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ABSTRACT Proxy re-encryption (PRE), with the unique ciphertext transformation ability, enables various
ciphertext authorization applications to be implemented efficiently. However, most existing PRE schemes
mainly focus on access authorization while ignoring the situation where the key needs to be changed and
the ciphertext needs to be evolved, making the scheme’s practicability and security inadequate. Moreover,
the few schemes that simultaneously combine ciphertext authorization, key update, and ciphertext evolution
are not satisfactory in terms of security. For solving this problem, based on Xiong et al.’s scheme, this
paper proposes an improved revocable and identity-based conditional proxy re-encryption scheme with
ciphertext evolution (RIB-CPRE-CE) for secure and efficient cloud data sharing. The proposed scheme
inherits the characteristics of multi-use, constant ciphertext length, fine-grained authorization, collision-
resistance security, and chosen ciphertext attack (CCA) security from the original method. Also, it supports
updating ciphertext to adapt to the new key after changing the identity (key) or achieves authorization
revocation by evolving ciphertext. Two new algorithms, URKeyGen and UpReEnc, have been integrated
into the original delegation scheme to support ciphertext evolution. The formal definition, security model,
concrete construction, and security analysis of RIB-CPRE-CE have been presented. The comparison and
analysis show that the proposed scheme is practical and secure. Although it adds a ciphertext evolution
function for supporting key update and delegation revocation, its efficiency and security are not reduced.
The proposed scheme can also be used in other access authorization systems that need to change the key or
revoke the authorization. It has certain practicability and security.

INDEX TERMS Ciphertext evolution, cloud sharing, conditional re-encryption, identity-based proxy re-
encryption, key update, revocable.

I. INTRODUCTION
Proxy re-encryption (PRE) enables a semi-trusted proxy to
convert a ciphertext encrypted under one user’s public key
into a new ciphertext that can be decrypted by another user’s
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private key without revealing the underlying plaintext, which
is considered a promising solution for efficiently and securely
delegating data access among users [1]. Since the first scheme
[2] proposed by Blaze et al. in 1998, PRE has attracted
much attention, and many schemes [3]–[11] with various
features (as shown in Table 1) have been proposed. PRE
has been widely used in encrypted email forwarding [2], [3],
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TABLE 1. Some schemes with various characteristics.

digital rights management [12], cloud data sharing [13],
and other delegation occasions [14], [15]. Being consistent
with the original intention of PRE, the existing schemes
mainly focus on access authorization, including single-hop
authorization or multi-hop (multi-use) authorization, unidi-
rectional authorization or bidirectional authorization, pub-
lic key-based authorization or identity-based authorization,
conditional authorization or universal authorization. If the
PRE scheme is used for short-time delegation situations (e.g.,
encrypted mail forwarding), it may be sufficient to consider
authorization only since the probability that the key needs
to be changed over a short period is negligible. But for a
long-time delegation application such as secure cloud data
sharing or digital rights management, it will not be practical
and secure enough without considering the delegation change
caused by key change.

According to Special Publication 800-57 [16], issued by
the National Institute of Standards and Technology (NIST),
any scheme based on cryptography must periodically update
keys. In addition, for a cryptography application, once the
user’s key has been compromised, it must be replaced imme-
diately. And after the key changes, the old ciphertext must
be deleted or updated to avoid the adversary decrypting it
with the old key. Therefore, considering functions of the key
update, authorization revocation, and ciphertext evolution in
the secure data sharing scheme using PRE for delegation is
necessary. However, as far as we know, most of the existing
PRE schemes or applications only consider authorization and
do not include key change. Also, the few schemes [17], [24],
[25] that consider both authorization and key update are not
ideal for security and practicality. The ciphertext length in
Liang et al.’s scheme [17] grows with the re-encryption num-
ber, making the scheme unpractical. The re-keying algorithm
in Shafagh et al.’s scheme [24] computes the re-encryption
key as rk = x ′/x, where x ′ and x are the new key and old key,
respectively. This re-encryption key generation algorithm
cannot resist collusion attack as the adversary who knows the
old key x and the re-encryption key rk can derive the new key
x ′, which will make the key update meaningless. Yao et al.’s
scheme [25] is proved secure under the random oracle model
but maybe insecure in a real application. Moreover, the above
three schemes are only secure against chosen-plaintext attack

(CPA), but cloud data sharing application usually needs to
be secure against chosen-ciphertext attack (CCA). Thus, this
motivates us to propose a CCA-secure PRE scheme that
supports key update and ciphertext evolution for cloud data
sharing.

From the perspective of ciphertext transformation,
ciphertext evolution is also a process of transforming a cipher-
text encrypted by one user’s public key into a new cipher-
text that another private key can decrypt, which coincides
with proxy re-encryption. Therefore, intuitively, a ciphertext
update function could be added directly to the existing PRE
delegation scheme. However, it is essential to note that this
extension is not trivial because the update function needs
to be perfectly integrated with the authorization function.
Otherwise, the authorization function will be affected, so not
all PRE schemes would be suitable. First of all, it is strongly
requested that the schememust bemulti-hop to ensure that the
updated ciphertext can be updated again, so the single-hop
scheme is not suitable. Secondly, for the sake of efficiency
and practicability, the length of ciphertext and the complexity
of decryption cannot be increased linearly with the number
of re-encryption times. In this aspect, the multi-hop schemes
[2], [7], [8], [17] based on the GA (Green and Ateniese [6])
paradigm are not suitable due to the increment of ciphertext
length. Only the scheme of which ciphertext length does not
increase with re-encryption is appropriate. Third, the scheme
also needs to ensure the security of collusion-resistance.
Because in the case that the user’s key is compromised or
breached and needs to be updated, the adversary knows
the previous key, and the re-encryption key for updating
ciphertext can deduce the new key in collaboration with
the proxy, which will make the key update and ciphertext
evolution meaningless. Finally, the CCA security is a critical
evaluation criterion for cryptography schemes. The chosen
scheme should be CCA-secure.

To sum up, a PRE scheme that supports key update and
ciphertext evolution should have the characteristics of multi-
hop, a constant ciphertext length, collusion-resistance, and
CCA security. To the best of our knowledge, only two
schemes meet the above requirements so far. One is the multi-
hop CCA-secure PRE scheme proposed by Lai et al. [18]
using the recent advances in indistinguishability obfuscation.
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The other is the secure cloud access authorization scheme in
cloud computing presented by Xiong et al. [19]. Since the
former does not give an efficiency analysis, its practicability
needs to be verified. So, the latter is chosen as the underlying
scheme to be improved.

A. CONTRIBUTIONS
The major contributions of this paper are as follows:

1) To improve Xiong et al.’s scheme [19] by adding a
ciphertext evolution function to support key change and dele-
gation revocation. Also, a revocable and identity-based condi-
tional proxy re-encryption scheme with ciphertext evolution
(RIB-CPRE-CE) for more secure and efficient cloud data
sharing is proposed.

2) To integrate two new algorithms, URKeyGen for gen-
erating update re-encryption key and UpReEnc for evolving
ciphertext, into the original delegation scheme.

3) To give a formal definition of RIB-CPRE-CE and its
security model.

4) To give a concrete construction and prove its
CCA-security in the standard model under the Decisional
Bilinear Diffie-Hellman assumption.

B. RELATED WORK
Since the concept of cloud computing was put forward, ensur-
ing its data security has always been the focus of research.
Many researchers have proposed a large number of security
solutions to suit various application scenarios (requirements).
The traditional symmetric encryption algorithms (i.e., AES),
hybrid encryption algorithm, or asymmetric encryption algo-
rithm (i.e., RSA) fails to meet user expectations on cipher-
text optimality and key optimality. For example, a data
owner (Alice) only wants to store one copy of ciphertext in
the cloud server, which can be accessed by multiple users
(Alice and Bob), and the data visitor (Alice or Bob) only
needs her/his own private key to access the encrypted data.
They do not want to keep any additional decryption keys. The
technology that can gracefully address this challenge is proxy
re-encryption. At present, there are a large number of schemes
using proxy re-encryption to achieve secure data sharing. But
here, only the PRE schemes with properties are reviewed.

