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ABSTRACT Ecxisting methods for fall detection may not detect a fall when it occurs or may generate a
false alarm when a fall does not occur. In order to overcome these limitations and detect falls with 100%
accuracy, a double-check method for fall detection in elderly people via an inertial measurement unit-location
(IMU-L) sensor and a red—green—blue (RGB) camera is proposed. The IMU-L sensor is a combination
of an IMU sensor (accelerometer and gyroscope) and an ultrawideband signal-based location sensor; the
RGB sensor is mounted on a robot. The proposed method involves detecting and confirming the fall of an
elderly individual via the IMU-L sensor and an RGB image, respectively. The IMU-L sensor is worn on
the body to detect falls. When a potential fall occurs, the individual’s location information is synchronized
with the motion data. During detection, because of the sequential nature of IMU data, a deep learning
technique called a recurrent neural network (RNN) is trained to classify falls. When the IMU indicates
a suspected fall situation, the robot moves to the corresponding location and confirms whether a fall has
occurred. During the confirmation stage, a convolutional neural network-based technique is applied to the
RGB image data to recognize and confirm the fall. Repeated confirmed fall detections using this method
classified falls more accurately than existing methods that use only an IMU sensor. We conducted a real-time
experiment to validate our method using a dataset developed in a laboratory and achieved 100% accuracy in
our experimental environment.

INDEX TERMS Convolutional neural network, deep learning, elderly fall, fall detection, motion data with

location, recurrent neural network, transfer learning.

I. INTRODUCTION

A fall is a highly threatening situation for elderly people.
A fall by an elderly person may cause serious injury or a life-
threatening situation [1], [2]. Thus, it is not surprising that
the World Health Organization (WHO) [2] reported that falls
are the second leading cause of accidental death following
traffic accidents and more than 600,000 people die each year
from falls. Because the number of elderly people worldwide
is expected to increase to approximately 22% (approximately
1.0 billion to 1.2 billion) by 2050, the problem of falls by
elderly people is likely to become even more serious [3], [4].
Therefore, prediction in advance of a fall by an elderly person
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is a very important concept. In [5]-[7], the authors presented a
technique for predicting future frames of video data; this tech-
nique can help predict a fall by an elderly person. However,
if a fall cannot be avoided by an elderly person, measures
should be taken to ensure that the fall is detected and treated
as quickly as possible. This is because elderly people cannot
ask for help on their own if they are seriously injured or
unconscious from a fall.

Consequently, many research teams are developing fall
detection systems. The typical methods for automatically
detecting falls by elderly people involve using a camera
or motion sensor [8]—[15]. One common method involves
detecting falls using a red—green—blue—depth (RGB-D) sen-
sor, such as a Microsoft Kinect [16]-[29]. In fall detection
methods that use a camera, the system first processes RGB
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images or depth data to recognize a person and then deter-
mines whether a fall has occurred. In addition, fall detection
systems that utilize joint information from humans have been
developed using depth data. However, because this type of
method uses a fixed RGB-D sensor, it can detect falls only
within the field of view of the RGB-D sensor.

Another typical method for fall detection is to use a system
with a motion sensor such as an inertial measurement unit
(IMU). Using parameters such as velocity, angular velocity,
direction, and acceleration recorded by the IMU, the IMU
can control instruments such as robots, track human joint
information, classify behavior or detect falls [30]-[47].

However, IMU-only systems make it difficult to take
immediate action in response to a fall because the location
where the fall occurred is unknown. Therefore, to solve this
limitation [48], focused on developing a technique to measure
the location of a fall. In addition to these methods [49], also
predicted the fall risk using a gait analysis.

However [50]-[52], state that these existing methods can
generate false alarms. For example, actions such as the IMU
wearer picking up dropped objects or lying on the ground can
also be misclassified as falling. In addition [52], [53], state
that wearable sensors are advantageous in terms of cost, but
vision sensors are better in terms of accuracy. In [54], the
authors studied a fall detection method using a fused system
comprising an IMU sensor, an electroencephalograph (EEG)
sensor and a fixed RGB camera. If another type of sensor
is fused with a vision sensor, the fall can be verified once
again, and good performance can be achieved, but only falls
occurring within the camera’s field of view can be detected.
This constraint requires a large number of cameras and PCs
to be installed to achieve full coverage of a large space such
as a nursing home, which, in turn, leads to increased costs.

To overcome these limitations, we use a method that simul-
taneously acquires a user’s location data and motion data,
such as acceleration and angle. Our system utilizes the loca-
tion data to move a robot to the location where a fall may
have occurred; the system then double-checks whether a fall
occurred by using image data obtained by a camera mounted
on the robot. This method reduces fall detection errors as
follows: when the analysis of the motion data collected by
the IMU-L sensor detects a fall, the robot moves to the fall
location and acquires an RGB image using its RGB camera
ten times and then analyzes the RGB image to confirm the
fall situation.

