponding
source word; cur_pos← cur_pos+ 1;
cur_pos_head ← cur_pos;

else
cur_pos← cur_pos+ 1;

end
else

/∗ no match is found in the codebook ∗/;
cur_pos← cur_pos_head + 1;
while cur_pos ≤ |v̂| do

foreach tmp_start_pos in
[cur_pos_head, cur_pos] do

if v̂cur_postmp_start_pos is a valid codeword
then

decode v̂cur_postmp_start_pos;
cur_pos← cur_pos+ 1;
cur_pos_head ← cur_pos; goto
line 5;

else
tmp_start_pos←
tmp_start_pos+ 1;

end
end
cur_pos← cur_pos+ 1;

end
end

end
Algorithm 2 Conventional Bit-by-Bit Variable-Length
CS Decoding When Errors Occur During Transmission
(From [26])

occurrence of a sync word. We note that, after loss of syn-
chronization, if the next received codeword is a synchronizing
codeword (that occurs with probability P) then the receiver
will regain synchronization. However, if the next codeword
is not a synchronizing codeword (with probability 1− P) but
the subsequent word is a sync word, then synchronization will
occur after two words with probability (1−P)P. Continuing,
we have that

Ñc = lim
i→∞
{P+ 2(1− P)P+ . . .+ i(1− P)i−1P}

=
1
P
. (7)

Now consider the case when errors on the binary sym-
metric channel occur with probability pc. The probabil-
ity that a codeword is correctly received is, on average,
(1 − pc)ō where ō denotes the average length of codewords,

i.e., ō =
∑
si
2−sioi. Therefore, we have

Ñc =
1

P× (1− pc)ō
, (8)

In a similar fashion, Ñb is derived as

Ñb =
1

P× (1− pc)ō
× ō+ ō− 1 (9)

where ō − 1 is, on average, the maximum number of bits
of the currently received codeword that has caused mis-
synchronization.

As noted above, in the derivation of (7) – (9), we assume
that resynchronization occurs only on synchronizing code-
words. However, it can be observed in Algorithm 2 that it
is possible for resynchronization to also occur on nonsyn-
chronizing codewords. Therefore, Ñc and Ñb are indeed upper
bounds on the average number of codewords and the average
number of bits that the receiver requires to regain synchro-
nization, since the actual number of codewords the receiver
requires to resynchronize can be smaller. As we will show in
the simulation results, good synchronization properties can
be observed even with a small value of P and correspondingly
large values of Ñc and Ñb.

B. SIMULATION RESULTS
We now consider simulation results for synchronization with
several classes of constrained sequence codes.

1) RLL CONSTRAINTS
Consider, for example, the (d = 1, k = 3) RLL constraint.
In accordance with the discussion in Section III, we select
state 1 as the specified state, hence M1 = {01, 001, 0001}.
We perform the guided partial extension algorithm over M1
with J recursions according to Algorithm 1, J = 0 → 9.
The code efficiency and sync probability of the resulting
codes are shown in Fig. 10, where J = 0 on the horizontal
axis represents the code constructed with codewords from the
minimal set. From this figure we can see that after several
iterations of extension, we can construct codes with code
efficiency near 99% and sync probability near 100%. The
decrease at J = 1 is due to the fact that P = ∅ and we
therefore have to extend a synchronizing word in the first
extension, resulting inM1,p = {001, 0001, 0101, 01001,
010001}where 0101 is not a synchronizing word since it does
not satisfy Condition 2.

For comparison purposes, consider the codebook that cor-
responds to J = 4 shown in Table 4. This code achieves
η = 98.90% and P = 96.88%. Note that this codebook has
the same number of codewords and an efficiency very close
to the code given in Table 2, however, the sync probability of
the code in Table 2 is only 21.88%, which is much lower than
the code in Table 4. This demonstrates that the guided partial
extension algorithm can effectively generate codebooks with
high sync probabilities.

45872 VOLUME 9, 2021

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

FIGURE 10. Code efficiency and sync probability of (d = 1, k = 3) RLL
CS codes.

