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ABSTRACT Rolling bearings, as the main components of the large industrial rotating equipment, usually
work under complex conditions and are prone to break down. It can provide a certain theoretical basis for
identifying the sub-health state of the industrial equipment by the analysis from the incipient weak signals.
Thus, a sub-health recognition offline algorithm based on Refined Composite Multiscale Dispersion Entropy
(RCMDE) and Deep Belief Network-Extreme Learning Machine (DBN-ELM) optimized by Improved
Firework Algorithm (IFWA) is proposed. First of all, in light of the drawbacks that it is easy to fall into local
optima and cross the boundary for exploding fireworks in Firework Algorithm (FWA), Cauchy mutation
and adaptive dynamic explosion radius factor coefficient is introduced into IFWA. Secondly, Maximum
Correlation Kurtosis Deconvolution (MCKD) optimized by the improved parameters is used to process
the incipient vibration signals with nonlinearity, nonstationary, and IFWA is used to adaptively adjust to
the period T and the filter length L in MCKD(IFWA-MCKD). Then, each sequence of signals is further
extracted the feature—RCMDE to rich sample diversity. Finally, combining the powerful unsupervised
learning capability from DBN and the generalization capability from ELM, DBN-ELM can be established.
What’s more, in order to avoid the interference of human on the parameters, IFWA is used to optimize the
number of hidden nodes in DBN-ELM, and the IFWA-DBN-ELM is established. It shows that the algorithm
has the higher sub-health recognition accuracy, better robustness and generalization, which has a better
industrial application prospect.

INDEX TERMS Sub-health recognition, DBN, MCKD, RCMDE, improved firework algorithm.

I. INTRODUCTION
In recent years, with the development of large-scale industrial
equipment towards automation and intelligence, sub-health
monitoring for the large-scale equipment has attracted much
attention. ‘‘Sub-health’’ is a diseased state which is an incipi-
ent state with minor fault. In this state, mechanical equipment
can still run with illness. However, if it isn’t detected in
time, it may bring out large-scale malfunctioning, resulting
in making mechanical equipment shut down, which can not
only reduce efficiency, but also seriously threaten the lives
of workers. Therefore, it is necessary to monitor whether the
mechanical equipment falls into the sub-healthy state [1].
It shows that about 30% of the industrial equipment mal-
functioning can be caused by the rolling bearings. Obviously,
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incipient fault diagnosis for the rolling bearings can provide
an indispensable gist for the equipment sub-health status
identification.

Incipient fault vibration signals of the rolling bearings have
the characteristics with weak, non-linearity, non-stationary,
low SNR, micro-amplitude, high dimension. Therefore,
in terms of the signal processing in fault diagnosis, the
accelerometers are usually used to measure the accelera-
tion as the vibration signals. Enhanced Singular Spectrum
Decomposition [2] (ESSD), Spectral Theory of Multidimen-
sional Matrix [3] (STMM), Variational Mode Decomposition
[4] (VMD) and others are used to increase the pulse num-
bers. Although the previous signal denoising algorithms have
achieved good results, there are also some disadvantages. In
VMD, if the signals decompose too many, it will be inter-
mittent and lack of regularity. Unfortunately, MED can only
deconvolve a single pulse or a group of pulses and can’t deal
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with the necessary periodic pulses that occur repeatedly dur-
ing fault state. Luckily, McDonald et al. proposed Maximum
Correlation Kurtosis Deconvolution [5]. MCKD is used the
fault periodicity and the pulse-like vibration associated with
the most faults to process the signal, which can not only
improve performance and enhance periodic pulses, but also
perform concurrent detection. However, the deconvolution
effect by MCKD is severely interfered by the period T , the
filter length L and the shift K . Any improper parameter can
be difficult to achieve the ideal deconvolution effect.

After obtaining the desired deconvolution effect, aiming
at the difficulty that how to extract the fault features fur-
ther, some scholars introduce the nonlinear dynamic anal-
ysis method into the field of fault diagnosis. Dispersion
Entropy [6] (DE)which overcame the weaknesses of Sample
Entropy [7] (SampEn) that had the high time complexity and
was easy to mutate for similarity measure as well as Permu-
tation Entropy [8] (PE) without considering the interaction
of signal amplitude, had an excellent information extraction
capability. On this basis, Azami et al. proposed Refined Com-
posite Multiscale Dispersion Entropy (RCMDE). The feature
has stronger robustness and can reflect the complexity change
for the time series signals. It has achieved good effect in the
biomedical signal analysis [9] and the fault diagnosis by shal-
low networks such as Support Vector Machine (SVM) [10].

Many scholars applied SVM, GAN, AE, LSTM and so
on to the fault detection [11]–[13]. However, the incipient
signals are complex and changeable, and the models are a
little inadequate. At the same time, we notice that DBN
with strong unsupervised feature learning capability not only
has a better generalization and mapping capability, making
it to fit complex nonlinear data well, but also is a non-
parametric data-driven model, without making assumptions
about data generation. ELM has a good generalization and
the idea of kernel or sigmoid function can be used to map
nonlinear samples to higher dimensional space, which shows
unique advantages in classification. [14]. DBN and ELM
have achieved good results in the sub-health identification
respectively [15]–[17].