This study uses a recurrent neural network (RNN) and a
convolutional neural network (CNN) to process the motion
data from the IMU-L sensor and the image data from the
robot, respectively. RNNs are widely used for activity and
gesture recognition [55]-[57], gait recognition [58]-[60], and
natural language processing [61], [62], and CNNs are widely
used for object recognition and detection [63]-[68]. Because
motion sensor data are sequential data, they can be analyzed
with the RNN, and because an RGB image is a single-frame
picture, it can be analyzed using the CNN. Because CNN
algorithms require long learning times and large datasets
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to obtain good results, we used a transfer learning method,
which can overcome the limitations of a small dataset and
reduce the learning time [69]. Unlike previous studies, during
the double-check step, the user’s fall is confirmed using an
RGB image. Because we use a single-frame image of a person
lying on the floor, continuous RGB frames are not required.
This is possible because the IMU sensor data are first used
to determine a probable fall; then, the double-check to ensure
that a fall actually occurred is performed using the image data
after moving the robot-mounted image sensor to the user’s
location.

The novel contributions of the study described in this paper
are summarized as follows.

o In existing fall detection methods that use an IMU
sensor, when a fall occurs, the detection accuracy is
not 100%. We propose a double-check method that can
detect 100% of falls using an IMU-L sensor and an RGB
camera mounted on a mobile robot. In this double-check
method, when a fall is detected using an IMU-L sen-
sor, the robot moves to the corresponding position and
checks again for a fall using a mounted RGB camera.
RGB images are acquired and analyzed ten times, and
the accuracy is improved by deriving a label with a high
probability. We use a robot that can move at a speed
of 1 m/s. By achieving fall detection using RGB images
within 2 seconds per image, the latency to recheck the
fall is minimized.

o« We compared the IMU-based fall detection perfor-
mances of several different RNN architectures, includ-
ing basic RNN, bidirectional RNN (Bi-RNN), long
short-term memory (LSTM) [70], [71], and a gated
recurrent unit (GRU) 72], [73], and applied the best
RNN architecture to the fall detection process using the
IMU-L data.

o We compared the performance of RGB-based fall detec-
tion using various CNN algorithms used in the Ima-
geNet Challenge (ILSVRC) [74], including VGGNet,
ResNet, DenseNet, AlexNet, SqueezeNet, and Incep-
tion v3; then, we used the best CNN architecture to build
the secondary fall detection algorithm.

The remainder of this paper is organized as follows.
In section II, we present related work on fall detection meth-
ods. In section III, we describe the systems and environments
employed in this study. In section IV, we describe the data set
utilized in this study and the algorithm selected to analyze it.
In section V, we present the results of experiments conducted
using the datasets and algorithms described in the previous
section. Section VI provides conclusions, and section VII
describes future works.

Il. RELATED WORKS

In this section, we present a compilation of related work on
methods for detecting falls. The section is divided into a total
of 3 parts, and the approaches that use an RGB-D camera,
IMU sensor, and multimodal sensors are described.
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A. APPROACHES USING THE RGB-D CAMERA
The method that uses an RGB-D camera is a study on a typical
fall detection method.

In [8], the authors extracted the fall pose and general pose
from the depth image obtained by an RGB-D camera and
classified it using a support vector machine (SVM). The
accuracy of each pose classification was improved by calcu-
lating the distance between a person’s center point and a floor
surface. They achieved 100% recall.

The authors of [23] create a bounding box using the depth
information of a person obtained from an RGB-D sensor and
detect a fall using the change in the width and/or depth of the
bounding box. They achieved 83.0% and 87.0% for recall and
accuracy, respectively.

In [28], the authors measured the direction of the human
body by connecting several joints (head, center of shoulder,
spine, hip and mean point of the knee) using the human joint
information measured by an RGB-D sensor. Afterward, a fall
was detected by measuring the angle between the direction of
the human body and the floor and the speed of change. They
achieved 92.5%, 100%, and 95.8% for recall, precision, and
accuracy, respectively.

B. APPROACHES USING AN IMU SENSOR
Fall detection using an IMU sensor is another representative
approach.

The authors of [32] use IMU sensors (accelerometers and
gyroscopes) to detect falls. They collected 4 types of falls
(forward, backward, lateral and failure to sit on a chair) and
6 types of activity of daily living (ADL) data (sitting on a
chair, getting up from a chair, lying down on a bed, getting
up from a bed, waling and walking along a stairway). The
authors detect a fall, possible fall, and ADL using sensors
worn on the waist. After a certain period of time after a fall
was detected, they classified fall and possible fall using the
pose information of sensors worn on the waist and ankle.
In this way, the authors were able to reduce the false alarm
of fall detection. They achieved 95.6% recall.

In [46], the authors obtained acceleration and angular
velocity using an IMU sensor worn on the waist. They
collected data on nine types of falls (slipping-backward,
walking-tripping-forward, jogging-tripping-forward,
sittingdown-backward, sitting-backward, forward, backward,
lateral and twist) and 14 types of non-falls (walking, jogging,
squatting, waist bending, stumbling while walking, jogging
in place, jumping, ascending and descending stairs, slowly
sitting up on a stool, quickly sitting up in chair, trying to get
up and collapsing into a chair, lying, slowly sitting up on a
low-height mattress and quickly sitting up in a low-height
mattress) and designed a classifier using an artificial neural
network (ANN). The authors achieved 99.86% classification
accuracy for falls and non-falls.

