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ABSTRACT This study proposes an adaptive gradient descent algorithm for networked control systems,
where the systems encounter a time-delay. To estimate the parameters and time-delay simultaneously,
a redundant rule based method is introduced to transform the system into an augmented model. Then,
the parameters are estimated by using an adaptive gradient descent algorithm. Finally, the true parameters
and time-delay can be obtained based on the parameter estimates of the augmented model. A simulation
example is proposed to validate the effectiveness of the proposed algorithm.

INDEX TERMS Networked control system, gradient descent, redundant rule method, adaptive method,
time-delayed model.

I. INTRODUCTION
Networked control systems (NCSs) widely exist in modern
society owing to the development of the sensor and commu-
nication network technologies [1]–[3]. In many engineering
practices, the work conditions are not ideal for on-site process
data collection. Researchers usually use some sensors or
robots to collect the data and then transmit these data to the
control center for analysis [4], [5]. With the help of the data,
the researchers can establish the process model and make
robust controller. Therefore, system identification plays an
important role in controlling the networked control system
(NCS) [6], [7].

The least squares (LS) algorithm and gradient descent (GD)
algorithm are two main kinds of estimation algorithms
[8]–[11]. The LS algorithm is a form of mathematical regres-
sion analysis used to determine the line of best fit for a set of
collected input and output data, providing a visual demonstra-
tion of the relationship between data points. Each data point
represents the relationship between a known independent
variable and an unknown dependent variable. The LS algo-
rithm can obtain the parameter estimates in only one iteration
by computing a derivative function, thus its convergence rate
is fast [12], [13]. However, it needs to calculate a matrix
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inverse. When the order of the matrix is high, the compu-
tational efforts of the LS algorithm are heavy [14], [15].

The GD algorithm can be regarded as a worthy addition
to the LS algorithm, for the reason that it does not require
matrix inverse. The basic idea of the GD algorithm is to
generate a sequential estimate by using an iterative function
which consists of three parts: the initial estimate, the direc-
tion and corresponding step-size [16]–[19]. It is noted that
the direction and its corresponding step-size are two major
factors in the GD algorithm designing. Once the direction is
determined, one should compute its corresponding optimal
step-size to make the results quickly converge to the true
values. Since the eigenvalue calculation is involved in the
step-size design, it is difficult/impossible to compute the
eigenvalues of a matrix with high-order [20], [21]. The focus
of this paper is on proposing an adaptive GD algorithmwhich
can avoid the eigenvalue calculation.

NCSs usually suffer from time-delay, packet loss or non-
linearity [22]–[24], which makes the identification of NCSs
challenging. Therefore, a reliable estimation for NCSs can
help the researchers make correct decision. Recently, many
identification methods have been developed for NCSs. For
example, Chen et al provided a VB approach for NCSs with
missing outputs and varying time-delays, where the outputs
and time-delays are estimated in the VB-E step, and the
parameters are updated in the VB-M step [25]. Gopaluni
proposed a particle filter based EM algorithm to a nonlinear
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NCS with missing outputs, while the missing outputs are
obtained in the EM-E step using the particle filter, and the
parameters are estimated in the EM-M step [26]. Both algo-
rithms are off-line algorithms, which update the parameters
using matrix inverse, thus they employ heavy computational
effort especially for large-scale systems.

In this study, an adaptive GD algorithm is proposed for an
NCS with time-delay. By using the redundant rule method,
the time-delayed NCS is transformed into an augmented
model. To avoid the eigenvalue calculation, an adaptive GD
algorithmwhich updates each element in the parameter vector
is derived. The redundant rule based adaptive GD (RR-AGD)
algorithm can estimate the parameters and time-delay quickly
and simultaneously. The contributions of the RR-AGD algo-
rithm are summarized as follows:

(1) Unlike the LS algorithm, the RR-AGD algorithm has
no matrix inversion calculation, thus can be extended to
large-scale systems;

(2) Different from the GD algorithm, the RR-AGD algo-
rithm does not require eigenvalue calculation, therefore
involves less computational effort;

(3) TheRR-AGDalgorithm utilizes different step-sizes and
directions for each element in the parameter vector, thus has
faster convergence rate than the GD algorithm.