In view of ELM, DBN-ELM is established. DBN-ELM
has been successful in Intrusion Detection, SoftMeasurement
and short-term Energy Consumption Prediction. Dai et al.
added many classifiers at each intermediate level in DBN
and compared with the classification effect through ELM to
achieve classification by majority voting and comprehensive
calculation. The improved DBN-ELM achieved good results
on the NSL-KDD intrusion detection data set [18]. Later,
Wang et al. introduced DBN-ELM into the field of the soft
measurement, and it showed that this method had higher
comprehensivemeasurement accuracy in nutrient liquid com-
position for the soilless cultivated crop [19]. At the same
time, Zhang et al. proposed a DBN-ELM short-term pre-
diction based on Cyclic Feature (CF) about building energy
consumption, which improved the prediction accuracy of the
building energy consumption [20].

In this paper, DBN-ELM is introduced into the field of
the sub-health recognition. In order to adjust the weights and
bias of each layers adaptively in DBN, the softmax layer is
added at the end of the RBM3 and Adam [21] is used for
back propagation. Then, ELM is used to complete classi-
fication. However, there is still a problem that DBN-ELM
performance is restricted by the number of neurons in the
hidden layers. Excessive neurons will cause the model to
be bloated, increasing the training time and reducing the
efficiency. Nevertheless, too little can’t achieve the desired
the sub-health recognition effect.

As an emerging computing technology, swarm intelligence
algorithm has attracted much attention due to its simplicity
and global search capability [22]. Shao et al. proposed a
method based on combining Particle Swarm Optimization
(PSO) to optimize the number of the hidden layer neurons,
learning rate and the momentum in DBN, which was applied
to analyze experimental signal of the rolling bearings, and
PSO-DBN could recognize fault state more intuitively and
accurately [23]. Du et al. proposed a landslide displacement
prediction method based on EEMD and optimizing connec-
tion weight and threshold of ELM by PSO, and it showed
that PSO-ELM could predict landslide displacements with
stepped curves effectively in this area [24].

Based on the related researches from domestic and foreign
countries, this paper proposes a new improved fireworks
algorithm to optimize DBN-ELM sub-health identification
model. Firstly, inspired by the swarm algorithm, IFWA that
is introduced Cauchy variation and adaptive dynamic explo-
sion radius is applied to adaptively select the parameters T
and L in MCKD called IFWA-MCKD. After that, extract
the feature RCMDE further. Secondly, ELM is used as a
classifier to improve the model’s generalization performance.
DBN-ELM is introduced into the field of the sub-health
identification. IFWA is used to optimize the number of the
hidden nodes in DBN-ELM. Finally, instead of single feature,
RCMDE, the processed signals by IFWA-MCKD and the
waveform factor, pulse factor, gravity frequency, mean square
frequency, frequency variance and other 16 kinds of time-
frequency domain features constitute multi-feature data set.
Train the DBN-ELM and classify the testing set, and verify
the generalization capability under different loads.

II. IMPROVE FIREWORKS ALGORITHM
In order to maximize the performance for MCKD and DBN-
ELM, IFWAwhich can adaptively adjust the hyperparameters
of the models is introduced.

A. FIREWORKS ALGORITHM
Ying Tan et al. proposed FWA [25]. The explosive fireworks
at k dimensions are generated, and the fitness values are
calculated, where the explosion radius Ri and the explosive
fireworks number Si are defined, as shown in Eq.1∼2:

Ri = Er ×
f (xi)− ymin + c∑N
i=1 (f (xi)−ymin)+ c

(1)
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Si = En×
ymax − f (xi)+ eps∑N

i=1 (ymax − f (xi))+ eps
(2)

Er , En are respectively defined as explosion radius fac-
tor and number factor, and eps is constant. f (xi) is fitness
function. In order to avoid the overwhelming influence from
explosive fireworks, constraints are added as shown in Eq.3
to Eq.2:

s
′

i =


round (p ∗ En) , Si < pEn
round (q ∗ En) , Si > pEn, p < q< 1
round (Si) , otherwise

(3)

Among them, p and q are constants. Firework xi is
randomly selected from the fireworks populations to perform
Gaussian variation, and the variation firework x

′

ik is obtained,
as shown in Eq.4:

x
′

ik = xik+(xmin,k − xik )×e (4)

xmin,k is the minimum firework position, e ∼ N (0, 1).
The newly generated fireworks may cross the boundary. If
xi exceeds the range [Lk ,Uk ], the firework xi needs to be
mapped to a new position, as shown in Eq.5:

xik = xl,k + rand(0, 1) · (xU ,k − xL,k ) (5)

xU ,k , xL,k are the upper boundary and lower boundary.
After explosion, select xi with the smallest fitness value

in the current population to inherit to the next generation,
and then the roulette strategy is used to select other xi to
the next generation population. If there are many candidate
fireworks around xi, reduce the probability to select xi. When
the next generation of population is formed, calculate the
fitness values, and perform mutation and selection strategies
in turn until the iteration ends or the specified threshold is
reached.