Representative fall detection technologies that use IMU
sensors commercialized in recent years include “Apple
Watch 4(or later version), Apple, Inc. [75], and “Galaxy
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Watch 3, Samsung, Inc. [76]”’. These devices detect a fall and
generate an alarm if the user of the device does not move for
a certain period of time after a strong shock is delivered to the
user while wearing the watch.

There are other studies on fall detection using smart-
watches. In [47], the authors proposed an application that
detects falls using accelerometer data collected from com-
mercially available smartwatches. They utilized Microsoft
Band 2 to collect 7 types of activities of daily living data (sit-
ting, getting up, jogging, throwing an object, waving, taking
a drink, and going upstairs and downstairs) and 4 types of
fall data (forward, backward, left-side, and right-side). They
classified data classes using naive Bayes, SVM, and GRU
models and obtained 100% recall and 85% accuracy when
using the GRU.

C. APPROACHES USING THE MULTIMODAL SENSORS
Research has also been conducted using multimodal sen-
sors to reduce false alarms and increase measurement accu-
racy. The multimodal sensor method has the advantage of
improving the accuracy of fall detection by redundant inspec-
tion of falls. Alternatively, the detection area that cannot be
detected using only one sensor is supplemented with different
Sensors.

In [11], the authors conducted a study to detect falls
using an accelerometer and an RGB-D sensor. In this study,
the accelerometer data were by the fuzzy engine to infer
motion, and the depth data of the RGB-D sensor was used
by the fuzzy engine to infer posture. In addition, infer-
ence is not performed on every frame but is executed
when the results of the threshold analysis of the accelerom-
eter data predict a possible fall. They achieved 100%,
93.75%, and 97.14% for recall, precision, and accuracy,
respectively.

In [54], the authors collected and published data on six
types of ADL (walking, standing, picking up something,
sitting, jumping and laying) and five types of falls (forward
using hands, forward using knees, backward, sitting in a
chair and sideward). A total of 17 healthy subjects partici-
pated in this experiment. They simultaneously collected data
using an accelerometer, gyroscope, light value sensor, elec-
troencephalography (EEG) headset, and RGB cameras, and
validated their performance using machine learning models.
The authors combined and verified the data obtained from
each sensor in seven combinations of modalities, and the
best results were obtained when the video frames acquired
by the RGB camera were input and verified by a classifier
using the CNN algorithm (71.3% recall, 71.8% precision and
95.1% accuracy.

Ill. MATERIALS

In this section, the IMU-L sensor, robot, and RGB
camera used to detect falls are described. In addition,
we also describe the environment in which the system
is installed and the characteristics of the software to
run them.
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A. IMU-L SENSOR SETUP AND MOTION DATA
ACQUISITION

The IMU-L sensor used in our system uses an ultraw-
ideband (UWB) signal to determine the location of the
sensor worn by the user. This IMU-L sensor was devel-
oped at the Center for Healthcare Robotics of the Gwangju
Institute of Science and Technology (GIST, Republic of
Korea). In this sensor, the DWM 1000 module from Decawave
Corp. was used to transmit/receive UWB signals, and the
MPU9250 from TDK Invensense Corp. was used as the IMU
Sensor.

Four anchors and one master anchor must be installed
for location measurement. The master anchor is responsible
for controlling the blink rate of the two IMU-L sensors and
sending the collected ranges of anchors 1-4 to a personal
computer (CPU: Intel Core i5-7260U; RAM: 8 GB; SSD:
120 GB) via a serial port. Then, the PC computes the location
of the sensor based on the multilateration method using the
strength of each sensor’s signal that reaches each anchor.
The IMU-L sensor data were acquired at a rate of 16 Hz,
and the sensor signal has a stable reach of up to 30 m.
In this study, the size of the space consisting of 4 anchors
installed to collect IMU-L sensor data is 9.5 m x 6 m, and
5 anchors (including a master anchor) are installed at a height
of 2.6 m from the ground. The error range of the positional
accuracy of the IMU-L sensor within this space is +20 cm.
IMU-L sensors are mounted on both the user and the robot.
Fig. 1 shows the setup of the IMU-L sensor system.

Anchor 1 95m Anchor 2
— v A 4
v
\ ] Tag 2: Robot
Master (J
Anchor
v)& 6m

Tag 1: Elderly Person

= Y

\

Anchor 4

\ /o
Anchor 3

FIGURE 1. Setup of IMU-L sensor system.

The users wear the IMU-L sensor on their shoulder.
Although other studies have explored activity recognition
with IMU sensors worn at various positions, such as on the
arms, torso, and legs, the optimal position for IMU sensors
has not yet been defined; however, we found the shoulder to
be a good sensor position in our experiments because less
physical interference occurred when a user fell than when
the sensor was worn at any other position. Fig. 2 shows the
IMU-L sensor and a user wearing it.