Briefly, the paper is listed as follows. Section II intro-
duces the networked control system. Section III develops the
redundant rule based gradient descent algorithm. Section IV
develops the redundant rule based adaptive gradient descent
algorithm. Section V provides a simulation example. Finally,
Section VI gives a conclusion of this paper.

II. NETWORKED CONTROL SYSTEM
The structure of the networked control system is shown
in Figure 1, where u(s) and y(s) are the input and output data
of the continuous-time process, u(t) and y(t) are the sampled
data from the continuous u(s) and y(s) at each sampling
instant h. When y(t) is transmitted over the wireless network,
it encounters a time-delay τ . Therefore, the process model is
represented by

y(t) = α(z)y(t − τ )+ β(z)u(t)+ v(t), (1)

where v(t) is a Gaussian white noise. The parameters α(z) and
β(z) are written as

α(z) = α1z−1 + α2z−2 + · · · + αnz−n,

β(z) = β1z−1 + β2z−2 + · · · + βmz−m,

FIGURE 1. The three-tank system.

and z−iu(t) = u(t − i).
Define

κ = [α1, · · · , αn, β1, · · · , βn]T ∈ Rm+n,

π (t) = [y(t − τ − 1), · · · , y(t − τ − n), u(t − 1), · · · ,

u(t − m)]T ∈ Rm+n.

Then the process model can be simplified as

y(t) = π T(t)κ + v(t). (2)

Generate L input and output data and let

Y (L) = [y(L), y(L − 1), · · · , y(1)]T ∈ RL ,

W (L) = [π (L),π (L − 1), · · · ,π (1)]T ∈ RL×(m+n),

V (L) = [v(L), v(L − 1), · · · , v(1)]T ∈ RL .

Define the cost function

J (κ, τ ) =
1
2
[Y (L)−W (L)κ]T[Y (L)−W (L)κ].

We aim to find the optimal parameter estimate κ and
time-delay estimate τ to keep the cost function J (κ, τ ) reach-
ing the minimum.

III. REDUNDANT RULE BASED GRADIENT DESCENT
ALGORITHM
Since the information matrix W (L) contains the unknown
time-delay, there exist two ways to obtain both estimates:
(1) use the iterative algorithm to obtain these two kinds
estimates separately; (2) regard the time-delay as an augment
parameter, and then estimate these two kinds of estimates
simultaneously.

A. METHOD 1
In this case, we should assign prior knowledge of the
time-delay first. Usually, assume that the time-delay lays
in the interval [0,M ]. Since the time-delay is an integer,
the unknown τ may be equal to 0, 1, · · · or M . Let τ = i,
i = 0, 1, · · · ,M . In iteration k , M + 1 cost functions are
performed as

J (κ, τ = i) =
1
2
[Y (L)−Wi(L)κk−1]T[Y (L)−Wi(L)κk−1],

where κk−1 means the parameter estimates in iteration k− 1,
and the optimal time-delay estimate can be computed by

τk = argmin
τ=i
{J (κ, τ = i), i = 0, 1, · · · ,M}. (3)

Once the time-delay is obtained, the cost function can be
written as

J (κ, τ = k) =
1
2
[Y (L)−Wk (L)κ]T[Y (L)−Wk (L)κ].

Using the gradient descent algorithm to update the parameters
yields

κk = κk−1 + γk−1W T
k (L)[Y (L)−Wk (L)κk−1], (4)
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where W T
k (L)[Y (L) − Wk (L)κk−1] is the negative gradi-

ent direction and γk−1 is its corresponding step-size, which
should satisfy

0 < γk−1 <
2

λmax[W T
k (L)Wk (L)]

, (5)

in which λmax[W T
k (L)Wk (L)] means the maximum eigen-

value of matrix [W T
k (L)Wk (L)].