Blaze et al. [2] proposed the first bidirectional multi-
hop proxy re-encryption scheme with a constant ciphertext
length, which cannot resist collusion attack and chosen-
ciphertext attack. Canetti and Hohenberger [4] realized the
CCA security based on the Blaze’s scheme but cannot
resist collusion attack either. Weng and Zhao [10] pro-
posed a bidirectional multi-hop PRE scheme with constant
ciphertext length and anti-collusion security, but it is only
CPA-secure. Luo et al. [11] proposed an identity-based proxy
re-encryption scheme with the characteristics of constant
ciphertext length, unidirectionality, multi-hop, and master
secret security, but it is also CPA-secure. Liang et al. [20]
proposed an identity-based conditional PRE scheme with
constant ciphertext length, and it is secure against collusion
attack and chosen-ciphertext attack. However, He et al. [21]

pointed out that their scheme cannot ensure the CCA-security
by giving specific attacks. Recently, Xiong et al. [19] pro-
posed a flexible, efficient, and secure access authorization
scheme in cloud computing based on Luo et al.’s scheme [11].
Their scheme also has the characteristics of unidirectional-
ity, multi-hop, constant ciphertext length, collusion-safe, and
CCA-secure, and supports fine-grained access authorization.
Lai et al. [18] used the recent advances in indistinguishability
obfuscation to propose a unidirectional, multi-hop, constant
ciphertext length PRE scheme that is secure against collusion
and chosen-ciphertext attack. They claimed that the scheme
could be used in an identity-based encryption infrastructure.
But the solution did not provide a comparative analysis of
the implementation and efficiency on the proxy server, and
its practicality needs to be verified. These schemes mainly
focus on access authorization and have not considered the key
update situation.

In 2014, Liang et al. [17] proposed a PRE scheme
to update the key and ciphertext. However its ciphertext
length increases with the number of re-encryption times,
and it only ensures CPA-secure. In 2016, Wang et al. [22]
pointed out that Liang et al.’s scheme [17] cannot resist re-
encryption key forgery attacks and conspiracy attacks. They
proposed a cloud-assisted, scalable, and revocable identity-
based encryption scheme with ciphertext evolution, which
can resist collusion attack and CPA, and its ciphertext length
is constant. In 2018, Sun et al. [23] proposed a CCA secure
revocable identity-based encryption scheme with ciphertext
evolution in a cloud. The scheme first uses the user’s unique
identifier as the identity to encrypt data to obtain the first-
layer of ciphertext, then uses the identifier combined with
the time as the identity to re-encrypt the first-layer ciphertext
to obtain the second-layer ciphertext. When updating the
ciphertext, the key corresponding to the combined identity
of identifier and time is used to decrypt the second-layer
ciphertext, then the identity corresponding to the new time
is used to encrypt the first-layer ciphertext obtained. In fact,
the first-layer key corresponding to the user’s unique identifi-
cation remains unchanged, and no real key update is realized.
In addition,Wang et al.’s scheme [22] and Sun et al.’s scheme
[23] utilize identity-based encryption (IBE), not PRE. When
the data stored in the cloud need to be accessed by multiple
users, different identities are used to encrypt the data and
obtain different ciphertexts, which requires numerous storage
resources.

Shafagh et al. [24] proposed a secure IoT data sharing
solution with the key update. But it only achieves CPA secu-
rity and cannot resist collusion attacks because it is based
on Blaze et al.’s PRE scheme [2]. Yao et al. [25] improved
Green et al.’s scheme [6] and proposed a PRE scheme, which
has the function of ciphertext evolution and is collusion resis-
tant. The calculation of ciphertext update in their scheme only
requires one multiplication operation, which is very efficient.
Unfortunately, their scheme only achieves CPA security in the
random oracle model, and one ciphertext component needs to
be downloaded in advance.
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C. PAPER ORGANIZATION
The rest of the paper is organized as follows. The sys-
tem model and some assumptions are given in Section II.
Section III reviews some mathematical preliminaries and
provides the definition and security model of a revocable
identity-based conditional proxy re-encryption scheme with
ciphertext evolution (RIB-CPRE-CE). Section IV presents
the concrete construction, the correctness, and the security
analysis of the proposed scheme. Section V shows the sim-
ple implementation of the proposed scheme. In Section VI,
we analyze the efficiency and functions by comparing them
with other related representative works. Finally, Section VII
concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS
A. SYSTEM MODEL
As shown in Fig. 1, the secure cloud sharing system consists
of a trusted key generation center (private key generator,
PKG), data owner, data requestor, and cloud server (storage
server and proxy server).

FIGURE 1. System model.

The private key generator (PKG) is a trusted third party
responsible for generating the system parameters and the
user’s private key.

The data owner is the user as the delegator in the sys-
tem, who rents computing and storage resources from cloud
service providers, encrypts sensitive data, and uploads it to
the cloud for storage. Furthermore, he/she negotiates identity
update and key update with PKG, generates update or del-
egation re-encryption keys, and issues ciphertext update or
delegation instructions to the proxy server.

The data requester is the user as the delegatee in the system,
who needs to access the encrypted data stored in the cloud
server by the data owner.

The storage server is a part of the cloud server, which
stores user data and responds to data access requests from
data owner or data requestor. Note that only one copy of the
data is stored on the cloud server, usually the latest ciphertext
corresponding to the data owner’s newest key.

The proxy server, instantiated by the cloud server, is semi-
trusted. That is, it will comply with the protocol and will not
actively change the user’s data. It needs to authenticate the
user’s identity, receive the user’s re-encryption key through
a secure channel, and perform legitimate ciphertext update
operations or generate delegation ciphertext.

In addition, Fig. 1 shows ten types of operations among
system components. The processings are shown as follows:

1) PKG generates the master public parameters (mpp) and
the master secret key (msk). The former is distributed to all
the participants, while the latter is kept secret. Moreover,
PKGmaintains a database of user identity information, which
indicates the user’s current valid identity.

2) After receiving a user’s private key generation request,
PKG first validates the request to ensure that it comes from
a valid user and the key period of the identity is reasonable.
If the check fails, PKG rejects the request. Otherwise, PKG
generates the private key for the corresponding identity and
returns it to the user over a secure channel.

3) The data owner, Alice, encrypts the sensitive data under
her identity (e.g., IDi = Alice|20200720) and condition w to
generate an original ciphertext CIDi|w, which is uploaded to
the cloud for storage.

4) The data owner can download the ciphertextCIDi|w from
the cloud and decrypts it with the private key skIDi .

5) If Alice wants to share her data to a requester of identity
IDj, she generates a delegation token drkIDi→IDj|w using her
private key skIDi and the requester’s identity IDj. The delega-
tion token is sent to the proxy securely.

6) When the legitimate requester (say Bob) wants to access
the data, the proxy inputs delegation token drkIDi→IDj|w and
ciphertext CIDi|w into the re-encryption algorithm to generate
a new ciphertext CIDj|w.
7) The proxy returns the delegation ciphertext CIDj|w to the

requester, the latter can decrypt it with the private key skIDj .
8) When the user’s identity expires or the private key is

leaked, a new identity (e.g., ID′i = Alice|20200801) will be
sent to PKG to request a new private key. If the request is legit-
imate, PKG generates a new private key skID′i corresponding
to the new identity ID′i and returns it to the user via a secure
channel.

9) After the data owner (Alice) changes the identity and
private key, she generates an update token urkIDi→ID′i

by using
the old private key skIDi and the new identity ID′i. And the
update token will be securely sent to the proxy for ciphertext
evolution.

10) After receiving a legitimate ciphertext update request,
the proxy transforms the previous ciphertext to be a new one
CID′i , and the previous one CIDi will be deleted. The cloud
stores only one copy of the data, which usually is the latest
one.

Next, the data owner can download the updated cipher-
text and decrypt it with the new private key. The opera-
tion is the same as in step 4). Note that the old delegation
token drkIDi→IDj|w cannot be used to delegate the updated
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FIGURE 2. Process flow of RIB-CPRE-CE.

ciphertextCID′i anymore, which means that the delegation has
been revoked by evolving the ciphertext. If the data owner
wants to continue to share the data with the requester, a new
delegation token needs to be generated. The process is the
same as in step 5). In addition, the updated ciphertext can be
updated as needed, and the delegation ciphertext can also be
delegated multiple times. The work process is shown as in
Fig. 2.

B. EXPLANATIONS AND ASSUMPTIONS
In order to facilitate the introduction of system functions,
some explanations and assumptions are given here.