Previous research on fall detection using only motion data,
such as acceleration or angular velocity data from an IMU
sensor, has shown that actions such as picking up an object
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UWB “DWM1000"

IMU "MPU9250"

FIGURE 2. IMU-L sensor (left), and user wearing the sensor (right).

from the floor can be misclassified as a fall [51]. Similarly,
actions such as lying on the ground or jumping can also be
detected as falls. When the range of categories detected by
an IMU-L sensor is small, a high possibility exists that other
common actions will be erroneously detected as falls. There-
fore, to overcome these limitations, we propose applying the
IMU-L data to classify the various activities that may occur
in daily life based on previous research [40], [77].

We collected IMU-L data on eleven types of actions,
including four types of falls, two types of lying down, jump-
ing, standing, walking, sitting, and picking up an object from
the ground, as shown in Table 1.

TABLE 1. IMU Datasets Used to Evaluate IMU-Based Fall Detection.

Category Subclass PSe;b];?:sth G S]; (l)atjaelcts)
Falling forward 150 750
Falling on knee 150 750
Falling
Falling on hip 150 750
Falling backward 150 750
Lying supine 150 750
Lying prone 150 750
Picking up an object | 150 750
No Falling | Standing 150 750
Walking 150 750
Jumping 150 750
Sitting 150 750
Total 1,650 8,250

We collected IMU-L data on the eleven activities at
100 frames per cycle because at least 100 frames of data
are required during one activity cycle. IMU-L data were
obtained via laboratory experiments, and five males with no
abnormalities in health participated in the experiment (age:
32 + 7, height: 172.5 £ 5.5¢m, and weight: 80 & 19kg).

Five people participated in the data collection, and each
person performed each of the eleven activities 150 times.
Therefore, we collected a total of 8,250 datasets (five sub-
jects x eleven activities x 150 samples). Examples of
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acquisition experiments and samples of acquired IMU-L data
are shown in Appendix B.

B. MOBILE ROBOT SYSTEM TO DOUBLE-CHECK FALL
DETECTION

In this study, when a potential user fall is detected by IMU-L
sensor data analysis, a mobile robot system is used to double-
check the fall situation of the user using an RGB camera. The
robot used was a Silbot-3 [78]-[80], developed and sold by
Robocare Corp. of South Korea.

The Silbot-3 is fully compatible with the Robot Operating
System (ROS) [81]-[83]. Because Silbot-3 uses omnidirec-
tional wheels, it can move in any direction at a maximum
speed of 1 m/s and is equipped with an ASUS Xtion Pro
Live [84], [85] RGB-D sensor that is positioned 76 cm from
the ground. The ASUS Xtion Pro Live sensor includes an
RGB camera whose maximum image resolution is 640 x
480 pixels. We utilized the OpenNI-based image_view pack-
age in the ROS to acquire RGB images at a rate of 30 Hz.

C. DATA ACQUISITION USING THE ROBOT-MIOUNTED
RGB-D SENSOR

Using the robot, we acquired two categories of RGB
images: “Fall” and “Non-Fall” events. In “Fall” datasets,
we increased a variety of situations by including a fallen
person with people who were standing or sitting on a chair
and several objects. Image samples for each category are
shown in Fig. 3.

<Fall>

FIGURE 3. Image samples for each category.

The fall category includes images where the user is lying on
the ground. This category includes both full and partial body
images and contains images in various poses. In addition,
to ensure the diversity of the data, the participants moved to
different locations with floors of different colors and patterns,
and we gathered data at a distance of 1 m to 2.5 m around
the participants. The non-fall category contains images of
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situations where the user is not lying on the ground, such as
when one or more users are standing or sitting on a chair.
The RGB dataset contains images of five subjects totaling
5,000 images (five subjects x two categories x 500 samples).
The subjects who participate in RGB image data collection
are the same subjects for IMU-L data collection. The RGB
image dataset is summarized in Table 2.

TABLE 2. RGB Image Dataset for Learning using CNN Algorithm.

Per Each Subject Total (5 Subjects)
Fall 500 2,500
Non-Fall 500 2,500
Total 1,000 5,000

D. SYSTEM INTEGRATION USING ROS

ROS is a system for controlling several components of a
robot from a system, such as a PC. ROS consists of sev-
eral independent nodes, all of which can communicate with
each other through publish/subscribe messages. ROS is open
source, does not require multiple PCs to operate multiple
nodes, and has the advantage of being able to run each node
with a different OS. There are a total of 4 independent nodes
in this system, and they exchange messages with each other
by registering with the ROS Master. First, the ‘IMU-L Sen-
sor Node” publishes the message received from the IMU-L
sensor connected to the serial port as an ROS message.
The “Device Node” controls the wheel of the robot, and the
“Camera Node” publishes the RGB image received from the
camera connected to the robot as an ROS message. Finally,
“Fall Detection Double-check Node” detects a fall using
data subscribed from “IMU-L Sensor Node and ‘“Camera
Node”. The ROS integration architecture developed in this
study is shown in Fig. 4.

IV. METHODS

In this section, we first explain our proposed fall detection
method using the IMU-L sensor and the robot’s RGB sensor.
We also describe how the IMU-L and RGB data are analyzed
using the RNN and CNN algorithms, respectively.