Then the gradient descent iterative (GDI) algorithm is
summarized as follows:

κk = κk−1 + γk−1W T
k (L)[Y (L)−Wk (L)κk−1], (6)

τk = argmin
τ=i
{J (κ, τ = i), i = 0, 1, · · · ,M}, (7)

0 < γk−1 <
2

λmax[W T
k (L)Wk (L)]

, (8)

and the steps of the GDI algorithm are listed in the following:
1) Initialization: Let u(−t) = 0, v(−t) = 0, y(−t) =

0, and give a small positive number ε and a positive
integer M .

2) Let κ0 = [0, · · · , 0]T ∈ Rm+n and k = 0.
3) Collect the input and output data u(t), y(t), t =

1, 2, · · · ,L.
4) Compute the cost functions J (κ, τ = i), i =

0, 1, · · · ,M .
5) Estimate τk by (7).
6) Compute γk−1 by (8).
7) Compute κk based on (6).
8) Compare κk and κk−1: if ‖κk−κk−1‖ 6 ε, then obtain

the estimates κk and τk ; otherwise, increase k by 1 and
go to step 4.

Remark 1: The GDI algorithm estimates the parameters
and time-delay iteratively, the parameter estimates are depen-
dent on the time-delay estimate, and vice versa. If one kind
estimate is not accurate, the other one also has poor perfor-
mance.
Remark 2: The GDI algorithm has heavy computational

efforts because of the twomain calculations: one is theM cost
functions computation; the other is the step-size calculation
where one should compute the eigenvalue of a changing
matrix W T

k (L)Wk (L) in each iteration.

B. METHOD 2
The other way to estimate the time-delay networked model is
to update the parameters and time-delay simultaneously. Let
the time-delay be an augment parameter, and define a new
parameter vector as

κ̄ = [α1, · · · , αn, β1, · · · , βn, τ ]T ∈ Rm+n+1,

and the cost function can be written by

J (κ̄) =
1
2
[Y (L)−W (L, τ )κ]T[Y (L)−W (L, τ )κ].

Clearly, one cannot extract κ̄ from the cost function, thus
obtaining the parameter estimates κ is infeasible.

The redundant rule method proposed in [27], [28] is an
effective algorithm which can estimate these two kinds esti-
mates simultaneously. Its basic idea is to use the redundant
rule to turn the time-delayed model into an augmented model
which contains two parts: one is the original model part, and
the other is the redundant part. By analysing the parameter
estimates of the augmented model, the time-delay and the
original parameters can be simultaneously obtained.

Assume that the upper bound of the time-delay is M , and
define the augmented parameter vector and the information
vector as

κau = [ᾱ1, · · · , ᾱM+n, β1, · · · , βn]T ∈ Rm+n+M ,

πau(t) = [y(t − 1), y(t − 2), · · · , y(t − τ − n), · · · ,

y(t−M−n), u(t−1), · · · , u(t−m)]T ∈ Rm+n+M .

Actually, the augmented parameter vector κau consists of four
parts, that is

κau = [

zero vector︷ ︸︸ ︷
ᾱ1, · · · , ᾱτ , ᾱτ+1, · · · , ᾱτ+n︸ ︷︷ ︸

true vector

,

zero vector︷ ︸︸ ︷
ᾱτ+n+1, ᾱM+n,

β1, · · · , βm︸ ︷︷ ︸
true vector

]T ∈ Rm+n+M ,

and the augmented information vector also consists of four
parts,

πau(t) = [

redundant vector︷ ︸︸ ︷
y(t − 1), · · · , y(t − τ ),

y(t − τ − 1), · · · , y(t − τ − n)︸ ︷︷ ︸
true vector

,

redundant vector︷ ︸︸ ︷
y(t − τ − n− 1), · · · , y(t −M − n),

u(t − 1), · · · , u(t − m)︸ ︷︷ ︸
true vector

]T ∈ Rm+n+M .

Since the redundant vectors in the information vector play no
role in the output y(t), their corresponding parameter vectors
are equal to zero vectors.

Define

Wau(L)= [πau(L),πau(L−1), · · · ,πau(1)]T ∈ RL×(m+n+M ).