1) The specification of user identity, defined in master
public parameters mpp, is described as below:

• User identity consists of a unique identifier (e.g.,
user name) and a validity period. For example,
Alice|20200701-20200731 represents Alice’s identity
ID from July 1, 2020, to July 31, 2020.

• The validity period is limited in a duration window.
Assuming that the identity interval is one month,
the maximum validity period of the identity is from
the first day to the last day of the month, and
cross-cycle identities are not allowed. For example,

Alice|20200720-20200820 is illegal, but
Alice|20200705-20200726 is legal. For the sake of
description, the identity’s expiration date is set to be the
last day of every month. The validity of identity will
be denoted with the starting time, so Alice|20200801-
20200831 can be simplified to Alice|20200801. And
Dt is used to represent the validity window for identity
ID with a validity period t . The validity window of
Alice|20200801 is Dt = 202008.

• Normally, user Alice’s identity ID will be updated to
Alice|2020080120200831 in the next cycle. However,
at a special time (e.g., July 20, 2020), Alice notices that
the secret key has been compromised. She must imme-
diately update her identity and key. The new identity’s
validity period will be set from the current time until
the end of the month, such as Alice|20200720-20200731
(abbreviated as Alice|20200720).

2) Assuming PKG can authenticate the user’s identity cor-
rectly when receiving a private key generation request. For
the convenience of discussion, this authentication process is
omitted in this system.

3) Assuming the proxy can authenticate the request of a
ciphertext evolution. If the adversary forges an update token
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and requests the proxy to update the ciphertext, it can detect
the attack and reject it. Even it can send a notification about
the attack to the data owner. The processing of this authenti-
cation is not discussed in this system, either.

4) Assuming that the proxy can secretly keep the legiti-
mate delegation token and delete the expired one. And the
proxy does not store an update token and old ciphertext after
transforming ciphertext.

5) Assuming that all the private keys and re-encryption
keys are transported via secure channels and kept securely.

6) Assuming all entities in the system follow the com-
munication protocol and respond to the legitimate request
correctly.

III. PRELIMINARIES
This section briefly introduces some foundational concepts
and technologies used throughout this paper and provides the
scheme’s formal definition and security model.

A. BILINEAR MAPS
Groups (G,GT ) of prime order q are called bilinear map
groups if there is a mapping e : G×G→ GT with properties
of 1) Bilinearity: ∀a, b ∈ Z∗q , ∀g, h ∈ G, e(ga, hb) =
e(g, h)ab; 2) Non-degeneracy: ∀g, h 6= 1G, e(g, h) 6=
1GT ; 3) Computability: ∀g, h ∈ G, e(g, h) is efficiently
computable [5].

B. DECISIONAL BILINEAR DIFFIE-HELLMAN ASSUMPTION
Given an tuple (p, pa, pb, pc,Q) ∈ G4

× GT , the deci-
sional bilinear Diffie-Hellman (DBDH) problem is to decide
whether Q = e(p, p)abc or not. Define

AdvDBDHA = |Pr[A(p, pa, pb, pc, e(p, p)abc) = 0]

−Pr[A(p, pa, pb, pc,Q) = 0]|

as the advantage of the adversary A in winning the DHDH
problem. Obviously the DBDH assumption holds if no
probabilistic polynomial-time (PPT) algorithm A has non-
negligible advantage in solving the DBDH problem [19].

C. STRONGLY UNFORGEABLE ONE-TIME SIGNATURES
A one-time signature (OTS) [26] consists of a triple of algo-
rithms Sig = (SKG,S,V) such that: 1) on input a security
parameter k , SKG outputs a OTS key pair (svk, ssk); 2) on
input a message m and a signing key ssk , S(ssk,m) outputs
a signature δ; 3) on input a verification key svk , a message
m, and a signature δ, V(ssk,m, δ) outputs 1 if δ is a valid
signature of m, or outputs 0 otherwise. Sig = (SKG,S,V) is
a strongly unforgeable one-time signature if the probability

AdvOTSA (1k )

= Pr[V(ssk, δ∗,m∗) = 1 : (ssk, svk)

← SKG(1k ); (m, ST )← A(svk); δ← S(ssk,m); (m∗, δ∗)
← A(svk, δ, ST ); (m∗, δ∗) 6= (m, δ)],

where ST is the state information, is negligible for any PPT
adversary A.

D. SCHEME DEFINITION
Definition 1: A revocable and identity-based condi-
tional proxy re-encryption with ciphertext evolution
(RIB-CPRE-CE) scheme consists of eight algorithms as
follows:

1) Setup(1λ): On input a security parameter λ, this algo-
rithm outputs a master public parameters (mpp) distributed to
all participants of the system, and a master secret key (msk)
kept secretly by the private key generator (PKG). Note that
mpp is implicitly included in each of following algorithms.
2) KeyGen(msk, ID): On input msk and a combination

identity ID = (I , t) ∈ Z∗q , where I is the unique identification
of the user, and t is the validity period of ID, this algorithm
outputs a corresponding private key skID.

3) Enc(ID,w,m): On input ID, the condition w ∈ Z∗q , and
the message m ∈ GT , this algorithm outputs the original
ciphertext CID|w with a condition.
4) Dec(skID,CID|∗): On input skID and the ciphertext CID|∗

under identity ID and any condition, this algorithm outputs a
message m or an error flag ⊥.
5) DRKeyGen(skIDi , IDj,w): On input skIDi , the del-

egatee’s identity IDj, and w, this algorithm outputs a
re-encryption key drkIDi→IDj|w for delegation.
6) DeReEnc(drkIDi→IDj|w,CIDi|w): On input delegation

re-encryption key drkIDi→IDj|w and CIDi|w, this algorithm
outputs the re-encrypted ciphertext CIDj|w or a error flag ⊥
which means the ciphertext CIDi|w is invalid or the condition
is not matched.

7) URKeyGen(skID, ID′): On input the old private key skID
and the new identity ID′ = (I , t ′), this algorithm outputs a
re-encryption key urkID→ID′ for ciphertext update.

8) UpReEnc(urkID→ID′ ,CID|∗): On input urkID→ID′ and
the old ciphertext CID|∗ under the old identity ID and any
condition, this algorithm outputs a new ciphertext CID′|∗ or
a error flag ⊥ which means the ciphertext CID|∗ is invalid.

Correctness: For any security parameter λ, any identity
{IDk , IDl ∈ Z∗q |1 ≤ k ≤ l − 1 ≤ 2λ − 1}, any condition
w ∈ Z∗q , and any message m ∈ GT , if (mpp,msk) ←
Setup(1λ), skIDi ← KeyGen(msk, IDi), drkIDk→IDl |w ←

DRKeyGen(skIDk , IDl,w), and urkIDk→IDk+1 ←

URKeyGen(skIDk , IDk+1), the following conditions hold:
1) Dec(skIDk ,Enc(IDk ,m)) = m.
2) Dec(skIDk ,UpReEnc(urkIDk−1→IDk ,

UpReEnc(urkIDk−2→IDk−1 , . . . ,

UpReEnc(urkID1→ID2 ,Enc(ID1,w,m))))) = m.
3) Dec(skIDl ,DeReEnc(drkIDl−1→IDl |w,

DeReEnc(drkIDl−2→IDl−1|w, . . . ,

DeReEnc(drkIDk→IDk+1|w,

Enc(IDk ,w,m))))) = m.

E. SECURITY MODEL
As with scheme [19], some important terms for the security
model are defined firstly as follows.

Corrupt/Honest Identity: If the private key correspond-
ing to the user name I and a period t can be known by an
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adversary, the combination identity ID = (I , t) is corrupted.
Otherwise, it is honest. AndCI andHI is used to denote as the
set of all corrupt identities and honest identities, respectively.

Directed Graph: The directed graph DGurk =

(Vurk ,Aurk ) is used to record the relationship between the
identities and the update re-encryption keys involved in the
generation of update re-encryption key. DGure = (Vure,Aure)
is used to record the relationship between the identities
and the update re-encryption keys involved in the update
re-encryption. DGdrk = (Vdrk ,Adrk ) is used to record
the relationship between the identities and the delegation
re-encryption keys involved in the generation of delegation
re-encryption key. And DGdre = (Vdre,Adre) is used to
records the relationship between the identities and the del-
egation re-encryption keys involved in the delegation re-
encryption. In a DG = (V ,A), V is the set of vertices of DG,
A is the set of arcs of DG and each edge a of A joins a head
vertex vwith a tail vertex u. In this secure model,V represents
the set of identities and A represents the set of re-encryption
keys.
Definition 2: A RIB-CPRE-CE scheme is CCA secure,

if no probabilistic polynomial time (PPT) adverasry A wins
the following game with a non-negligible advantage. In this
game, A is the adversary and C is the challenger.