A. PROPOSED METHODS TO DOUBLE-CHECK FALLS

We propose a method to double-check falls initially detected
using an IMU-L sensor worn by the user with an RGB sensor
mounted on a robot. The process designed to detect falls is
shown in Fig. 5; the details are presented as follows:

o A subject wearing the IMU-L sensor randomly repeats
the eleven actions mentioned in Table 2: four types of
falling, two types of lying down, jumping, standing,
picking up an object, sitting, and walking. Each of the
four subjects repeats every action a total of 150 times
for every 100 frames of the IMU-L sensor. The collected
datasets for every 100 frames of the IMU-L sensor are
input to the trained RNN-based fall detection model, and
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FIGURE 4. ROS integration architecture.

the results are monitored. If the user’s fall is not detected,
the IMU-L sensor data are used to continuously track the
user’s movements in real time.

o Ifafallis detected in the first step, the robot moves to the
corresponding area using the location information from
the IMU-L sensor.

« After moving to the user’s expected fall area, the robot
acquires images using the RGB sensor mounted on the
robot.

o The RGB images are input into the CNN algorithm
and used to determine whether a fall truly occurred
(double-check).

When afall is detected in the double-check step, our system
takes action such as sending a rescue signal.

B. RNN NETWORK FOR CLASSIFICATION OF SEQUENTIAL
MOTION DATA
The human motion data from the IMU sensor used in this
research are sequential, time-dependent data. The IMU sen-
sor data collect three-axis acceleration data and three-axis
gyroscopic data. Because human activities represented by
theIMU sensor data are not uniform in length or in time of
occurrence, we explored using the RNN family of algorithms
to classify human activities. In addition, the fall detection
performance of linear regression, logistic regression, and
multilayer perceptron (MLP) algorithms was compared with
that of the RNN family of algorithms.

Because the length of human activities varies, it is dif-
ficult to predict the exact duration of any given activity.
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Furthermore, the basic RNN algorithm does not fully cover
long-term dependencies [86]. This means that when learning
from data using a basic RNN, if the distance between the
relevant information and the point used is long, the gradient
gradually decreases during backpropagation, which reduces
the learning ability. Therefore, we also tested improved RNN
architectures such as the LSTM and GRU models to over-
come this disadvantage.

An LSTM is a special type of RNN that enables learning
that involves a long dependency period. An LSTM is a struc-
ture that adds a cell state to an RNN’s hidden state. The cell
state is updated using input and forget gate values. Because
the cell state acts as a type of conveyor belt, the gradients
propagate relatively well for quite some time even after the
state has elapsed. A GRU performs similarly to LSTM and
is designed to overcome the long-term dependency weakness
similarly to the method used in an LSTM. GRU uses reset
and update gate values to control the amount of information,
but its structure is different from that of an LSTM. A GRU
performs almost identically to LSTM but has the advantage
of a much simpler structure. In this study, we compared
the performances of basic RNN, Bi-RNN, LSTM, and GRU
models, all of which are representative algorithms of the RNN
family, to analyze user motion data. Additionally, we ana-
lyzed motion data via linear regression, logistic regression,
and MLP.

The structure of the IMU-based fall detection algorithm
is shown in Fig. 6. The acceleration and gyroscope values
(a total of six values) form the input data to a four-layer
RNN structure. The hidden state values then pass through
fully connected and softmax layers for classification. In the
fall detection task, correctly recognizing a fall is much more
important than recognizing other activities. If a fall were
misclassified as a non-fall, a serious situation could result,
and the proposed double-check method would be rendered
useless. Therefore, we trained the model by maximizing the
fall detection accuracy, although this might cause other activi-
ties to be misclassified as falls more frequently. We gave more
weight to the fall datasets during the training as follows:

ebPi

softmax(p;) = S (D
J

2
[l =— Z w;y; log(softmax(p;)), 2)
=1
—wy log(softmax(py)
— (1 —y1)log(1 — softmax(py)), 3)

where p;, [, w; and y; denote the output of the fully con-
nected layer, the loss for a single dataset, and the weight
assigned to the dataset, respectively. Softmax is the most
commonly employed component for efficiently training a
deep neural networks-based classifier. Because the proposed
method is a binary classification method, the weighted soft-
max cross-entropy loss in (2) can be transformed into (3).
The p; and pp terms represent the confidence associated
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FIGURE 5. Scenario of fall detection with proposed double-check method.

with fall and non-fall activities, respectively. To give more
weight to the fall datasets, w; (weight for the fall category)
should be larger than w; (weight for the non-fall category).
To determine the optimal weight, we evaluated the learn-
ing performance using leave-one-person-out cross-validation
(LOPO CV). LOPO CV is a kind of k-fold cross-validation.
In this study, we applied data from four subjects for training
and one subject for testing. We performed a total of 5 cross-
validations and calculated the accuracy by taking the average
of the sum of each accuracy. As seen in Table 3, the best
performance value is when an LSTM with a weight of 80:1
(fall:non-fall) is used. Therefore, we set the value of w in (3)
to 80:1 for the LSTM.