B. IMPROVE FIREWORKS ALGORITHM
The explosion radius can balance the local and global search
capability. On one hand, a worse firework produces a larger
explosion radius to enhance the algorithm’s exploration capa-
bility and breaks out of the local optimal. On the other
hand, a better firework produces a smaller explosion radius
to enhance the algorithm’s mining and the local search capa-
bility. The size of explosion radius Ri is related to the radius
factor Er , but FWA adopts the fixed Er , which makes the
algorithm easily fall into local optimal. Therefore, a new
dynamic adaptive explosion radius function is proposed, as
shown in Eq.6:

Er = Aµ+0.6Aµ sin
[
π · (2t − Tmax)

2 · Tmax
+ π

]
(6)

where, t is the current iteration number and Tmax is the
maximum iteration. In Eq.6, as the iteration increases, the
explosion radius changes from large to small, and IFWA algo-
rithm firstly has a strong global search capability and then has
a strong local search capability. Where Aµ is the explosive
radius factor coefficient that is related to the feasible region ∅.

FIGURE 1. Standard cauchy and gaussian probability density functions.

Inspired by the Literature [26], the setting rules for Aµ are as
shown in Eq.7∼9:

Amax = (Uk − Lk) ∗ 0.02 (7)

Amin = (Uk − Lk) ∗ 0.005 (8)

Aµ =
Amax + Amin

2
(9)

Amax and Amin are the upper and lower limits for Er
respectively. With iterations, Er can traversal this region
dynamically and randomly, so as to prevent not only too fast
convergence to fall into the local minimum value, but also too
slow convergence to search for the local optimal value.

Inspired that Cauchy variation can produce more exten-
sive random numbers, it is introduced into IFWA. Cauchy
mutation operator and Gaussian mutation operator are used
alternatively under certain conditions. The standard Cauchy
and Gaussian probability density functions are shown in
Fig.1. Compared to the Gaussian distribution, the Cauchy
distribution is high at both ends and low in the middle. As
a mutation operator, Cauchy mutation operator can generate
a wider range of random numbers. In the incipient iteration,
through Cauchy mutation, it can produce more extensive
variation fireworks, so that the fireworks escape from the
local optimum. In the later stage, the Gaussian mutation is
used to search the global optimum precisely near the optimal
area.

The construction method is shown in Eq.10, instead of
Eq.4:

x
′

ik=

{
xik+

(
xmin,k − xik

)
× C (1, 0) , rand ≤ 1− t

Tmax
xik+

(
xmin,k − xik

)
× N (0, 1) , otherwise

(10)

Among them, rand is a random number between (0,1),
C (1, 0) is a standard Cauchy distribution random number,
and N (0, 1) is a standard Gaussian distribution random
number.

C. IFWA PERFORMANCE EVALUATION
In order to verify the IFWA algorithm performance, GA,
PSO, FWA and IFWA are used to carry out compara-
tive simulation experiments on the test functions shown
in Table 1.
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FIGURE 2. Fitness curves of the first three functions.

FIGURE 3. Fitness curves of the last three functions.

TABLE 1. Test functions.

The algorithms’ parameters are set as follows:
The population size is 30. The maximum iteration is 100,

and the dimension is five. Variation spark number is 5.
p =0.3, q =0.6, En =5. Besides, Er =6 in traditional FWA;
After running the four algorithms at 20 times respectively, the
results of the test functions obtained show in Fig.2∼3.

Instruction: f: Optional, P: Peak, M: Multiple, S: Single.
From Fig.2∼3, it can be seen that the overall optimization

capability in GA is poorest, and the optimization accuracy is
extremely low for most test functions. Compared with IFWA,

in PSO, the optimization accuracy is lower and convergence
speed is slower. However, IFWA adopts the adaptive dynamic
explosion radius coefficient. At the same time, the alternating
strategy of Cauchy mutation operator and Gaussian mutation
operator is adopted to enhance the optimal performance. As
you can see that IFWA has the highest optimization accuracy
in multimodal functions such as f1 (x) , f2 (x) , f3 (x) , f6 (x).
For the single functions such as f4 (x) , f5 (x), the purpose is
to compare the convergence speed. It can be seen that IFWA
is the earliest to achieve convergence so that the convergence
speed is faster.

The average value of the functions can reflect the opti-
mization capability for algorithms, and the median can reflect
the distribution for algorithms. It can be seen from Table 2
that the average accuracy in IFWA is higher, so IFWA has
stronger stability and optimization capability. Similarly, the
median for IFWA also has highest accuracy, indicating that
the optimal results distribute more compactly, and local and
global search is more balanced.

Through the above analysis, it is fully demonstrated that
IFWA has better optimization accuracy and convergence
speed. And it can optimize the hyperparameters of algo-
rithms. Of course, IFWA can maximize the signal process-
ing effect by MCKD and the performance in DBN-ELM
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TABLE 2. Mean and median values of test functions.

sub-health recognition by looking for the best parameters, so
as to obtain a higher recognition accuracy.