Init. Adversary A selects the challenge identity ID∗ =
(I∗, t∗), condition w∗ and sends them to the challenger C.
Setup. Challenger C sets up the master public param-

eters mpp and the master secret key msk. The mpp is
sent to A while the msk is kept secretly by C. Besides,
C maintains four directed graphs DGurk = (Vurk ,Aurk ),
DGure = (Vure,Aure), DGdrk = (Vdrk ,Adrk ), and DGdre =
(Vdre,Adre) and a queried identity set QI . Any vertex in
graph DGurk , DGure, DGdrk , and DGdre represents an iden-
tity with key period in HI ∪ CI . In graph DGurk , each arc
(directed edge) in Aurk represents a update re-encryption key
of an identity from one key period to another. For example,
a((I ,ti),(I ,tj)) represents the re-encryption key urk(I ,ti)→(I ,tj).
In the graph DGure, each arc in Aure represents an update
query of ciphertext under an identity from one key period to
another. For example, a((I ,ti),(I ,tj)) represents a query about
Oure((I , ti), (I , tj),C(I ,ti)|w∗ ). In the graph DGdrk , each arc
in Adrk represents a delegation re-encryption key of an
identity to another identity in same validity window and
under condition w∗. For example, a((Ik ,ti),(Il ,tj)) represents
drk(Ik ,ti)→(Il ,tj)|w∗ , where Dti = Dtj . In the graph DGdre,
each arc in Adre represents a delegation re-encryption query
from an identity to another identity in same validity window
and under condition w∗. For example, a((Ik ,ti),(Il ,tj)) repre-
sentsOdre((Ik , ti), (Il, tj),C(Ik ,ti)|w∗ ,w

∗), whereDti = Dtj .QI
denotes the set of the identities whose private key have been
queried. Initially Aurk , Aure, Adrk , Adre, and QI are empty.

Phase 1. The adversary A can issue following queries
adaptively.

• Private key query Osk : On input ID = (I , t) by the
adversary, C performs the following processing:

1) If I = I∗ and t = t∗, C outputs ⊥ and aborts.
2) If I = I∗, t > t∗, and there is a path in DGurk from
vertex (I∗, t∗) to vertex (I , t), as shown in Fig. 3(a), C
outputs ⊥ and aborts.
3) If I 6= I∗ and there is a path in DGurk ∪ DGdrk from
vertex (I∗, t∗) to vertex (I , t), as shown in Fig. 3(b), C
outputs ⊥ and aborts. Otherwise C returns sk(I ,t) ←
KeyGen(msk, (I , t)).

• Update re-encryption key query Ourk : On input
((I , ti), (I , tj)) by the adversary, where ti < tj, C performs
the following processing:
1) If I = I∗, and after a((I ,ti),(I ,tj)) being added to Aurk ,
there is a path in DGurk from vertex (I∗, t∗) to vertex
(I , t), where tj ≤ t , and (I , t) ∈ QI ∪ CI , as shown in
Fig. 3(c), C outputs ⊥ and aborts.
2) If I = I∗, and after a((I ,ti),(I ,tj)) being added to
Aurk , there is a path in DGurk ∪ DGdrk from ver-
tex (I∗, t∗) to vertex (I ′, t), where Dtj ≤ Dt , and
(I ′, t) ∈ QI ∪ CI , as shown in Fig. 3(d), C outputs⊥ and
aborts.
3) If I 6= I∗, and after a((I ,ti),(I ,tj)) being added to Aurk ,
there is a path in DGurk ∪ DGdrk from vertex (I∗, t∗)
to vertex (I ′, t), where Dt∗ ≤ Dti ≤ Dtj ≤ Dt , and
(I ′, t) ∈ QI ∪ CI , as shown in Fig. 3(e), C outputs
⊥ and aborts. Otherwise, C returns urk(I ,ti)→(I ,tj) ←

URKeyGen(sk(I ,ti), (I , tj)) toA and adds urk(I ,ti)→(I ,tj) to
Aurk , where sk(I ,ti)← KeyGen(msk, (I , ti)).

• Delegation re-encryption key query Odrk : On input
((Ik , ti), (Il, tj),w) by the adversary, where Dti = Dtj ,
if w 6= w∗, C runs DRKeyGen(sk(Ik ,ti), (Il, tj),w) to
generate drk(Ik ,ti)→(Il ,tj)|w. Otherwise, C performs the
following processing:
1) If Ik = I∗, and after a((Ik ,ti),(Il ,tj)) being added to Adrk ,
there is a path in DGurk ∪ DGdrk from vertex (I∗, t∗) to
vertex (I , t), and (I , t) ∈ QI ∪ CI , where Dt∗ ≤ Dti and
Dtj ≤ Dt , as shown in Fig. 3(f), C outputs ⊥ and aborts.
2) If Ik 6= I∗, and after a((Ik ,ti),(Il ,tj)) being added to Adrk ,
there is a path in DGurk ∪ DGdrk from vertex (I∗, t∗)
to vertex (I , t), and (I , t) ∈ QI ∪ CI , where Dt∗ ≤ Dti
and Dtj ≤ Dt , as shown in Fig. 3(g), C outputs ⊥ and
aborts. Otherwise, C runs DRKeyGen(sk(Ik ,ti), (Il, tj),w)
to generate drk(Ik ,ti)→(Il ,tj)|w∗ and adds it intoAdrk , where
sk(Ik ,ti)← KeyGen(msk, (Ik , ti)).

• Ciphertext update re-encryption query Oure: On input
((I , ti), (I , tj),C(I ,ti)|∗) by the adversary, where ti < tj
and ∗ in the ciphertext C(I ,ti)|∗ denotes any condi-
tion, C runsUpReEnc(urk(I ,ti)→(I ,tj),C(I ,ti)|∗) to generate
C(I ,tj)|∗, where urk(I ,ti)→(I ,tj)←URKeyGen(sk(I ,ti), (I , tj)),
and sk(I ,ti) is generated by KeyGen(msk, (I , ti)).

• Ciphertext delegation re-encryption query Odre: On
input ((Ik , ti), (Il, tj),C(Ik ,ti)|w,w) by the adversary,
where Dti = Dtj , C returns C(Il ,tj)|w
← DeReEnc(drk(Ik ,ti)→(Il ,tj)|w,C(Ik ,ti)|w), where C runs
DRKeyGen(sk(Ik ,ti), (Il, tj),w) to generate
drk(Ik ,ti)→(Il ,tj)|w and KeyGen(msk, (Ik , ti)) to generated
sk(Ik ,ti).
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FIGURE 3. Directed graph.

• Decryption query Ode: On input ((I , t),C(I ,t)|∗) by the
adversary, C returns m ← Dec(sk(I ,t),C(I ,t)|∗), where
sk(I ,t)← KeyGen(msk, (I , t)).

Challenge. A submits two messages m0, m1 of equal
length. C returns C∗I∗,t∗|w∗ = Enc((I∗, t∗),w∗,md ) to A,
where d ∈ {0, 1}.
Phase 2. A continues issuing queries.

• Osk (I , t): C processes as Phase 1.
• Ourk ((I , ti), (I , tj)): C processes as Phase 1.
• Odrk ((Ik , ti), (Il, tj),w): C processes as Phase 1.
• Oure((I , ti), (I , tj),C(I ,ti)|∗): If C0 6= svk∗, C pro-
cesses as Phase 1. Otherwise, C performs the following
processing:
1) If I = I∗, and after a((I ,ti),(I ,tj)) being added to Aure,
there is a path in DGurk ∪DGure ∪DGdrk ∪DGdre from
vertex (I∗, t∗) to vertex (I ′, t), where Dtj ≤ Dt , and at
least one vertex in the path from vertex (I∗, tj) to vertex
(I ′, t) is in QI ∪ CI , as shown in Fig. 3(h), C outputs ⊥
and aborts.