TABLE 4. Codebook of a (d = 1, k = 3) RLL code with efficiency of
98.90% and sync probability of 96.88%.

We now consider the sync properties of the (d = 1, k = 3)
RLL codes we constructed. The coded sequence is trans-
mitted over a BSC with crossover probability 0.1. A source
sequence of 50000 bits is randomly generated and encoded
into a constrained sequence with the number of codewords
ranging from ∼9000 to ∼18000 with J = 0 → 9, accord-
ing to the codebook. Once synchronization is lost due to
errors that occur during transmission through simulation of
Algorithm 2, we obtain the number of bits and the num-
ber of codewords before the receiver regains synchroniza-
tion. We consider all the occurrences that synchronization
is lost, we report the average number of bits and average
number of codewords that the receiver receives before it re-
synchronizes; the results are shown in Figs. 11 and 12. It can
be seen that the receiver generally requires less than one
codeword to regain synchronization, demonstrating that these
codes have good synchronization properties in the sense that
once synchronization is lost, they recover synchronization
quickly. Nc first increases from J = 0 → 1 and then
decreases from J = 1 → 9, which is consistent with the
sync probability shown in Fig. 10. Fig. 12 shows that Nb
is around 8 for J = 1 → 9. This is because codebooks
with larger J have longer codewords, therefore Nb does not
reduce as dramatically asNc. Note that with smaller crossover
probabilities the receiver would need fewer codewords and
coded bits to recover synchronization once synchronization
is lost, and vice versa.

In Fig. 13 we demonstrate the ratio of the number of
events when synchronization is achieved on synchronizing
codewords to the total number of synchronization events,
for J = 0 → 9. As demonstrated in Fig. 13, these ratios

FIGURE 11. Average number of words required to regain synchronization
for the constructed (d = 1, k = 3) RLL CS codes.

FIGURE 12. Average number of bits required to regain synchronization
for the constructed (d = 1, k = 3) RLL CS codes.

FIGURE 13. The ratio that synchronization is achieved on synchronizing
codewords for the constructed (d = 1, k = 3) RLL CS codebooks.

are less than 100% indicating that some synchronization
events occur on nonsynchronizing codewords. This demon-
strates that Algorithm 2 permits synchronization to occur on
nonsynchronizing codewords, as we mentioned above. This
explains why in Figs. 11 and 12 the actual average number of
codewords and average number of bits the receiver requires
for resynchronization are lower than Ñc and Ñb, since Ñc and
Ñb assume that synchronization only occurs on synchronizing
codewords.

Finally, as is clear from these figures, for the (d = 1,
k = 3) RLL constraint there is no significant advantage

VOLUME 9, 2021 45873

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

to using a codebook other than the minimal set because it
satisfies Criteria 1 and 2, and hence has excellent sync prop-
erties, while also having high efficiency. In contrast, in the
next subsection we examine situations in which J = 0 is
not the best choice when we compare with other codebooks
constructed using our guided partial extension algorithm.

2) FLASH MEMORIES
We consider constraints that mitigate ICI in flash memo-
ries, including the single-level cell (SLC) and multi-level
cell (MLC) flash memories. For the SLC flash memories,
the constraint was shown previously in Fig. 6; discussion in
Section III-A reveals that it is sufficient to use M1 as the
minimal set. Therefore, we construct our codebooks based on
state 1. The code efficiency and sync probability are shown
in Fig. 14 where it can be seen that, similar to the situation
with the (d = 1, k = 3) RLL constraint, the sync probability
decreases as J = 0 → 1 since the synchronizing word
1 is extended, resulting in the nonsynchronizing word 11. For
J = 1→ 9, the sync probability increases up to 99.6%. The
sync performance is shown in Figs. 15 and 16, where it is
evident that on average less than one codeword and less than
8 bits are required for the receiver to regain synchronization.

FIGURE 14. Code efficiency and sync probability of the codes for SLC
flash memory.

FIGURE 15. Average number of words required to regain synchronization
for the codes for SLC flash memory.