III. IFWA-MCKD
A. MAXIMUM CORRELATION KURTOSIS
DECONVOLUTION
Look for the FIR filter and the real signal p, as shown
in Eq. 11:

p = f ∗ y =
∑L

i=1
fiyn−i+1 (11)

y is the actual signal. f is the filter coefficient. L is filter
length. n is the signal length, and ∗ is the convolution. Then
K − shift MCKD is shown in Eq.12:

max
f
CKK (T ) = max

f

∑N
n=1

(
5K
k=1pn−KT

)2(∑N
n=1 p

2
n

)K+1 (12)

pn is the evaluation signal. T is the deconvolution period,
and K is the shift number. By combining Eq.11∼12,
dCKK (T )/dfi, the optimal f can be obtained as shown in
Eq.13:

f =
‖p‖2

2 ‖β‖2

(
Y0Y T0

)−1 K∑
k=0

YkT ak (13)

The parameters in Eq.13 are shown in Eq.14∼17:

p = Y T0 f (14)

Yq =


y1−q y2−q · · · yN−q
0 y1−q · · · yN−1−q
...

...
...

...

0 0 . . . yN−L−1−q


L×N

(q= 0,T , 2T , . . .KT ) (15)

αk =


p−11−kT (p

2
1p

2
1−T . . . p

2
1−KT )

p−12−kT (p
2
2p

2
2−T . . . p

2
2−KT )

...

p−1N−kT (p
2
Np

2
N−T . . . p

2
N−KT )


N×1

(16)

β =


p1p1−T . . . p1−KT
p2p2−T . . . p2−KT

...

pNpN−T . . . pN−KT


N×1

(17)

B. IFWA-MCKD
The sub-health identification needs to monitor w eak fault
signals. MCKD which considers the impact signal continuity
can enhance the correlation kurtosis of the original incipient
small impact signals and the pulse numbers.

The deconvolution effect of MCKD is seriously affected
by T and L [27] and restricted by K .

On one hand, T is the interval between two endpoints for
processing signals. T and L influence each other. If only one
parameter is considered unilaterally, the interaction between
the two parameters will be ignored, causing that we only
obtain the relative optimal parameters and can’t obtain the
overall optimal deconvolution signals. Eq.18 in Literature
[28] is introduced to calculate the approximate T . However,
[T ,L] adaptive optimization strategy is not mentioned in
Literature [28].

T =

∣∣∣∣ fsample frequency

fcharacteristic frequency

∣∣∣∣ (18)

On the other hand, the larger K , the more the signal pulse
numbers, but the larger K will decrease the accuracy in
MCKD. Its interaction with T and L isn’t obvious.
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TABLE 3. IFWA-MCKD algorithm steps.

In order to solve the above problems, we propose
IFWA-MCKD algorithm which can select parameter T and L
dynamically and adaptively. After that, K is determinated by
experiments. IFWA-MCKD algorithm explores the strategy
of parameter interval optimization and avoids the human
factor interference.

C. [T, L] OPTIMIZATION STRATEGY
Envelope spectrum entropy can reflect the uniform and
periodic impact about the incipient weak fault vibra-
tion signals, which has achieved good results in fault
identification [29], [30]. Therefore, envelope spectrum
entropy is introduced as the fitness function in IFWA-MCKD
algorithm. The lower value is, the more uniform signal is and
the higher SNR is, which it is proved that the deconvolution
effect is better. Envelope spectrum entropy is shown in Eq.19:{

Ep = −
∑N

j=1 pjlgpj
pj = a (j) /

∑N
j=1 a (j)

(19)

pj is the normalized form of a(j); a(j) is the envelope signal
obtained by Hilbert Demodulation for p.

The specific steps in IFWA-MCKD algorithm are shown
in Table 3:

D. K OPTIMIZATION STRATEGY
According to Literature [5], K should be no more than 10.
Otherwise the signal accuracy will be decreased, so we
select 1 ≤K ≤ 10.

It is noticed that the greater kurtosis value, the richer pulse
information contained which can reflect the fault characteris-
tic information in signals are more concentrated [31]. There-
fore, the kurtosis is selected as the evaluation index for the
deconvolution effect of the processed signal under the shift
number K . Calculate the kurtosis and the K corresponding to
the maximum kurtosis is taken as the optimal shift number.

IV. REFINED COMPOSITE MULTISCALE DISPERSION
ENTROPY
In order to further extract the fault features, consider the
complex relationship between signals fully.

RCMDE makes further improvements to MDE. MDE
doesn’t consider the relationship between the data fully after
segmentation during segmenting, resulting in missing some
statistical information, and because of the different initial
point positions, there is a certain deviation about results
obtained. RCMDE overcomes above problems. Under most
conditions, the entropy standard deviation is smaller, indicat-
ing that the algorithm has better stability and reliability.