The augmented model can be expressed as

Y (L) = Wau(L)κau + V (L). (9)

It follows that the redundant rule based GDI (RR-GDI) algo-
rithm for the augmented model is

κkau = κk−1au + γ
k−1W T

au(L)[Y (L)−Wau(L)κk−1au ],

0 < γ k−1 <
2

λmax[W T
au(L)Wau(L)]

.

Once the parameter estimates are obtained, each element in
the parameter estimate vector should be compared with a
threshold. If the absolute value of the element is smaller than
the threshold, this element can be regarded as a zero element;
otherwise, it is the true element.

VOLUME 9, 2021 41671



L. Lv, J. Zhang: Adaptive Gradient Descent Algorithm for NCSs Using Redundant Rule

Remark 3: The RR-GDI algorithm can estimate the param-
eters and time-delay simultaneously. However, to choose an
optimal threshold is challenging. A small one may lead the
redundant elements to be true elements, while a large onemay
mistaken some true elements for zero elements.
Remark 4: The information matrix W T

au(L)Wau(L) is
unchanged in each iteration, one does not need to compute
the eigenvalues of the matrixW T

au(L)Wau(L) in each iteration.
Therefore, the RR-GDI algorithm has less computational
efforts.

IV. REDUNDANT RULE BASED ADAPTIVE GRADIENT
DESCENT ALGORITHM
In the RR-GDI algorithm, one should compute the eigen-
values of the information matrixW T

au(L)Wau(L). Sometimes,
we have no confidence of the time-delay τ , thus a larger
upper boundM should be given. If the dimensionM +m+ n
of the matrix is large, obtaining the eigenvalues is challeng-
ing/impossible. To overcome this difficulty, a redundant rule
based adaptive gradient descent iterative (RR-AGD) algo-
rithm is proposed.

A. RR-AGD ALGORITHM
Rewrite the information matrix as

Wau(L) = [πau(L),πau(L − 1), · · · ,πau(1)]T

= [ωau(1), ωau(2), · · · ,

ωau(m+ n+M )] ∈ RL×(m+n+M ). (10)

The augmented model can be written by

Y (L) = ωau(1)ᾱ1 + ωau(2)ᾱ2 + · · ·

+ωau(M + n)ᾱM+n + ωau(M + n+ 1)β1 + · · ·

+ωau(M + n+ m)βm + V (L).

Define the cost function

J (κau) =
1
2
‖Y (L)− ωau(1)ᾱ1 − ωau(2)ᾱ2 − · · ·

−ωau(M + n)ᾱM+n − ωau(M + n+ 1)β1 − · · ·

−ωau(M + n+ m)βm‖. (11)

In order to avoid calculating eigenvalues, the AGD method
updates each element in the parameter vector separately.
Assume that the parameter vector estimate in iteration k−1 is
κk−1au , we then update the parameter ᾱ1 first. The correspond-
ing cost function of ᾱ1 is

J (ᾱ1, ᾱ
k−1
2 , · · · , ᾱk−1M+n+m)

=
1
2
‖Y (L)− ωau(1)ᾱ1 − ωau(2)ᾱ

k−1
2 − · · ·

−ωau(M + n)ᾱ
k−1
M+n − ωau(M + n+ 1)βk−11 − · · ·

−ωau(M + n+ m)βk−1m ‖. (12)

Using the GD algorithm to update the parameter ᾱ1 gives

ᾱk1 = ᾱ
k−1
1 + γ k−11 ωT

au(1)[Y (L)− ωau(1)ᾱ
k−1
1

−ωau(2)ᾱ
k−1
2 − · · ·

−ωau(M + n)ᾱ
k−1
M+n − ωau(M + n+ 1)βk−11 − · · ·

−ωau(M + n+ m)βk−1m ]

= ᾱk−11 + γ k−11 ωT
au(1)[Y (L)−Wau(L)κk−1au ].

Substituting the above equation into Equation (12) and taking
the derivative with respect to γ k−11 yield

γ k−11 =
1

ωT
au(1)ωau(1)

.