2) If I 6= I∗, and after a((I ,ti),(I ,tj)) being added to Aure,
there is a path in DGurk ∪ DGure ∪ DGdrk ∪ DGdre
from vertex (I∗, t∗) to vertex (I ′, t), where Dtj ≤ Dt ,
and at least one vertex in the path from vertex (I∗, tj)
to vertex (I ′, t) is in QI ∪ CI , as shown in Fig. 3(i), C
outputs ⊥ and aborts. Otherwise, C returns C(I ,tj)|∗ to A
as Phase 1 and adds a(I ,ti),(I ,tj) into Aure.

• Odre((Ik , ti), (Il, tj),C(Ik ,ti)|w,w): If C0 in C(Ik ,ti)|w is not
equal to svk∗ or w 6= w∗, C processes as Phase 1. Other-
wise, C checks that, if after a((Ik ,ti),(Il ,tj)) being added to
Adre, there is a path in DGurk ∪DGure ∪DGdrk ∪DGdre
from vertex (I∗, t∗) to vertex (I , t), where Dtj ≤ Dt ,
and at least one vertex in the path from vertex (Il, tj)
to vertex (I , t) is in QI ∪ CI , as shown in Fig. 3(j), C
outputs⊥ and aborts. Otherwise, C returns C(Il ,tj)|w toA
as Phase 1 and adds a((Ik ,ti),(Il ,tj)) into Adre.

• Ode((I , t),C(I ,t)|∗): If C0 in C(I ,t)|∗ is equal to the
OTS verification key of the challenge ciphertext, C
outputs ⊥ and aborts. Otherwise, C processes as
Phase 1.
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Guess. A outputs a guess d ′ ∈ {0, 1} and wins the game if
d ′ = d .

IV. PROPOSAL
In this section, the generic construction, concrete construc-
tion, correctness analysis, security analysis, and security
proof of the scheme are presented.

A. THE GENERIC CONSTRUCTION OF THE SCHEME
The general proxy re-encryption scheme consists of
six algorithms: PRESetup, PREKeyGen, PREEnc, PREDec,
PREDRKeyGen, and PREDeReEnc. Two new algorithms,
PREURKeyGen for calculating update tokens and PREUpReEnc
for updating ciphertexts, are integrated into Xiong et al.’s
PRE scheme to construct a novel revocable and identity-based
conditional proxy re-encryption scheme with ciphertext evo-
lution (RIB-CPRE-CE). The generic algorithm construction
is shown in Fig. 4.

FIGURE 4. Generic algorithm construction of RIB-CPRE-CE.

B. THE CONCRETE CONSTRUCTION OF THE SCHEME
The concrete construction is described as follows:
• Setup(1λ): On input a security parameter λ, this algo-
rithm first chooses two multiplicative groups G and GT
of prime order q such that a bilinear map e : G ×
G → GT , then randomly picks a, b, c ∈ Z∗q , a gen-
erator g of G, five group elements h, g1, g2, g3, g4 ∈
G, and a one-time strong unforgeable signature scheme
Sig = (SKG, S,V ). Next it computes ua = e(g, h)a,
ub = e(g, h)b, vc = gc and defines Z∗q and GT as
the identity space and message space, respectively. This
algorithm sets the master secret key msk = (a, b, c)
which will be kept secretly by the private key gener-
ator (PKG), and outputs the master public parameters
mpp = (q, e,G,GT , g, h, g1, g2, g3, g4, Sig, ua, ub, vc)
to all participants in the system. For the convenience of
description, the following algorithms implicitly include
mpp.

• KeyGen(msk, IDi): Taking as input msk and an iden-
tity IDi ∈ Z∗q , this algorithm chooses si, αi, βi, γi ∈
Z∗q randomly, computes ski,1 =

c+si
a+b·IDi

, ski,2 =

hsi , ski,3 = gsi , ski,4 =
a+αi

a+b·IDi
, ski,5 =

b+βi
a+b·IDi

,
ski,6 =

γi
a+b·IDi

, ski,7 = hαi , ski,8 = hβi ,
ski,9 = hγi , and outputs the private key skIDi =
(ski,1, ski,2, ski,3, ski,4, ski,5, ski,6, ski,7, ski,8, ski,9).

• Enc(IDi,w,m): Taking as input IDi, the condition w ∈
Z∗q , and the message m ∈ GT , this algorithm first
runs SKG(1λ) to generate a one-time signature key pair
(ssk, svk), where svk ∈ Z∗q , sets C0 = svk . Next,
it chooses r ∈R Z∗q and computes C1 = gr , C2 =

m · e(vc, h)r , C3 = (ua · ubIDi )r , C4 = (g1w · g2)r ,
C5 = (g3svk · g4)r . At last, it generates a signature
C6 = S(ssk, (w,C1,C2,C4,C5)) and outputs CIDi|w =
(w,C0,C1,C2,C3,C4,C5,C6) as the original cipher-
text.

• Dec(skIDx ,CIDx |w): Taking as input skIDx and CIDx |w,
the this algorithm first checks the validity of CIDx |w by
verifying whether the following equalities hold:

e(g,C4) = e(C1, g1w · g2), (1)

e(g,C5) = e(C1, g3C0 · g4), (2)

V (C0,C6, (w,C1,C2,C4,C5)) = 1. (3)

If any of the above equations fails, this algorithm outputs
an error flag ⊥ and aborts. Otherwise, it computes and
outputs m = C2 · e(C1, skx,2)/C3

skx,1 .
• DRKeyGen(skIDi , IDj,w): Taking as input skIDi =
(ski,1, ski,2, ski,3, ski,4, ski,5, ski,6, ski,7, ski,8, ski,9), del-
egatee’s identity IDj and w, this algorithm chooses
dk1, dk2, dk3 ∈ RZ∗q , computes drk1 = (ski,4 + dk1 ·
ski,6)+ (ski,5 + dk2 · ski,6) · IDj, drk2 = (ski,7 · ski9dk1 ) ·
(ski,8 · ski,9dk2 )IDj · (g1w ·g2)dk3 , drk3 = gdk3 and outputs
the re-encryption key drkIDi→IDj|w = (drk1, drk2, drk3).

• DeReEnc(drkIDi→IDj|w,CIDi|w): Taking the delegation
re-encryption key drkIDi→IDj|w, and ciphertext CIDi|w =
(w,Ci,0,Ci,1,Ci,2,Ci,3,Ci,4,Ci,5,Ci,6) as input, this
algorithm checks the validity of CIDi|w by (1), (2), and
(3). If all the equations hold, this algorithm computes
Cj,3 = Ci,3drk1 · e(drk3,Ci,4)/e(drk2,Ci,1), Cj,0 = Ci,0,
Cj,1 = Ci,1, Cj,2 = Ci,2, Cj,4 = Ci,4, Cj,5 = Ci,5,
and Cj,6 = Ci,6, then outputs the delegation ciphertext
CIDj|w = (w,Cj,0,Cj,1,Cj,2,Cj,3,Cj,4,Cj,5,Cj,6). Oth-
erwise, outputs ⊥ and aborts.

• URKeyGen(skIDi , ID
′
i): Taking as input an old private

key skIDi , and a new identity ID′i, this algorithm chooses
uk1, uk2 ∈ RZ∗q , computes urk1 = (ski,4 + uk1 · ski,6)+
(ski,5 + uk2 · ski,6) · ID′i, urk2 = (ski,7 · ski,9uk1 ) ·
(ski,8 · ski,9uk2 )ID

′
i , and outputs the re-encryption key

urkIDi→ID′i
= (urk1, urk2) for updating ciphertext.

• UpReEnc(urkIDi→ID′i
,CIDi|∗): Taking as input an

update key urkIDi→ID′i
, an old ciphertext CIDi|∗ =

(C0,C1,C2,C3,C4,C5,C6) encrypted under identity
IDi and any condition, this algorithm first checks the
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validity of CIDi|∗ as algorithm DeReEnc and Dec.
If the check is passed, this algorithm computes C ′3 =
C3

urk1/e(urk2,C1), C ′0 = C0, C ′1 = C1, C ′2 = C2, C ′4 =
C4, C ′5 = C5, and C ′6 = C6, then outputs the delegation
ciphertext CID′i|∗ = (w,C ′0,C

′

1,C
′

2,C
′

3,C
′

4,C
′

5,C
′

6).
Otherwise, it outputs ⊥ and aborts.