The standard normal distribution function is used to map
the signal xj processed by MCKD into [0, 1], and yi is
obtained as shown in Eq.20:

yi =
1

σ
√
2π

∫ xj

−∞

e
−(t−µ)2

2σ2 dt (20)

where µ, σ is the mean value and variance of xj. yi is mapped
to [1,c] through linear transformation, as shown in Eq.21:

zci = round (c · yi+0.5) (21)

Reconstruct the zc phase space, and the embedding vector
zm,ci is shown in Eq.22:

zm,ci =

{
zci , z

c
i+d , . . . ,z

c
i+(m−1)d

}
(22)

i= 1, 2 . . . ,N − (m− 1) d,m is the embedding dimension.
d is the time delay, and each zm,ci is mapped to a scattered pat-
tern πv0v1...vm−1 , where z

c
i = v0,zci+d = v1, . . . ,zci+(m−1)d =

vm−1, the number of scatter patterns is cm. Calculate the
probability p in each dispersionmode πv0v1...vm−1 , as in Eq.23:

p =
Num(πv0v1...vm−1)

N − (m− 1) d
(23)

Among them, Num is the number of times that zm,ci corre-
sponds to πv0v1...vm−1 ; the DE of the reconstructed signal xi is
shown in Eq.24:

DE (x,m, c, d) = −
∑cm

π=1
p(πv0v1...vm−1)·lnp(πv0v1...vm−1 )

(24)

The RCMDE is shown in Eq.25 in each scale factor τ :

RCMDE (x,m, c, d, τ ) =
1
τ

∑τ

i=1
DE

(
xτ ,m, c, d

)
(25)
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There are four parameters that should be set manually in
RCMDE: m, c, d, τmax .

V. IFWA-DBN-ELM SUB-HEALTH RECOGNITION
ALGORITHM
A. DBN
DBN is composed of multiple Restricted Boltzmann
Machines (RBM), and the DBN is shown in Fig.4(a).

For the given state v, h, the joint distribution probability is
specified by the energy function, as shown in Eq.26:

P (v, h) =
1
Z
e−E(v,h) (26)

The energy function and the normalization constant Z are
shown by Eq.27∼28:

E (v, h) = −bT v− cT h− vTWh (27)

Z =
∑
v

∑
h

e−E(v,h) (28)

Among them, b and h are biases, and W is the weight
between layers.

B. ELM
ELM is shown in Fig.4(b). For samples (xj, tj), the hidden
layer that has h4 nodes of ELM, which can be expressed as
Eq.29:

h4∑
i=1

βig
(
Wi · xj + bi

)
= tj (29)

g (x) is the activation function,Wi and βi are the input and
output weights of the hidden layer, bi is offset, and Wi · xj is
the inner product. Once Wi and bi are randomly determined,
the hidden layer output matrix H is uniquely determined. The
training can be transformed into Eq.30:

H · β = T (30)

where, T is the expected output matrix. The output weights β́
as shown in Eq.31:

β́ = H+ · T (31)

where, H+ is the pseudo inverse generalized inverse of the
matrix H.

C. IFWA-DBN-ELM SUB-HEALTH RECOGNITION
ALGORITHM
Establish IFWA-DBN-ELM sub-health identification model,
as shown in Fig.4:

As shown in Fig.4, the firework xi(xi1, xi2, xi3, xi4) can be
the neurons number in h1 ∼ h4 respectively. DBN is stacked
by three RBMs. The visual layer v is used to input the training
set, and the neuron number is equal to the dimension of the
training set. The hidden layer h1 ∼ h3 is used to extract
characteristics, and the training rule in RBM is shown in

FIGURE 4. IFWA-DBN-ELM sub-health identification model.

Eq.32. In the third RBM, h3 is used as the input layer for
ELM.

1wij = γ (〈vi, hi〉data − 〈vi, hi〉recon) (32)

〈vi, hi〉data , 〈vi, hi〉recon are respectively training data,
refactoring expectations and learning rate γ . Adam is intro-
duced to adjust the learning rate γ dynamically. According to
Section V.B, the adjustment of parameters in ELM is different
from the gradient learning algorithm. If ELM is directly used
as the classification layer to train the model, DBN can’t
directly apply Adam algorithm to adjust the learning rate γ
to match the best hyperparameters. For fitting the training set
better, this paper adds softmax classification layer after h3,
and the cross entropy which is more suitable for the potential
vector is chosen as the loss function. Contrastive Divergence
(CD) is used to train the weights and bias in DBN layers.

Initialize IFWA related parameters, and the average accu-
racy error of the 10-fold cross-validation is used as the fitness
function. Calculate model’s fitness value, mutation, selection.
After that, establish IFWA-DBN-ELM sub-health recogni-
tion model (v→h1→ h2→h3→ h4→ o).
In DBN, IFWA-MCKD, RCMDE, time-frequency domain

features form the data set, and apply the CD-1+ Adam to
update the weights and bias. Adopt unsupervised greedy
layer-wise to train DBN until input the softmax layer to
classify. After that, compared with the real labels, the cross-
entropy loss is calculated, and Adam is applied to fine-tune
the weight and bias by backpropagation. After completing,
save the DBN hyperparameters.