Now we show that in situations where the minimal set
has low sync probability, such as when the code efficiency

FIGURE 16. Average number of bits required to regain synchronization
for the codes for SLC flash memories.

is of high priority and the specified state is selected accord-
ing to the criteria in [21], [22], the guided partial extension
algorithm will likely help improve the sync probability. For
example, we consider MLC flash memories and the FSM of
the constraint that forbids pattern 303 as shown in Fig. 7.
The capacity of this constraint is 1.978 bit/symbol. According
to our criteria, state 1 has the best sync probability, but a
lower code rate than states selected according to the cri-
teria described in [21]–[25]. We instead consider selecting
state 3 as the specified state which has the best maximum
possible code rate, but worse sync probability compared to
state 1. Note that state 3 does not satisfy Criterion 1, because
word 0 is not a synchronizing word in M3. If we directly
performNGH coding overM3, the resulting codebook, shown
in Table 5, achieves 99.6% of the capacity and has a sync
probability of P = 75% since codeword 0, which occurs with
25% probability, is not a synchronizing codeword. We now
show that the sync probability increases with the proposed
guided partial extension algorithm.

TABLE 5. A constrained sequence codebook for ICI mitigation of MLC
flash memory that achieves 99.6% of capacity.

Fig. 17 shows the code efficiency and sync probability
of codebooks we have constructed for J = 0 → 9.
It can be seen that along with small increases in efficiency,
the sync probability increases from 75% to 99.99%, which
demonstrates the effectiveness of the proposed algorithm.
Fig. 18 and 19 show the average number of codewords and

45874 VOLUME 9, 2021

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

FIGURE 17. Code efficiency and sync probability of the constructed codes
for MLC flash memory.

FIGURE 18. Average number of words required to regain synchronization
for the constructed codes for MLC flash memory.

FIGURE 19. Average number of bits required to regain synchronization
for the constructed codes for MLC flash memory.

the average number of bits that the decoder requires to receive
to regain synchronization. It can be seen that on average, less
than 0.4 codewords and less than 5 bits are needed to regain
synchronization, which illustrates that the constructed code-
books have good synchronization properties. Nc is smaller
than 1 because even when errors exist in the received bit
sequence, Algorithm 2 usually correctly identifies the end of
the current codeword.

3) THE PEARSON CONSTRAINT
With the Pearson constraint, we present the results with
codes that are constructed using state N in Fig. 8 as the

specified state. Fig. 20 shows the code efficiency and sync
probability of the constructed codebooks with J = 0 → 9.
It can be seen that the sync probability increases from 50%
to 61.5%. Figs. 21 and 22 show the average number of code-
words and the average number of bits that the decoder needs
to receive to regain synchronization. It can be seen that even
though the sync probabilities are relatively low, on average
approximately one codeword and fewer than 7 bits are needed
to regain synchronization.

FIGURE 20. Code efficiency and sync probability of the pearson codes.

FIGURE 21. Average number of words required to regain synchronization
for the constructed pearson codes.

FIGURE 22. Average number of bits required to regain synchronization
for the constructed pearson codes.

4) THE DC-FREE CONSTRAINT
We present the results of the DC-free constraint
with N = 5, which has been adopted in visible light

VOLUME 9, 2021 45875

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

communication systems for flicker reduction and dimming
control [3], [46], [47], and consider the tradeoff between code
efficiency and sync probability. According to the discussion
in Section III-C, state 1 is better than state 2, which is better
than state 3 in terms of sync probability. However, according
to the study in [21]–[25], the opposite is true when attempting
to maximize the code rate.

In Fig. 23 we present the result of code efficiency and
sync probability for codes constructed with states 1, 2 and 3
as the specified state, with J = 0 → 9. It can be seen that
the abovementioned conclusion is verified, and the expected
tradeoff between code efficiency and sync probability that
arises from different states as the specified state is clearly
seen. Figs. 24 and 25 show the average number of code-
words and the average number of bits before the decoder
regains synchronization. It can be seen that on average,
between 2 to 7 codewords and between 10 to 35 bits are
needed to regain synchronization. It is also demonstrated
in Figs. 23–25 that state 1 is the best in terms of code effi-
ciency while state 3 is the worst, but the opposite is observed
in terms of synchronization properties. Therefore we once
again observe the tradeoff between code efficiency and syn-
chronization property. Note that Ñc and Ñb for states 2 and 3
are infinity since P = 0. However, because it is possible for
the decoder to regain synchronization on nonsynchronizing
codewords, these codes demonstrate relatively good synchro-
nization properties even though P = 0.