C. THE CORRECTNESS OF THE SCHEME
In this subsecion, the correctness of the proposed scheme is
shown.

1) THE CORRECTNESS OF THE ORIGINAL CIPHERTEXT
Parse CIDi|w = (w,Ci,0,Ci,1,Ci,2,Ci,3,Ci,4,Ci,5,Ci,6) and
skIDi = (ski,1, ski,2, . . . , ski,9). The decryption of the original
ciphertext is processed as follows:

m =
Ci,2 · e(Ci,1, ski,2)

Ci,3ski,1

=
m · e(g, h)c·r · e(gr , hsi )

(e(g, h)(a+b·IDi)·r )
c+si

a+b·IDi

=
m · e(g, h)c·r · e(g, h)r ·si

e(g, h)r ·(c+si)
= m.

2) THE CORRECTNESS OF THE DELEGATION
i) The delegation re-encryption key drkIDi→IDj|w =

(drk1, drk2, drk3) for ciphertext delegation is processed as
follows:

drk1 = (ski,4 + dk1 · ski,6)+ (ski,5 + dk2 · ski,6) · IDj

=
a+ b · IDj+αi+dk1 · γi+(βi+dk2 · γi) · IDj

a+b · IDi
,

drk2 = (ski,7 · ski,9dk1 )(ski,8 · ski,9dk2 )IDj (g1w · g2)dk3

= (hαi · (hγi )dk1 )(hβi · (hγi )dk2 )
IDj (g1w · g2)

dk3

= h(αi+dk1·γi+(βi+dk2·γi)·IDj) · (g1w · g2)
dk3 ,

drk3 = gdk3 .

ii) To transform CIDi|w into CIDj|w, it is processed as
follows:

Cj,3 =
Ci,3drk1 · e(drk3,Ci,4)

e(drk2,Ci,1)

=
(e(g, h)(a+b·IDi)·r )drk1 · e(gdk3 , (g1w · g2)r )

e(h(αi+dk1·γi+(βi+dk2·γi)·IDj) · (g1w · g2)dk3 , gr )

=
(e(g, h)(a+b·IDi)·r )

a+b·IDj+αi+dk1·γi+(βi+dk2·γi)·IDj
a+b·IDi

e(h(αi+dk1·γi+(βi+dk2·γi)·IDj), gr )
= e(g, h)r ·(a+b·IDj).

iii) The decryption of delegation ciphertext CIDj|w under
private key skIDj = (skj,1, skj,2, . . . , skj,9), where skj,1 =
c+sj

a+b·IDj
, skj,2 = hsj , skj,3 = gsj , skj,4 =

a+αj
a+b·IDj

, ski,5 =
b+βi

a+b·IDi
, ski,6 =

γi
a+b·IDi

, skj,7 = hαj , skj,8 = hβj , skj,9 = hγj ,

is shown as follows:

m =
Cj,2 · e(Cj,1, skj,2)

Cj,3skj,1

=
m · e(g, h)c·r · e(gr , hsj )

(e(g, h)(a+b·IDj)·r )
c+sj

a+b·IDj

=
m · e(g, h)c·r · e(g, h)r ·sj

e(g, h)r ·(c+sj)
= m.

3) THE CORRECTNESS OF CIPHERTEXT UPDATE
i) The re-encryption key urkIDi→ID′i

= (urk1, urk2) for
ciphertext update is processed as follows:

urk1 = (ski,4 + uk1 · ski,6)+ (ski,5 + uk2 · ski,6) · ID′i

=
a+ b · ID′i + αi + uk1 · γi + (βi + uk2 · γi) · ID′i

a+ b · IDi
,

urk2 = (ski,7 · ski,9uk1 ) · (ski,8 · ski,9uk2 )ID
′
i

= (hαi · (hγi )uk1 ) · (hβi · (hγi )uk2 )
ID′i

= h(αi+uk1·γi+(βi+uk2·γi)·ID
′
i).

ii) To transform CIDi|∗ into CID′i|∗, it is processed as
follows:

C ′3 =
C3

urk1

e(urk2,C1)

=
(e(g, h)(a+b·IDi)·r )

(a+b·ID′i)+(αi+uk1·γi+(βi+uk2·γi)·ID
′
i)

a+b·IDi

e(h(αi+uk1·γi+(βi+uk2·γi)·ID
′
i), gr )

= e(g, h)r ·(a+b·ID
′
i).

iii) The decryption of updated ciphertext CID′i|∗ under
private key sk ′IDi = (sk ′i,1, sk

′

i,2, . . . , sk
′

i,9), where sk
′

i,1 =
c+s′i

a+b·ID′i
, sk ′i,2 = hs

′
i , sk ′i,3 = gs

′
i , sk ′i,4 =

a+α′i
a+b·ID′i

, sk ′i,5 =
b+β ′i
a+b·ID′i

, sk ′i,6 =
γ ′i

a+b·ID′i
, sk ′i,7 = hα

′
i , sk ′i,8 = hβ

′
i , sk ′i,9 = hγ

′
i ,

is shown as follows:

m =
C ′i,2 · e(C

′

i,1, sk
′

i,2)

C ′i,3
sk ′i,1

=
m · e(g, h)c·r · e(gr , hs

′
i )

(e(g, h)(a+b·ID
′
i)·r )

c+s′i
a+b·ID′i

=
m · e(g, h)c·r · e(g, h)r ·s

′
i

e(g, h)r ·(c+s
′
i)

= m.

D. THE SECURITY ANALYSIS OF THE SCHEME
This subsection first analyzes the security of the updated
ciphertext and the new private key. Then the impact of
the update re-encryption to the delegation is also analyzed.
Finally, a security proof of the proposed scheme is given.
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1) THE SECURITY OF UPDATED CIPHERTEXT
After the ciphertext is updated, the old key skIDi cannot
decrypt the updated ciphertext CID′i|∗. The verification is
shown as follows:

C ′i,2 · e(C
′

i,1, ski,2)

C ′i,3
ski,1

=
m · e(g, h)c·r · e(gr , hsi )

(e(g, h)(a+b·ID
′
i)·r )

c+si
a+b·IDi

6= m.

2) THE SECURITY OF NEW PRIVATE KEY
When the proxy receives the data owner’s update
re-encryption key urkIDi→ID′i

and knows the old private key
skIDi , it cannot derive the new private key skID′i . Also, it is
impossible to derive the date owner’s private key from the
delegation re-encryption key even the requester colludes with
the proxy. It is straightforward to verify this security, which is
also termed as master secret security or collision-resistance.

3) THE IMPACT OF THE UPDATE RE-ENCRYPTION TO THE
DELEGATION
After the ciphertext CIDi has been updated to CID′i , the proxy
cannot use the old delegation re-encryption key drkIDi→IDj
to delegate access to the requester (user IDj) any more. The
verification is shown as follows:

i) To transform CID′i|w into CIDj|w with drkIDi→IDj . Here
only the conversion of Cj,3 is given.

Cj,3 =
C ′i,3

drk1 · e(drk3,C ′i,4)

e(drk2,C ′i,1)

=
(e(g, h)(a+b·ID

′
i)·r )drk1 · e(gdk3 , (g1w · g2)r )

e(h(αi+dk1·γi+(βi+dk2·γi)·IDj) · (g1w · g2)dk3 , gr )

=
(e(g, h)(a+b·ID

′
i)·r )

a+b·IDj+αi+dk1·γi+(βi+dk2·γi)·IDj
a+b·IDi

e(h(αi+dk1·γi+(βi+dk2·γi)·IDj), gr )

=
e(g, h)

a+b·ID′i
a+b·IDi

·(a+b·IDj+αi+dk1·γi+(βi+dk2·γi)·IDj)·r

e(g, h)(αi+dk1·γi+(βi+dk2·γi)·IDj)·r

ii) To decrypt the delegation ciphertext CIDj|w with private
key skIDj cannot get the plaintext m. The process is shown as
follows:

Cj,2 · e(Cj,1, skj,2)

Cj,3skj,1

=
m · e(g, h)c·r · e(gr , hsj )

(Cj,3)
c+sj

a+b·IDj

6= m.

Note that the ciphertext update also implies the revocation
of the previous authorization. Therefore, if the data needs to
continue to be shared with the requester, a new delegate key
needs to be generated by the data owner.