In ELM, the output vector in h3 is used as the input h4.
Eq.29 uses the sigmoid activation function, and calculates
the output weight matrix β́ in h4 according to Eq.32. After
training, save the ELM hyperparameters.

VI. EXPERIMENTE
A. DATE SELECTION
In order to test the performance about IFWA-DBN-ELM
sub-health recognition algorithm, the measured data of the
drive rolling bearings from Case Western Reserve University
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FIGURE 5. Flow of IFWA-DBN-ELM sub-health recognition model.

will be used. The sampling frequency is 12kHz, the load is
0∼2HP. The electric firework causes a single point of fault.
The acceleration sensor is placed on the drive end of themotor
shell to collect the acceleration data, as shown in Table 5.

B. IFWA-MCKD
To verify the improvement of the proposed method to
MCKD algorithm, according to Literature [27], [32], [33], the
IFWA and MCKD parameter settings are shown in Table 6.
Experimental environment: Intel @Core @CPU i7-6700HQ,
8GB RAM, 64-bit operating system, MATLAB R2019a.

1) [T , L] OPTIMIZATION STRATEGY
Preliminarily stipulate that K=1. According to the related
information, the fault characteristic frequencies of IR, Ball
and OR are 162.2Hz, 141.1Hz and 107.3Hz respectively.
Calculated from Eq.18, the possible values T . Therefore, T
search space is set as [69, 79] , [80, 90] , [107, 117]. Taking
the OR as an example, the effect of IFWA-MCKD is shown
in Fig.6:

FIGURE 6. (a) Envelope entropy values under different periods for IR
(b) The original signal and (c) Processing effect of IFWA-MCKD algorithm.

As can be seen from Fig.6(a), envelope spectrum entropy
converges to 5.3027 at the 13th iteration, and the optimal
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TABLE 4. IFWA-DBN-ELM algorithm.

TABLE 5. Fault description and sample distribution.

TABLE 6. Parameter settings of IFWA and MCKD.

result is [74,385]. Compared with Fig.6(b) and (c), the sig-
nal pulse components related to the fault can been seen
increased significantly after processing. Therefore, the spar-
sity is enhanced, the SNR is improved, and the fault features
are prominent, thus achieving the effect of noise reduction.

The same method is applied to other parts, and the relevant
data will be shown in Table 7:

2) K OPTIMIZATION STRATEGY
Taking IR for example, explore the influence in different K,
as shown in Fig.7. Obviously, with K increasing, the kurtosis
generally decreases. When K=1, the kurtosis reaches the
maximum value 37.2470. Although previous studies have

TABLE 7. Summary about IFWA-MCKD processed results.

FIGURE 7. Corresponding kurtosis values at different shift numbers K.

FIGURE 8. N, IR, Ball, OR by IFWA-MCKD.

shown that the greater K value, the more signal pulse com-
position. However, we find it that greater K can not only lead
to accuracy decrease, but also cover some key signals easily,
making the characteristic signal relatively fragmented, char-
acteristics from the pulse signal less prominent. Eventually it
leads to a decline in signal kurtosis, which is unfavorable to
sub-health recognition for factory equipment.

To sum up, under the relevant settings, the final deconvo-
lution signals can be obtained, as shown in Fig.8

C. RCMDE
In order to further extract the signal features, avoid adopting
single attribute features and enrich sample feature types,
extract RCMDE about processed signals by IFWA-MCKD.

References [9], [10], setting the parameters of RCMDE:
m = 3, c = 6, d = 1, τ = 20; the corresponding RCMED is
calculate under different scale factor τ as shown in Fig.9:
From Fig.9, it shows that the normal signal RCMDE

is wavy. For fault signals, the trend of RCMDE generally
decreases with the scale factors increasing and gradually
becomes stable. Although there is a slight increase at some
individual scales, it doesn’t affect the overall trend. At the
same time, it can be found that when the scale factor is
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FIGURE 9. RCMDE of different scale factors τ .

FIGURE 10. RCMDE and MDE of different scale factors τ .

TABLE 8. The standard deviations between RCMDE and MDE.

large, the difference of RCMDE values is small and there
is crossover and overlap. If more scale RCMDE is selected
as the fault feature vector, although it can be distinguished,
it will cause information redundancy, which is not good for
classification and recognition. Based on the steady trend,
RCMDE within τ ≤ 14 is taken as the signal feature. It
is observed that when the scale factor is small, the various
types are divided more obviously, but at larger scale fac-
tors, RCMDE values are close at times. Obviously, although
RCMDE can save much characteristic information for the
original signals, it also needs to use the IFWA-DBN-ELM to
identify the fault.

Next, it is well known that RCMDE is put forward on the
basis of MED. Compare the effects of RCMDE and MDE as
shown in Fig.10:

In Fig.10, RCMDE and MDE are basically the same, and
the overall trend of the results of them is similar. Therefore,
compare the standard deviations between them in Table 8:

TABLE 9. Parameter settings of IFWA and DBN-ELM.

FIGURE 11. IFWA-DBN-ELM sub-health recognition confusion matrix.