FIGURE 23. Code efficiency and sync probability of the constructed
DC-free codes with N = 5.

To improve the synchronization properties, we use the prior
knowledge that the codewords are of even length, and process
two bits per decoding attempt. In this case, the sync probabili-
ties are improved as shown in Fig. 26, and the average number
of codewords and binary coded bits that are needed to regain
synchronization are reduced as shown in Figs. 27 and 28.
It can be seen that on average, approximately one codeword
and fewer than 7 bits are needed to regain synchronization.

Note that in this case, the results do not indicate that the
synchronization performance for state 1 > state 2 > state 3.
The reason is illustrated in Fig. 29, and is explained as
follows. Codeword 2 in the minimal set with state 1 as the
specified state is not a synchronizing word since it does not

FIGURE 24. Average number of words required to regain synchronization
for the constructed DC-free codes with N = 5. The upper bounds for
states 2 and 3 are infinity since P = 0.

FIGURE 25. Average number of bits required to regain synchronization
for the constructed DC-free codes with N = 5. The upper bounds for
states 2 and 3 are infinity since P = 0.

FIGURE 26. Code efficiency and sync probability of the constructed
DC-free codes with N = 5, when the decoder has knowledge that
codewords have even length.

satisfy Condition 1. However, the chances that reception of
codeword 2 result in mis-synchronization is only when the
quaternary bit before 2 (which can be 2 or 0) is incorrectly
detected as 3 and the quaternary bit after 2 (which can be 2 or
3) is incorrectly detected as 0. The probability of this case is
low, hence codeword 2 can be regarded as an ‘‘almost syn-
chronizing codeword’’. It follows that the sync probability of
the minimal set of state 1 can be regarded as ‘‘almost 100%’’.
Similar reasoning holds for states 2 and 3, making their sync

45876 VOLUME 9, 2021

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

FIGURE 27. Average number of words required to regain synchronization
for the constructed DC-free codes with N = 5, when the decoder has
knowledge that codewords have even length.

FIGURE 28. Average number of bits required to regain synchronization
for the constructed DC-free codes with N = 5, when the decoder has
knowledge that codewords have even length.

FIGURE 29. All cases that codeword 2 in the minimal set constructed
based on state 1 results in mis-synchronization. Note that the
probabilities of these cases are small, making codeword 2 an ‘‘almost
synchronizing codeword’’.

probability ‘‘almost 100%’’ , and the number of codewords
that are needed to regain synchronization is similar for all
three states.

We also note that, with prior knowledge that all code-
words have even length, in case that the receiver misses
a single bit in the detection process, the above-mentioned
decoding process with two bits per decoding attempt will
never re-synchronize. Therefore, we propose starting the
two-bit-grouping at both odd and even positions and per-
forming decoding with both alternatives. In situations where
the receiver misses a bit or mistakenly clocks in an extra
bit, the decoding attempt that starts at odd positions will

re-synchronize, otherwise the decoding attempt that starts at
even positions will re-synchronize the received sequence.

VI. CONCLUSION
In this paper, we have discussed initially establishing and
re-establishing codeword boundaries in the decoding of
variable-length constrained sequence codes. We studied cri-
teria for selection of the specified state in the minimal set
that achieves a high synchronization probability, and showed
that these criteria can lead to selection of different specified
states compared to the criteria developed in [21], [22] that
aimed to maximize code rate. We then proposed the guided
partial extension algorithm to increase code efficiency while
maintaining high sync probability. Finally, we presented
simulation results that demonstrate the code efficiency and
sync probability of the codes we constructed; these results
included the average number of received codewords and
the average number of coded bits that the decoder requires
to regain synchronization should synchronization be lost.
We demonstrated that it is possible to construct highly effi-
cient variable-length CS codes that exhibit good synchroniza-
tion properties such that very few codewords and very few
bits are required to regain synchronization.