Then the RR-AGD algorithm for the augmented model is
summarized as follows

ᾱki = ᾱ
k−1
i + γ k−1i ωT

au(i)[Y (L)−Wau(L)κk−1au ],

i = 1, · · · ,M + n+ m, βkj = ᾱ
k
M+n+j,

j = 1, · · · ,m, (13)

γ k−1i =
1

ωT
au(i)ωau(i)

. (14)

The steps of the RR-AGD algorithm are listed in the fol-
lowing:

1) Initialization: Let u(−t) = 0, v(−t) = 0, y(−t) =
0, and give a small positive number ε and a positive
integer M .

2) Let κ0
au = [0, · · · , 0]T ∈ Rm+n+M and k = 0.

3) Collect the input and output data u(t), y(t), t =
1, 2, · · · ,L.

4) Compute γ k−1i , i = 1, 2, · · · ,m + n + M according
to (14).

5) Update ᾱki based on (13).
6) Compare κkau and κk−1au : if ‖κkau − κk−1au ‖ 6 ε, then

obtain the estimates κkau and go to next step; otherwise,
increase k by 1 and go to step 4.

7) Compare each element ᾱki , i = 1, 2, · · · ,m + n + M
in κkau with the threshold ς , if |ᾱki | 6 ς , let ᾱki = 0;
otherwise, keep it unchanged.

8) Obtain the final parameter estimates κkau.
9) Compute the time-delay τ according to the four parts

in κkau.

Remark 5: The RR-AGD algorithm updates the elements
in the parameter vector one by one, and assigns different
step-sizes for each element, thus we termed it as adaptive gra-
dient descent iterative algorithm. In addition, this algorithm
is more effective when the elements in the parameter vector
have very large scalar difference among them.
Remark 6: The RR-AGD algorithm uses vector multipli-

cations instead of the eigenvalue calculation, thus it is easier
than the RR-GDI algorithm.
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B. CONVERGENCE ANALYSIS OF THE RR-AGD
ALGORITHM
In this subsection, the convergence analysis of the RR-AGD
algorithm is given which can guarantee the effectiveness of
the RR-AGD algorithm.
Theorem 1: For the augmented model proposed in (9),

the parameter estimates using the RR-AGD algorithm are
given by (13) and (14). Then, the cost function J (κau) is
monotonically decreasing.

Proof:Assume the parameter vector estimate in iteration
k − 1 is κk−1au . Then the cost function for this estimate is

J (κk−1au ) =
1
2
‖Y (L)− ωau(1)ᾱ

k−1
1 − ωau(2)ᾱ

k−1
2 − · · ·

−ωau(M + n)ᾱ
k−1
M+n

−ωau(M + n+ 1)βk−11 − · · ·

−ωau(M + n+ m)βk−1m ‖.

Since the estimate ᾱk1 is updated by

ᾱk1 = ᾱ
k−1
1 − γ k−11 ∇J (κau)κ k−1

au

= ᾱk−11 + γ k−11 ωT
au(1)[Y (L)− ωau(1)ᾱ

k−1
1

−ωau(2)ᾱ
k−1
2 − · · ·

−ωau(M + n)ᾱ
k−1
M+n − ωau(M + n+ 1)βk−11 − · · ·

−ωau(M + n+ m)βk−1m ],

where −∇J (κau)κ k−1
au

is the negative gradient direction,
which can ensure the estimates converge to the true values.
The steps-size γ k−11 =

1
ωT
au(1)ωau(1)

can guarantee

J (ᾱk1 , ᾱ
k−1
2 , ᾱk−13 , · · · , ᾱk−1m+n+M ) 6 J (κk−1au ).