As can be seen from Fig.10 and Table 8, although the curve
trends are similar and the entropy value is not much different,
RCMDE has a smaller overall standard deviation, which
indicates that RCMDE has better stability and reliability.

D. IFWA-DBN-ELM SUB-HEALTH RECOGNITION
ALGORITHM EXPERIMENT
Referring to the suggestion given by Literatures, Parameter
settings about IFWA, DBN-ELM are shown in the Table 9.

The optimization limit about the hidden layer neuron num-
ber is [100, 500]. The neuron number in the visible layer
is 430 (including 400-dimensional processed data, 16 time-
frequency domain features, RCMDE under τ =1∼14). Train
the model according to the process shown in Fig.5. The final
topology is 430- 129-375-375-165-4. The corresponding con-
fusion matrix about testing set is shown in Fig.11.

It can be seen that the model has achieved accurate iden-
tification. For IR, only one testing sample is mistakenly
identified as Ball, but the overall testing set recognition accu-
racy rate reached 99.17% (in tables, the accuracy is mea-
sured in %). It shows that the IFWA-DBN-ELM algorithm
finds suitable hyperparameters through methods such as
optimizing the number of hidden layer neurons and improv-
ing training ways. It gives full play to DBN-ELM powerful
performance. It has achieved good results in the sub-health
equipment recognition under certain working condition with
less time which is shown as Table 11.

DBN-ELM performance is greatly affected by the number
of neurons in the hidden layers. For this reason, explore
DBN-ELM under different numbers of neurons.
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TABLE 10. DBN-ELM hidden layer number change performance.

Based on confusion matrix, Kappa, Micro-F1(Mi1) and
Macro-F1(Ma1) are defined as follows.

Kappa coefficient is used to measure the effect of classifi-
cation, which is calculated as Eq.33∼34.

kappa =
p0 − pe
1− pe

(33)

pe =

∑n
i=1 ai ∗ bi
c2

(34)

Among these, p0 is classification accuracy. ai, bi are
respective the sum of the ith column, row.

F1-Score is harmonic mean of precision and recall, and is
defined as Eq.35.

F1 = 2×
precision · recall
precision+ recall

(35)

Calculate the total precision and recall of all classes, and
then calculate F1 called Micro-F1. After that, calculate the
precision and recall of each class, and then calculate F1 to
get the average for each class called Macro-F1.

Select the highest recognition effect in 10 experiments.
Evaluate by Kappa, Mi1 and Ma1 values based on confusion
matrix (10−2), accuracy (p0) as shown in Table 10:

In Table 10, it shows that when h4 ≤10000, the more
neurons is, the higher Kappa value and the better model
consistency, but the sub-health recognition accuracy doesn’t
exceed 90%, because it doesn’t match the optimal topology
under the artificial setting. Later, when h4 =20000, the model
Mi1 decreases, indicating that DBN-ELM has been over-
fitting. In addition, when h4 =10000, the model achieves the
optimal effect 86.67%.However, after optimization by IFWA,
h4 is only 165, which it leads to a great waste of computing
resources and illustrates the necessity of swarm algorithm
optimization further.

GA is worse than other three smart algorithms as shown in
Fig.2-3 and Table 2, soGA isn’t worth considering. In order to
verify the superiority by IFWA optimization effect, compare
with PSO and FWA optimal DBN-ELM. The results includ-
ing training time and testing time(s) are shown in Table 11.

The variation curve of the 10-fold cross-validation average
errors are shown in Fig.12.

When the training accuracy is less than 0.01, we think
the model converges, adopts Incipient Stopping, and saves
hyperparameters. From Table 11 and Fig.12, it can be seen

TABLE 11. Recognition effect under different optimization algorithms.

FIGURE 12. Changes in fitness values.

TABLE 12. Recognition effect under different classifiers.

that the sub-health identification effect by IFWA is better
than that by FWA and PSO. As the iteration increases, within
the error range [0,0.024], the curve for IFWA changes as
a jump, and the accuracy error reaches the minimum value
0.0083333 at the 27th generation. Observed at the same time,
the fitness values by PSO and FWA fluctuation near 0.01.
When searching, the algorithms sink into the local optimum,
but IFWA enhance the local search capability, out of the
local optimum, finding the better topology structure, so the
accuracy of the test set has been improved.

Combined with Table 10∼11, compared to the tradi-
tional DBN-ELM, the sub-health identification accuracy
is improved after using IFWA to optimize the parameters
of the model, although it takes a long time (7427.2s) to search
the optimal topology. At the same time, after determining
the topology, train DBN-ELM. Although there is little time
gap between the three algorithms, the topology structure
optimized by IFWA has shortest training and testing time.

Furthermore, compare the effects under different classi-
fiers, as shown in Table 12:

From Table 12, compared with the previously classifier
model, with the same optimizationmethod, it can be observed

VOLUME 9, 2021 42023



H. Luo et al.: Rolling Bearing Sub-Health Recognition via Extreme Learning Machine

TABLE 13. Comparison of data before and after processing.