REFERENCES
[1] K. A. S. Immink, Codes for Mass Data Storage Systems. Amsterdam, The

Netherlands: Shannon Foundation Publishers, 2004.
[2] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and

K. Huang, ‘‘Energy harvesting wireless communications: A review of
recent advances,’’ IEEE J. Sel. Areas Commun., vol. 33, no. 3, pp. 360–381,
Mar. 2015.

[3] IEEE Standard for Local and Metropolitan Area Networks—Part 15.7:
Short-Range Wireless Optical Communication Using Visible Light, Stan-
dard 802.15.7, 2011, pp. 248–271.

[4] K. A. Schouhamer Immink and K. Cai, ‘‘Design of capacity-approaching
constrained codes for DNA-based storage systems,’’ IEEE Commun. Lett.,
vol. 22, no. 2, pp. 224–227, Feb. 2018.

[5] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[6] P. A. Franaszek, ‘‘Sequence-state encoding for digital transmission,’’ Bell
Syst. Tech. J., vol. 47, pp. 143–157, Jan. 1968.

[7] A. X. Widmer and P. A. Franaszek, ‘‘A DC-balanced, partitioned-block,
8B/10B transmission code,’’ IBM J. Res. Develop., vol. 27, no. 5,
pp. 440–451, Sep. 1983.

[8] K. A. S. Immink, J.-Y. Kim, S.-W. Suh, and S. Keun Ahn, ‘‘Efficient DC-
free RLL codes for optical recording,’’ IEEE Trans. Commun., vol. 51,
no. 3, pp. 326–331, Mar. 2003.

[9] C. Jamieson and I. Fair, ‘‘Construction of constrained codes for state-
independent decoding,’’ IEEE J. Sel. Areas Commun., vol. 28, no. 2,
pp. 193–199, Feb. 2010.

[10] R.Motwani, ‘‘Hierarchical constrained coding for floating-gate to floating-
gate coupling mitigation in flash memory,’’ in Proc. IEEE Global Telecom-
mun. Conf. - GLOBECOM, Dec. 2011, pp. 1–5.

[11] H. Zhou, A. Jiang, and J. Bruck, ‘‘Balanced modulation for nonvolatile
memories,’’ 2012, arXiv:1209.0744. [Online]. Available: http://arxiv.
org/abs/1209.0744

[12] F. R. Kschischang and T. Lutz, ‘‘A constrained coding approach to error-
free half-duplex relay networks,’’ IEEE Trans. Inf. Theory, vol. 59, no. 10,
pp. 6258–6260, Oct. 2013.

[13] K. A. S. Immink and J. H. Weber, ‘‘Minimum pearson distance detection
for multilevel channels with gain and/or offset mismatch,’’ IEEE Trans. Inf.
Theory, vol. 60, no. 10, pp. 5966–5974, Oct. 2014.

[14] J. H. Weber, K. A. S. Immink, and S. R. Blackburn, ‘‘Pearson
codes,’’ IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 131–135,
Jan. 2016.

VOLUME 9, 2021 45877

C. Cao, I. Fair: Synchronization of Variable-Length CS Codes

[15] K. Schouhamer Immink and V. Skachek, ‘‘Minimum pearson distance
detection usingmass-centered codewords in the presence of unknown vary-
ing offset,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 9, pp. 2510–2517,
Sep. 2016.

[16] C. Cao, D. Li, and I. Fair, ‘‘Deep learning-based decoding for constrained
sequence codes,’’ in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2018, pp. 1–7.

[17] K. A. S. Immink and J. H. Weber, ‘‘Very efficient balanced codes,’’ IEEE
J. Sel. Areas Commun., vol. 28, no. 2, pp. 188–192, Feb. 2010.

[18] J. H. Weber, T. G. Swart, and K. A. Schouhamer Immink, ‘‘Simple system-
atic pearson coding,’’ inProc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016,
pp. 385–389.