C. CNN FOR CLASSIFYING RGB IMAGE DATA
We conducted a double-check to confirm a user’s fall when
a fall was detected from the user’s IMU-L sensor data. The
data used in the double-check step are RGB image data, and
the process analyzes the form of a person shown in a single
RGB image. A CNN algorithm is suitable for analyzing such
single-frame images.

Due to fall-focused training, non-fall events might be more
frequently classified as falls; however, we solve this problem
by using secondary fall detection based on RGB images.
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In the CNN algorithm, the convolutional and pooling layers
serve to extract features from the input data. A convolutional
layer is an essential element that reflects the activation func-
tion after filters are applied to the input data.

Including pooling layers after the convolutional layers is
optional. The last part of the CNN algorithm adds a fully
connected layer for image classification. Between the layers
that extract the image characteristics and the layers that clas-
sify the image, a flattened layer is placed to form an array of
data in the form of the image. A CNN is a high-performance
deep learning algorithm, but it requires a substantial amount
of training data and lengthy training times. In fact, training
a large CNN typically requires more than a few days, even
on high-performance computers. Therefore, we performed
fine-tuning, a transfer learning method, using a pretrained
model to overcome these disadvantages. Fine-tuning refers to
a method of transforming the architecture for a new purpose
(according to task-specific image data) based on a model
that has been pretrained and updating the training from the
already trained model weights, as shown in Fig. 7. Using this
approach, we did not use the acquired RGB images to train a
new model de novo; instead, we used the 1K-class Imagenet
dataset [87], which is published in Pytorch, and fine-tuned a
pretrained CNN model. Class labels of the 1K-class Imagenet
dataset are shown in [88].
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TABLE 3. Fall Detection Accuracy Performance Using IMU Data According to Learning Weight (%).

Weight Test Subject Lincar Logistic MLP Basic RNN Bi-RNN GRU LSTM
(fall: non-fall) Regression Regression
10:1 Average 48.58 48.90 49.66 39.34 41.44 36.38 39.25
20:1 Average 44.58 42.02 46.97 34.81 3497 42.95 45.96
30:1 Average 42.59 39.27 45.34 40.00 37.53 46.46 51.23
40:1 Average 41.51 39.11 44.80 37.65 34.54 51.34 48.53
50:1 Average 40.47 38.98 44.29 34.97 35.84 51.31 51.59
60:1 Average 40.30 39.33 44.14 3435 34.87 49.49 56.20
70:1 Average 39.92 39.42 4333 38.45 37.07 47.29 54.02
80:1 Average 39.80 39.50 43.86 38.11 37.72 52.85 58.55
90:1 Average 39.63 39.54 43.05 36.39 38.51 47.37 57.51
100: 1 Average 39.51 39.53 42.87 37.83 36.95 48.59 58.36
. .. TP
Fig. 8 compares the results of training a new CNN model Recall = ———— | 6)
de novo with the results of fine-tuning transfer learning. P ";)F N L Recall
As Fig. 8 shows, the system converges to better learning F1 — score = 2 x recision x Reca (7

results with fine-tuning than without fine-tuning.

We performed fine-tuning using various CNN models
whose performance abilities have already been demonstrated
in the ImageNet Challenge. The first algorithm used was
AlexNet, which is considered the first CNN model to pro-
duce meaningful results. The dropout technique used in this
model has become standard practice in this field. Since
AlexNet was first proposed, attempts have been made to
deepen it by adding layers or to augment each individual
layer via algorithms such as VGGNet and Inception. How-
ever, deeper models may experience the vanishing gradi-
ent problem, in which the gradient is not transmitted well
during backpropagation. To solve this problem, the ResNet
and DenseNet models included a new type of block, called
a residual block, that allows the gradient to pass through.
In this study, we attempted to improve the performance of the
fall detection method using fine-tuning, which allowed us to
reuse the pretrained CNN models described above.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
via the proposed methods. First, we evaluated the perfor-
mance of the IMU-based fall detection method using an
RNN-based classifier. Then, we assessed the performance
of RGB-based fall detection using various CNN algorithms
and compared the results. Finally, we evaluated the proposed
double-check method, which uses the best IMU-based fall
detection RNN model and the best RGB-based fall detection
CNN model. In all the experiments, we calculated the model
accuracy, precision, sensitivity, and F1-score as [8§9]-[91]:

TP + TN
Accuracy = , 4)
TP+ TN +FP+FN
. TP
Precision = ——, 5)
TP + FP
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Precision + Recall

where TP, TN, FP, and FN denote true positives (classifying
a fall as a fall), true negatives (classifying a non-fall as a non-
fall), false positives (classifying a non-fall as a fall), and false
negatives (classifying a fall as a non-fall), respectively.