In the same way, we can get the following inequalities by
Equations (13) and (14)

J (κkau) = J (ᾱk1 , ᾱ
k
2 , ᾱ

k
3 , · · · , ᾱ

k
m+n+M ) 6 · · · 6 · · ·

6 J (ᾱk1 , ᾱ
k
2 , ᾱ

k−1
3 , · · · , ᾱk−1m+n+M )

6 J (ᾱk1 , ᾱ
k−1
2 , ᾱk−13 , · · · , ᾱk−1m+n+M ) 6 J (κk−1au ).

(15)

The above inequalities demonstrate that the cost function is
monotonically decreasing. �
Remark 7: Since the cost function J (κau) is monotonically

decreasing, the RR-AGD algorithm is convergent. In addi-
tion, if the noise v(t) is a Gaussian white noise, the sequence
{κkau} converges to true values.

V. EXAMPLE
Consider the networked control system proposed in [25],
where u(t), x(t) are the inlet water valve of Tank1 and the
liquid level of Tank2, respectively, y(t) is the computer output
which is equal to y(t) = x(t)+ v(t), v(t) is a Gaussian white

FIGURE 2. A water tank system.

noise, see Figure 2. The relationship between y(t) and u(t)
can be modeled by

y(t) = α1y(t − 1)+ α2y(t − 2)+ β1u(t − 1)

+β2u(t − 2)+ v(t)

= 0.22y(t − 1)− 0.7y(t − 2)+ 0.36u(t − 1)

+ 1.1u(t − 2)+ v(t).

The input {u(t)} is a filtered random binary signal sequence
and updated at every h = 10sec. We impose a time-delay of
20sec for the output, which means that the true time-delay is
τ = 2, that is the time-delayed system is written by

y(t) = 0.22y(t − 3)− 0.7y(t − 4)+ 0.36u(t − 1)

+ 1.1u(t − 2)+ v(t).

Assume that the upper bound of the time-delay τ is M = 4,
then the augmented model can be written as

y(t)= ᾱ1y(t − 1)+ ᾱ2y(t − 2)+ ᾱ3y(t − 3)+ ᾱ4y(t − 4)

+ ᾱ5y(t−5)+ᾱ6y(t−6)+β1u(t−2)+β2u(t−2)+v(t),

κau= [ᾱ1, ᾱ2, ᾱ3, ᾱ4, ᾱ5, ᾱ6, β1, β2]T

= [0, 0, 0.22,−0.7, 0, 0, 0.36, 1.1]T.

Apply the RR-GDI and RR-AGD algorithms to estimate
the parameters and time-delay. The parameter estimates and
their estimation errors δ := ‖κkau − κau‖/‖κau‖ are shown
in Table 1 and Figure 3.

Assign the threshold ς = 0.1, then the estimates calculated
by using the RR-GDI algorithm are

κ100
au = [0, 0, 0.2081,−0.70813, 0, 0, 0.35756, 1.06787]T,

while the estimates using the RR-AGD algorithm are

κ100
au = [0, 0, 0.20804,−0.70085, 0, 0, 0.36258, 1.09412]T.

Therefore, we can get that the time-delay is τ = 2.
Using the Monte Carlo method for this system with 100

set of different noises (RR-AGD), the errors δ are shown
in Figure 4.
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TABLE 1. The parameter estimates and errors.

FIGURE 3. The parameter estimation errors δ versus k .

FIGURE 4. The parameter estimation errors δ versus k using Monte Carlo
method (100 set of different noises, RR-AGD).

From this simulation example, we can conclude:
(1) The parameter and time-delay estimates of the RR-GDI

and RR-AGD algorithms can asymptotically converge to the
true values with the increasing of k , as shown in Figure 3;

(2) The RR-AGD algorithm has a quicker convergence rate
than that of the RR-GDI algorithm, which is shown in Table 1.

(3) The RR-AGD algorithm is robust to noises, which can
be shown in Figure 4.

VI. CONCLUSION
This paper presents a redundant rule based adaptive gradi-
ent descent algorithm for a NCS with time-delay. In order
to simultaneously estimate the parameters and time-delay,
a redundant rule method is introduced to transform the NCS

into an augmented model. Then an adaptive gradient descent
algorithm is developed to update each element in the parame-
ter vector one by one. Compared with the traditional RR-GDI
algorithm, the proposed algorithm involves less computa-
tional efforts and faster convergence rates, thus can be widely
used in engineering practice.
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