[19] T. G. Swart and J. H. Weber, ‘‘Binary variable-to-fixed length balancing
scheme with simple encoding/decoding,’’ IEEE Commun. Lett., vol. 22,
no. 10, pp. 1992–1995, Oct. 2018.

[20] A. Steadman and I. Fair, ‘‘Variable-length constrained sequence codes,’’
IEEE Commun. Lett., vol. 17, no. 1, pp. 139–142, Jan. 2013.

[21] C. Cao and I. Fair, ‘‘Construction of minimal sets for capacity-approaching
variable-length constrained sequence codes,’’ in Proc. 50th Asilomar Conf.
Signals, Syst. Comput., Nov. 2016, pp. 255–259.

[22] C. Cao and I. Fair, ‘‘Minimal sets for capacity-approaching variable-
length constrained sequence codes,’’ IEEE Trans. Commun., vol. 67, no. 2,
pp. 890–902, Feb. 2019.

[23] C. Cao and I. Fair, ‘‘Mitigation of inter-cell interference in flash memory
with capacity-approaching variable-length constrained sequence codes,’’
IEEE J. Sel. Areas Commun., vol. 34, no. 9, pp. 2366–2377, Sep. 2016.

[24] C. Cao and I. Fair, ‘‘Capacity-approaching variable-length pearson codes,’’
IEEE Commun. Lett., vol. 22, no. 7, pp. 1310–1313, Jul. 2018.

[25] C. Cao and I. Fair, ‘‘Construction of multi-state capacity-approaching
variable-length constrained sequence codes with state-independent decod-
ing,’’ IEEE Access, vol. 7, pp. 54746–54759, 2019.

[26] C. Cao, D. Li, and I. Fair, ‘‘Deep learning-based decoding of con-
strained sequence codes,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 11,
pp. 2532–2543, Nov. 2019.

[27] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA, USA:
MIT Press, 1963.

[28] E. Arikan, ‘‘Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[29] O. Dizdar and E. Arıkan, ‘‘A high-throughput energy-efficient implemen-
tation of successive cancellation decoder for polar codes using combina-
tional logic,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 3,
pp. 436–447, Mar. 2016.

[30] C. Cao, T. Koike-Akino, Y. Wang, and S. C. Draper, ‘‘Irregular polar
coding formassiveMIMOchannels,’’ inProc. GLOBECOM - IEEEGlobal
Commun. Conf., Dec. 2017, pp. 1–7.

[31] T. Koike-Akino, C. Cao, Y. Wang, S. C. Draper, D. S. Millar, K. Kojima,
K. Parsons, L. Galdino, D. J. Elson, D. Lavery, and P. Bayvel, ‘‘Irregular
polar coding for complexity-constrained lightwave systems,’’ J. Lightw.
Technol., vol. 36, no. 11, pp. 2248–2258, Jun. 1, 2018.

[32] L. M. Zhang and F. R. Kschischang, ‘‘Staircase codes with 6% to 33%
overhead,’’ J. Lightw. Technol., vol. 32, no. 10, pp. 1999–2002, May 2014.

[33] M. Barakatain and F. R. Kschischang, ‘‘Low-complexity concate-
nated LDPC-staircase codes,’’ J. Lightw. Technol., vol. 36, no. 12,
pp. 2443–2449, Jun. 15, 2018.

[34] R. M. Pyndiah, ‘‘Near-optimum decoding of product codes: Block turbo
codes,’’ IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug. 1998.

[35] T. Koike-Akino, C. Cao, and Y.Wang, ‘‘Turbo product codes with irregular
polar coding for high-throughput parallel decoding in wireless OFDM
transmission,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2018,
pp. 1–7.

[36] E. Hemo and Y. Cassuto, ‘‘d-imbalance WOM codes for reduced inter-cell
interference in multi-level NVMs,’’ IEEE J. Sel. Areas Commun., vol. 34,
no. 9, pp. 2378–2390, Sep. 2016.