A. IMU-BASED FALL DETECTION

The proposed double-check method employs IMU-based fall
detection as the first step. We developed four RNN-based
binary classifiers (basic RNN, bi-RNN, LSTM, and GRU)
and three non-RNN-based binary classifiers (linear regres-
sion, logistic regression and MLP). We input the 8,250 IMU
data samples (five people x eleven activities x 150 datasets)
into the binary classifiers. We fixed the number of data frames
at 100. We verified the performance by LOPO CV. The
IMU-based fall detection results are shown in Table 3.

Among the seven binary classifiers, the LSTM-based clas-
sifier achieved the best accuracy. The GRU-based classifier
yielded results similar to those of the LSTM, but its per-
formance was slightly poorer. The linear regression, logistic
regression, MLP, basic RNN and bi-RNN models exhibited
poor fall detection performance. The GRU and LSTM con-
sider more variables than do the linear regression, logistic
regression, MLP, basic RNN and bi-RNN, and their structures
are more complicated. Therefore, it is easier for them to
classify long-term data, and they achieve better performance
in IMU-based fall detection.

In IMU-based fall detection, sensitivity is the most impor-
tant metric because it is much more important to classify a fall
as a fall than to classify a non-fall as a non-fall. Therefore,
we deliberately assigned a higher weight to falls during the
training. Note that it was expected that the total accuracy
would be decreased as a result. Table 4 shows the accuracy,
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TABLE 4. Performance of Fall Detection Using IMU Data (%).

Linear Logistic . .
. . MLP Basic RNN Bi-RNN GRU LSTM
Regression Regression
Accuracy 48.58 48.90 49.66 40.00 41.44 52.85 58.85
Precision 38.76 38.07 39.55 36.11 36.62 41.94 45.17
Recall 88.36 80.99 91.06 99.83 99.57 100.00 100.00
F1-Score 53.88 51.79 55.15 53.04 53.55 59.10 62.23

precision, recall, and F1-score of the experiments that showed
the highest accuracy in seven binary classifiers.

We were able to achieve a sensitivity of 100% using the
GRU-based and LSTM-based classifiers, of which LSTM-
based classifiers achieved higher accuracy. On the other hand,
the precision was only 45.17%, which meant that there was a
54.83% probability that the model would classify the input
IMU data as indicating a fall when no fall had actually
occurred. Consequently, a fall detection system developed
using only an IMU-based method will waste time and energy
because of false alarms. To overcome these problems, we use
IMU-based fall detection only for the first check. When a
fall is detected using the IMU-based fall detection model,
the system does not activate an alarm. The final decision rests
with the secondary fall detection model, which uses the RGB
data and the CNN-based classifier.

B. RGB-BASED FALL DETECTION

After performing IMU-based fall detection, we use an RGB
image to conduct the second step in our double-check
method. We developed a classifier that differentiates between
fall and non-fall images by testing six CNN-based models:
Inception-v3, AlexNet, SqueezeNet, DenseNet, VGGNet,
and ResNet. Specifically, we used the DenseNet-121,
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DenseNet-161, and DenseNet-203 models; the VGG-11,
VGG-13, VGG-16, and VGG-19 models; and the ResNet-18,
ResNet-34, ResNet-50, ResNet-101, and ResNet-152 mod-
els. We used a total of 5,000 (five subjects x two states x
500 datasets) RGB image samples to train and validate the
CNN models. CNN-based fall detection was also subjected
to LOPO CV, in which 4,000 data points were applied for
training and 1,000 data points (from the subject not included
in the training set) applied for the test. The entire process was
repeated five times (for a total of 5 subjects). The fall detec-
tion results based on the RGB images are shown in Table 5.

Regardless of which model that we employed, we almost
achieved minimum performance accuracies of 90%, but
DenseNet-121 achieved an accuracy of 97.72%, which was
the best result. DenseNet performed better than the Inception,
AlexNet and SqueezeNet models because it uses resid-
ual blocks to reduce the residuals. Specifically, DenseNet-
121 exhibited excellent performance; it had fewer vanishing
gradient problems than the other DenseNet models because it
has shallower layers than those models.

C. DOUBLE-CHECK FALL DETECTION
To verify the performance of the double-check method,
we conducted experiments using a new dataset in which the
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FIGURE 6. Structure of IMU-based fall classification.

samples had not been used previously. First, 1,650 IMU sen-
sor samples (five subjects x eleven activities x 30 datasets)
were used to detect fall and non-fall events. In each case,
the RGB data were obtained along with the IMU sensor data.
Fall detection using RGB images is the final step in detecting
falls in the proposed method. Therefore, fall detection using
RGB images was performed ten times to minimize errors
at this stage. This was possible because fall detection using
RGB images is performed using a single RGB image.

When using the IMU data to detect a fall, we adopted a
higher threshold for detecting a fall; therefore, cases occurred
in which a non-fall situation was detected as a fall. As shown
in Table 6, when only the IMU data were employed, 662 of the
1,050 non-fall situations were detected as fall situations (FP).

We solved this problem by applying the proposed method.
Under the double-check fall detection method, when a fall
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TABLE 5. Performance of Fall Detection for Various CNN Models (%).