FIGURE 13. Unprocessed data recognition rate under load 2.

that there is no great difference in the recognition accuracy
through three classifiers. The further analysis indicates that
compared with SVM, ELM classifier has a relatively lower
computational complexity due to random weights and other
measures, and the training time is less. Besides, Softmax
classifier is too simple, and it is relatively insufficient to
improve overfitting in DBN.

In order to explore the effect of data signal processing on
sub-health identification, the data before and after processed
are compared in the same environment. The results are shown
in Table 13.

The unprocessed data optimization topology is
430-156-265-137-489-4. The anti-noise capability for
IFWA-DBN-ELM sub-health recognition algorithm can be
tested by experiments before processing. Even if the data
isn’t processed, p0 still reaches 97.50%, which shows that
it has a strong capability to resist noise and has a strong
robustness. After processing, because the noise is reduced
and the samples are more abundant, DBN can better extract
characteristics, and improve the overfitting. Mi1 is increased
by 0.0167.

But it is found that the data processed for Transfer learning
effect is very great. When the load changes from 0 to 1 and 2,
the same model with the same topology accuracy for unpro-
cessed signals will decrease to 60.00% ∼ 80.00%, including
one experiment as shown in Fig.13, the main performance is
that Ball and OR fault identification error is extremely high.
It may be that their fault pulse features are alias. Although the
normal signal recognition rate is still 100% at load 2.

Finally, compare other shallow models, as shown in
Table 14:

E. TRANSFER LEARNING CAPABILITY
In order to verify the transfer learning capability for the pro-
posed IFWA-DBN-ELM sub-health recognition algorithm,

TABLE 14. Performance comparison of different models.

FIGURE 14. Confusion matrix under different loads.

signals under different loads 1 and 2 (2× 4 =8) are selected.
The confusion matrix as shown in Fig.14:

Labels 1∼8 can be the signal types for four states
under 1,2 load conditions respectively. It can be seen that
only 5 samples are identified wrong, and the recog-
nition accuracy reached 97.92%, which indicates that
IFWA-DBN-ELM proposed in this paper has a good migra-
tion versatility fully. As can be seen from the confusion
matrix in different load shown in Fig.14, the normal state
recognition accuracy is 1. Only remaining misjudgments are
errors between different fault categories, but the sub-health
identification accuracy between normal and fault is 100%.
The experimental results fully show that the proposed
IFWA-DBN-ELM sub-health identification algorithm has the
good mobility and generality, and it also has achieved better
fault identification and fault location effect under different
working conditions.

F. MULTICLASSFICATION CAPABILITY
To continue to verify the performance about
IFWA-DBN-ELM. On the basis of Table 5, the damage
diameters are increased by 0.014 and 0.021. Data can be
shown in Table 15:

The data processing and the model training are described
in VI. EXPERIMENTE. It takes 18568.63s to find the
best topology. After optimization, the processing topology
(18568.63s) is 430-467-105-252-316-10, the training error is
0.0041667, and the accuracy of the training set is 100%. The
results of the test set are shown in Table 16:

The test set confusion matrix is shown in Fig.15:
From Fig.15, it can be seen that the optimized topology

also has higher recognition accuracy, and the accuracy of nor-
mal and fault signal recognition is as high as 100%. Only part
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TABLE 15. Comparison of data before and after processing.

TABLE 16. The results of the test set.

FIGURE 15. Confusion matrix under different damage diameters.

FIGURE 16. t-SNE design sketch.

of Label 5 is wrongly identified as 2, which it is possible that
the model has slightly over-fitting for the learning feature of 2
or 5. It is gratifying that 99.33% is achieved with less epoch,
and the running time is 8.24s, which has less running time.

In order to study the internal principle of
IFWA-DBN-ELM, the data will be used for visual analysis
in the future. Through t-SNE [36] dimension reduction, the
characteristics of ELM output data are visualized, as shown
in Fig.16.

After DBN-ELM processing, the features are completely
separated and gathered in the corresponding area. Because
multi feature combination can obtain more information than
single feature combination, the effect of feature visualization
is more obvious.

VII. CONCLUSION
The bearing incipient signals are weak and noisy,
causing fault identification is difficult. Therefore, an
IFWA-DBN-ELM sub-health recognition algorithm based
on IFWA-MCKD and RCMDE has been proposed.
IFWA-MCKD can effectively improve SNR, enhance pulses.
The fault features are extracted by RCMDE and the multi
feature data set is composed of RCMDE, time-frequency
domain and data denoised by MCKD. IFWA-DBN-ELM can
adaptively select the number of neurons in the hidden layers.
Moreover, it improves the trainingmethod tomake the weight
and biasmore fit the signals and improve overfitting. Through
experiments, IFWA-DBN-ELM has achieved better effect
with less time, and the migration capability under different
loads has achieved a higher accuracy. It is instructive for large
equipment to identify sub-health state and deal with timely.

In addition, the method presented in this paper can also be
used in the analysis of medical EEG signal and voltage signal
of power electronic equipment [37], [38]. In the future, we
will further try to explore and experiment on different signals
in different fields.
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