[37] V. Taranalli, H. Uchikawa, and P. H. Siegel, ‘‘Error analysis and inter-cell
interference mitigation in multi-level cell flash memories,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), Jun. 2015, pp. 271–276.

[38] Y. M. Chee, C. Johan, H. M. Kiah, S. Ling, T. T. Nguyen, and V. K. Vu,
‘‘Efficient encoding/decoding of capacity-achieving constant-composition
ICI-free codes,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016,
pp. 205–209.

[39] S. Buzaglo and P. H. Siegel, ‘‘Row-by-row coding schemes for inter-cell
interference in flash memory,’’ IEEE Trans. Commun., vol. 65, no. 10,
pp. 4101–4113, Oct. 2017.

[40] K. A. S. Immink, ‘‘Some statistical properties of maxentropic runlength-
limited sequences,’’ Philips J. Res., vol. 38, no. 3, pp. 138–149, 1983.

[41] G. Bocherer and R. Mathar, ‘‘Matching dyadic distributions to channels,’’
in Proc. Data Compress. Conf., Mar. 2011, pp. 23–32.

[42] G. Böcherer, ‘‘Capacity-achieving probabilistic shaping for noisy and
noiseless channels,’’ Ph.D. dissertation, Inst. Theor. Inf. Technol., RWTH
Aachen Univ., Aachen, Germany, 2012. [Online]. Available: http://www.
georg-boecherer.de/capacityAchievingShaping.pdf

[43] G. Böcherer. (Dec. 2010). Geometric Huffman Coding. [Online]. Avail-
able: http://www.georg-boecherer.de/ghc

[44] T. Ferguson and J. Rabinowitz, ‘‘Self-synchronizing Huffman codes,’’
IEEE Trans. Inf. Theory, vol. IT-30, no. 4, pp. 687–693, Jul. 1984.

[45] K. A. S. Immink, ‘‘Coding schemes for multi-level flash memories that are
intrinsically resistant against unknown gain and/or offset using reference
symbols,’’ Electron. Lett., vol. 50, no. 1, pp. 20–22, Jan. 2014.

[46] S. Rajagopal, R. Roberts, and S.-K. Lim, ‘‘IEEE 802.15.7 visible light
communication: Modulation schemes and dimming support,’’ IEEE Com-
mun. Mag., vol. 50, no. 3, pp. 72–82, Mar. 2012.

[47] C. E. Mejia, C. N. Georghiades, M. M. Abdallah, and Y. H. Al-Badarneh,
‘‘Code design for flicker mitigation in visible light communications
using finite state machines,’’ IEEE Trans. Commun., vol. 65, no. 5,
pp. 2091–2100, May 2017.

CONGZHE CAO received the B.Eng. degree from
the University of Science and Technology Beijing,
in 2012, the M.Eng. degree in communications
engineering from the Beijing Institute of Technol-
ogy, Beijing, China, in 2014, and the Ph.D. degree
from the Department of Electrical and Com-
puter Engineering, University of Alberta, Canada,
in 2019. From 2016 to 2017, he was a Research
Intern with Mitsubishi Electric Research Labo-
ratories, Cambridge, MA, USA, where he was

involved in designing advanced coding techniques for the next-generation
wireless and fiber optic communication systems. He is currently a Senior
Compiler Software Engineer with Huawei, Canada. His research interests
include constrained sequence coding and error correction coding for digital
communication and emerging data storage systems, information theory,
machine learning, deep learning, compiler optimizations, and computer
architecture.

IVAN FAIR (Member, IEEE) received the B.Sc. and M.Sc. degrees in
electrical and computer engineering from the University of Alberta, and the
Ph.D. degree in electrical and computer engineering from the University of
Victoria. He designed and implemented various aspects of communication
systems with Bell Northern Research Ltd., and MPR TelTech Ltd., prior to
joining the Technical University of Nova Scotia (since amalgamated with
Dalhousie University) as a Faculty Member. He is currently a Professor with
the University of Alberta, where he has served in several administrative roles,
where he is also the Chair of the Department of Electrical and Computer
Engineering.

45878 VOLUME 9, 2021