CNN Model Accuracy of Each Test Subject’s Average
Inception 95.92
AlexNet 58.65
SqueezeNet 80.06
DenseNet-121 97.72
DenseNet -161 96.62
DenseNet -201 96.07
VGG-11 96.96
VGG-13 96.08
VGG-16 94.59
VGG-19 9236
ResNet-18 94.18
ResNet-34 88.93
ResNet-50 89.77
ResNet-101 85.63
ResNet-152 8291

TABLE 6. Confusion Matrices for IMU-Based Fall Detection.

Fall Detection using

Actual Fall Actual Non-Fall
only IMU data
Predicted Fall 600 (TP) 662 (FP)
Predicted Non-Fall 0 (FN) 388 (TN)

was detected from the IMU sensor data, an RGB image was
used to double-check whether a fall had occurred. Since
RGB- based fall detection is performed only when a fall is
detected in IMU-based fall detection, a total of 1,262 RGB-
based fall detections are performed, and the results are shown
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TABLE 7. Confusion Matrices for RGB-Based Fall Detection (Results after Performed Once and 10 Times).

Fall detection using RGB

Actual Fall Actual Non-Fall
data (performed once)
Predicted Fall 569 (TP) 11 (FP)
Predicted Non-Fall 31 (FN) 651 (TN)

Fall detection using RGB

. Actual Fall Actual Non-Fall
data (performed 10 times)
Predicted Fall 600 (TP) 0 (FP)
Predicted Non-Fall 0 (FN) 662 (TN)

in Table 7. However, as shown on the left side of Table 7,
when fall detection using the RGB image was performed only
once, 31 cases were detected as non-fall events even after a
fall had been detected from the IMU sensor data. In addition,
11 cases were detected as falls even though no falls had
actually occurred. To solve this problem, we performed fall
detection using the RGB image ten times and then selected
the detection result with the highest probability. As a result,
we were able to eliminate misdetection using RGB images,
as shown on the right side of Table 7. In addition, we were
able to use this double-check method to reduce the number
of occurrences of false negatives and false positives from the
IMU data to 0, as shown in Table 8. Using the double-check
method, we were able to increase the fall detection accuracy
achieved with the IMU sensor data from 59.88% to 100.0%
in our experimental environment.

VI. CONCLUSION

In this paper, we propose the double-check method using
the IMU-L sensor and mobile robot. Since previous studies
could not perfectly detect falls by using only an IMU sensor
attached on the body, we attempted to overcome this problem
by adding a location sensor to the wearable sensor and an
RGB sensor on the mobile robot. We adopted the LSTM
model to analyze IMU data and selected the DenseNet-
121 model to analyze RGB data and achieve the best per-
formance. In IMU-based fall detection, we maximized the
precision by using a larger weight for the fall data compared
to the non-fall data. Although non-fall activity was classified
as a fall by using the IMU data, the mobile robot could
move to the site of the fall and confirm the fall with great
accuracy. As a result, we achieved perfect performance in
detecting a fall in our experimental environment. The pro-
posed method increases the cost and time of falls but could
minimize the occurrence of false alarms and maximize the fall
detection precision. Our fall detection system can be applied
to large spaces for elderly care, such as nursing hospitals
and health centers, where robots can easily move. Multiple
robots can be deployed to cover each floor in these places.
Furthermore, the system may also be installed in a one-story
house with elderly occupants. Indoor care robots can widen
their roles to address emergency situations by applying our
system.

48074

TABLE 8. Confusion Matrices for Proposed Double-Check Fall Detection.

Double-Check Methods

. Actual Fall Actual Non-Fall
using IMU-L and RGB data
Predicted Fall 600 (TP) 0 (FP)
Predicted Non-Fall 0 (FN) 1050 (TN)

FIGURE 9. Robot demonstration for fall detection in several places.

VII. FUTURE WORKS

Since we tested our method in a limited laboratory envi-
ronment, we were able to obtain optimal results. In a less-
constrained environment, the precision may be lower. It is
expected that follow-up studies will show that considering
additional features, such as time or spatial information, will
overcome the limitations imposed by real-world environ-
ments. Furthermore, the risk of falls may be very low if a per-
son is lying on a bed or sofa or if a person stands up and walks
after a fall is detected. If the robot is dispatched to reconfirm
the fall even in these less dangerous cases, many unnecessary
costs may be incurred. We will improve on results in terms
of cost reduction and efficiency by applying a fall detection
method that includes this situational information.
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FIGURE 10. Example of IMU-L sensor data acquisition.

APPENDIX A

The proposed fall detecting system has been demonstrated
in several places, such as laboratories, aisles, conference
rooms, offices, nursing hospitals and health centers. Our
system successfully detected human falls in all places, so we
verified that the system could work with other environments
and backgrounds, which were not trained. Fig. 9 shows
the demonstration examples of the proposed fall detection
system.
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APPENDIX B

The participants in this experiment were five healthy adult
males. Data of four types of falls (forward, backward,
falling on knee and falling on hip) and seven types of
non-falls (laying supine, laying prone, picking up an object,
standing, walking, jumping and sitting) were collected.
Examples of acquisition experiments and samples of col-
lected IMU-L data are shown in Fig. 10 and Fig. 11,
respectively.
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