Next, it is shown that the proxy holding the update
re-encryption key urkIDi→ID′i

cannot derive a new delegation
re-encryption key drkID′i→ID′j

= (drk ′1, drk
′

2, drk
′

3), where

drk ′1 = sk ′i,4 + dk
′

1 · sk
′

i,6 + (sk ′i,5 + dk
′

2 · sk
′

i,6) · ID
′
j

=
a+ b · ID′j + α

′
i + dk

′

1 · γ
′
i + (β ′i + dk

′

2 · γ
′
i ) · ID

′
j

a+ b · ID′i
,

drk ′2 = (sk ′i,7 · sk
′

i,9
dk ′1 )(sk ′i,8 · sk

′

i,9
dk ′2 )ID

′
j (g1w · g2)dk

′

3

= (hα
′
i · (hγ

′
i )
dk ′1 )(hβ

′
i · (hγ

′
i )
dk ′2 )

ID′j
(g1w · g2)

dk ′3

= h(α
′
i+dk

′

1·γ
′
i+(β

′
i+dk

′

2·γ
′
i )·ID

′
j) · (g1w · g2)

dk ′3 ,

drk3 = gdk
′

3 .

It can be found from the generation of drkID′i→ID′j
and

urkIDi→ID′i
that it is obviously impossible to derive the latter

directly from the former, because αi, βi, γi are different from
α′i, β

′
i , γ
′
i .

4) THE SECURITY PROOF OF THE PROPOSED SCHEME
Theorem 1: Assuming that the one-time signature is strongly
unforgeable and the DBDH assumption holds, the proposed
RIB-CPRE-CE scheme is CCA-secure in the standard model.

Proof. Assume there exists an adversary A that can break
the CCA security of the proposed scheme, then it possibly
builds another algorithm C that can break the DBDH assump-
tion (i.e., given p, pa, pb, pc, Q, it is hard to decide Q =
e(p, p)abc) by playing a CCA game with A. The details are
shown as follows.

Init. Adversary A chooses the challenge identity ID∗ =
(I∗, t∗) and condition w∗.
Setup. Let (p, pa, pb, pc,Q) as the DBDH instance. C

selects a0, b0, c0 ∈ RZ∗q , sets g = pa, h = pb, g1 = ps1 ,
g2 = ps2 , g3 = ps3 , g4 = ps4 , where s1, s2, s3, s4 ∈
RZ∗q , picks a strongly unforgeable one-time signature scheme
Sig = (SKG, S,V ), computes ua = e(g, h)a0 , ub = e(g, h)b0 ,
vc = gc0 , and outputs the scheme’s system parameters
(q, g,G,GT , e, h, g1, g2, g3, g4, ua, ub, vc, Sig). C also main-
tains four directed graphs DGurk = (Vurk ,Aurk ), DGure =
(Vure,Aure), DGdrk = (Vdrk ,Adrk ), DGdre = (Vdre,Adre)
and a queried identity set QI defined in the security model.
Initially, Aurk , Aure, Adrk , Adre and QI are empty.

Phase 1. In this stage, C respondsA’s following queries as
following:
• Osk : On input an identity (I , t), C performs the following
processing:
1) If (I , t) = (I∗, t∗), C outputs ⊥ and aborts.
2) If I = I∗, t > t∗, and there is a path in DGurk
from vertex (I∗, t∗) to vertex (I , t), as shown in Fig. 3(a),
C outputs ⊥ and aborts.
3) If I 6= I∗ and there is a path in DGurk ∪ DGdrk
from vertex (I∗, t∗), as shown in Fig. 3(b), C out-
puts ⊥ and aborts. Otherwise, C returns sk(I ,t) ←
KeyGen(msk, (I , t)) to A and adds (I , t) to QI , where
msk = (a0, b0, c0).

• Ourk : On input ((I , ti), (I , tj)), where ti < tj, C performs
the following processing:
1) If I = I∗, and after a((I ,ti),(I ,tj)) being added to Aurk ,
there is a path in DGurk from vertex (I∗, t∗) to vertex
(I , t), where tj ≤ t , and (I , t) ∈ QI ∪ CI , as shown in
Fig. 3(c), C outputs ⊥ and aborts.
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2) If I = I∗, and after a((I ,ti),(I ,tj)) being added to Aurk ,
there is a path in DGurk ∪ DGdrk from vertex (I∗, t∗) to
vertex (I ′, t), where Dtj ≤ Dt , and (I ′, t) ∈ QI ∪ CI ,
as shown in Fig. 3(d), C outputs ⊥ and aborts.
3) If I 6= I∗, and after a((I ,ti),(I ,tj)) being added to Aurk ,
there is a path in DGurk ∪ DGdrk from vertex (I∗, t∗)
to vertex (I ′, t), where Dt∗ ≤ Dti ≤ Dtj ≤ Dt , and
(I ′, t) ∈ QI ∪ CI , as shown in Fig. 3(e), C outputs
⊥ and aborts. Otherwise, C returns urk(I ,ti)→(I ,tj) ←

URKeyGen(sk(I ,ti), (I , tj)) toA and adds urk(I ,ti)→(I ,tj) to
Aurk , where sk(I ,ti)← KeyGen(msk, (I , ti)).

• Odrk : On input ((Ik , ti), (Il, tj),w), where Dti = Dtj ,
if w 6= w∗, C runs DRKeyGen(sk(Ik ,ti), (Il, tj),w) to
generate drk(Ik ,ti)→(Il ,tj)|w. Otherwise, C performs the
following processing:
1) If Ik = I∗, and after a((Ik ,ti),(Il ,tj)) being added to Adrk ,
there is a path in DGurk ∪ DGdrk from vertex (I∗, t∗) to
vertex (I , t), and (I , t) ∈ QI ∪ CI , where Dt∗ ≤ Dti and
Dtj ≤ Dt , as shown in Fig. 3(f), C outputs ⊥ and aborts.
2) If Ik 6= I∗, and after a((Ik ,ti),(Il ,tj)) being added to Adrk ,
there is a path in DGurk ∪ DGdrk from vertex (I∗, t∗)
to vertex (I , t), and (I , t) ∈ QI ∪ CI , where Dt∗ ≤ Dti
and Dtj ≤ Dt , as shown in Fig. 3(g), C outputs ⊥ and
aborts. Otherwise, C runs DRKeyGen(sk(Ik ,ti), (Il, tj),w)
to generate drk(Ik ,ti)→(Il ,tj)|w∗ and add it into Adrk , where
sk(Ik ,ti)← KeyGen(msk, (Ik , ti)).

• Oure: On input ((I , ti), (I , tj),C(I ,ti)|∗), where ti <

tj, C returns UpReEnc(urk(I ,ti)→(I ,tj),C(I ,ti)|∗) to gen-
erate C(I ,tj)|∗, where urk(I ,ti)→(I ,tj) is generated by
URKeyGen(sk(I ,ti), (I , tj)), and sk(I ,ti) is generated by
KeyGen(msk, (I , ti)).

• Odre: On input ((Ik , ti), (Il, tj),C(Ik ,ti)|w,w), where
Dti = Dtj , C returns C(Il ,tj)|w generated from
DeReEnc(drk(Ik ,ti)→(Il ,tj)|w,C(Ik ,ti)|w), where the dele-
gation re-encryption key drk(Ik ,ti)→(Il ,tj)|w is generated
from DRKeyGen(sk(Ik ,ti), (Il, tj),w) and the private key
sk(Ik ,ti) is generated from KeyGen(msk, (Ik , ti)).

• Ode: On input ((I , t),C(I ,t)|w), C returns m ←

Dec(sk(I ,t),C(I ,t)|w), where the private key sk(I ,t) is gen-
erated from KeyGen(msk, (I , t)).

Challenge. A submits two messages m0, m1 of equal
length. C returns C∗ID∗|w∗ = Enc(ID∗,w∗,md ) to A,
where C∗ID∗|w∗ = (C∗0 ,C

∗

1 ,C
∗

2 ,C
∗

3 ,C
∗

4 ,C
∗

5 ,C
∗

6 ), C
∗

0 =

svk∗, C∗1 = g
c
c0 , C∗2 = md · Q, C∗3 = Q

a0+b0·ID
∗

c0 ,

C∗4 = (pc·s1·w
∗

· pc·s2 )
1
c0 = (g1w

∗

· g2)
c
c0 , C∗5 =

(pc·s3·svk
∗

· pc·s4 )
1
c0 = (g3svk

∗

· g4)
c
c0 , and d ∈ {0, 1}.

Phase 2. A continues issuing queries and C responds as
follows.

• Osk (I , t): C processes as Phase 1.
• Ourk ((I , ti), (I , tj)): C processes as Phase 1.
• Odrk ((Ik , ti), (Il, tj),w): C processes as Phase 1.
• Oure((I , ti), (I , tj),C(I ,ti)|∗): If C0 6= svk∗, C pro-
cesses as Phase 1. Otherwise, C performs the following
processing:

1) If I = I∗, and after a((I ,ti),(I ,tj)) being added to Aure,
there is a path in DGurk ∪DGure ∪DGdrk ∪DGdre from
vertex (I∗, t∗) to vertex (I ′, t), where Dtj ≤ Dt , and at
least one vertex in the path from vertex (I∗, tj) to vertex
(I ′, t) is in QI ∪ CI , as shown in Fig. 3(h), C outputs ⊥
and aborts.
2) If I 6= I∗, and after a((I ,ti),(I ,tj)) being added to Aure,
there is a path in DGurk ∪ DGure ∪ DGdrk ∪ DGdre
from vertex (I∗, t∗) to vertex (I ′, t), where Dtj ≤ Dt ,
and at least one vertex in the path from vertex (I∗, tj)
to vertex (I ′, t) is in QI ∪ CI , as shown in Fig. 3(i), C
outputs ⊥ and aborts. Otherwise, C returns C(I ,tj)|∗ to A
as Phase 1 and adds a(I ,ti),(I ,tj) into Aure.

• Odre((Ik , ti), (Il, tj),C(Ik ,ti)|w,w): If C0 in C(Ik ,ti)|w is not
equal to svk∗ or w 6= w∗, C processes as Phase 1. Other-
wise, C checks that, if after a((Ik ,ti),(Il ,tj)) being added to
Adre, there is a path in DGurk ∪DGure ∪DGdrk ∪DGdre
from vertex (I∗, t∗) to vertex (I , t), where Dtj ≤ Dt ,
and at least one vertex in the path from vertex (Il, tj)
to vertex (I , t) is in QI ∪ CI , as shown in Fig. 3(j), C
outputs⊥ and aborts. Otherwise, C returns C(Il ,tj)|w toA
as Phase 1 and adds a((Ik ,ti),(Il ,tj)) into Adre.

• Ode((I , t),C(I ,t)|∗): If C0 in C(I ,t)|∗ is equal to svk∗, C
outputs⊥ and aborts. Otherwise, C processes as Phase 1.

Guess. A outputs a guess d ′ ∈ {0, 1}. If d ′ = d then
C decides that Q = e(p, p)abc; else, Q is a random element
in GT .

If C does not abort during the simulation, adversaryA will
not be able to distinguish the simulation from the real attack.
Assuming thatA can break this scheme with a non-negligible
advantage, then C can solve the DBDH problem with non-
negligible advantage.

V. IMPLEMENTATION FOR SECURE CLOUD SHARING
In this section, the proposed scheme is applied to a secure
cloud sharing scenario, including managements of secure
data storage, data sharing (authorization), ciphertext update
after changing identity (key), authorization revocation, and
re-authorization. Because data encryption, decryption, and
sharing are the same as other proxy re-encryption schemes.
Therefore, this section mainly introduces the implemen-
tation of ciphertext update, authorization revocation, and
re-authorization. In addition, for the sake of introduction,
the identity update and the private key update are explained
beforehand.

A. IDENTITY UPDATE AND KEY UPDATE
There are two types of identity update situations, active
update and passive update. The former is due to the expiration
of the identity cycle, in which the user’s identity needs to be
changed to the next validity period. In contrast, the latter is
triggered by key leakage or compromise.

As described in Section II, the user’s identity consists of
a unique identifier and an expiration date. It is recorded
by the PKG. When the expiration date expires, the user
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TABLE 2. Characteristics comparison.

needs to update the identity to the next expiration date and
request the PKG for the private key corresponding to the
new identity. The new key generation request can also be
made ahead of time to alleviate congestion. But the new
identity is only valid for the next period. For example, identity
ID = Alice|20210301 will not be valid until Marth 1, 2021,
although on February 16, 2021, Alice has requested the pri-
vate key for new identity ID = Alice|20210301.
For the situation of private key leakage, the user updates

the identity to the current time immediately. For example,
on February 18, 2021, Alice found that her private key cor-
responding to the identity ID = Alice|20210201 was leaked,
and she set her new identity to be ID′ = Alice|20210218 at
once. Then she announced it to PKG and requested the new
private key. PKG returns the new private key and refreshes
the user identity information.

B. CIPHERTEXT UPDATE
After the data owner updates the identity and private key,
the ciphertext corresponding to the old identity IDi and the
private key skIDi needs to be updated to adapt to the new
private key skID′i . The process is shown as follows:
Step1: The data owner runs the algorithm URKeyGen with

input (skIDi , ID
′
i) to generate a update token urkIDi→ID′i

and
sends it to the proxy for ciphertext evolution.

Step2: After receiving the ciphertext evolution request
from the data owner, the proxy will verify it. If the
request is legitimate, the proxy runs the algorithm
UpReEnc(urkIDi→ID′i

,CIDi|∗) to generate the new ciphertext
CID′i|∗, which will replace the old ciphertext to store in the
cloud storage.

C. AUTHORIZATION REVOCATION AND
RE-AUTHORIZATION
After the ciphertext has been updated, the decryption ability
of the data owner’s old key has been revoked. And the old
delegation token has also become invalid, which means that
the previous delegation has been canceled. If the data owner
needs to continue to share the data with the requester, a new
delegation token needs to be generated for re-authorization
or authorization renewal. The process is the same as a regular
delegation.

For the leakage of the private key of the data requester,
another delegation revocation is required. The process is
shown as follows:

Step1: The data requester (Bob) updates his identity imme-
diately and notices PKG and the data owner (Alice). The
details of how to send the notifications and verify them are
not covered in this paper.

Step2: The data owner informs the proxy to delete the
delegation token previously used to authorize Bob, which
means the authorization to the data requester’s compromised
identity has been revoked.

Step3 (optional): Enhanced authorization revocation. The
data owner updates her identity and the ciphertext as in
the previous subsection. In this way, the updated ciphertext
cannot be accessed even if the adversary (who has broken
Bob’s old key) colludes with the proxy (who secretly keeps
the old authorization key). This processing can enhance the
system’s security but increases the burden on the data owner
and proxy server, so it needs to be a trade-off based on the
actual situation.

Step4: Re-authorization. The data owner generates a new
delegation token for the data requester.

VI. COMPARISON AND ANALYSIS
In this section, the proposed scheme is compared with sev-
eral related works with the function of ciphertext evolu-
tion (update) in terms of characteristics, as shown in Table 2.
It can be seen from the comparison that the proposed solution
is the only one that simultaneously has many attractive func-
tions (including access delegation, conditional delegation,
delegation revocation, key update, and ciphertext evolution)
and features of constant ciphertext length, collusion security,
CCA security, and without random oracle. Note that the key
update here refers to the underlying private key, not the
decryption key derived from the time token. Suppose the
underlying private key is not updated. In that case, there may
be a situation where the adversary colludes with other dele-
gatee to obtain the update token and derive a new decryption
key. For details, please refer to He et al.’s attack [21] on
Liang et al.’s scheme [17]. Besides, the schemes [22], [23]
do not need to generate the re-encryption key, and there are
not collusion attacks in their schemes, so the symbol ‘‘-’’ is
used to indicate it.

In addition, Table 3 shows the calculation complexity of
calculating update tokens, updating ciphertext, and generat-
ing re-authorization tokens. The time required for the data
owner to compute the ciphertext for n users (data owner and
n − 1 sharers), the space needed to save ciphertexts on the
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TABLE 3. Comparison of time and space resources required to authorize n users at different phases of several schemes.

FIGURE 5. The calculation time of each algorithm in several secure data sharing schemes.

cloud server, and the time needed for users to upload shared
data are also given. The tE represents the time of encrypting
data to generate the original ciphertext, tUK represents update
token generation time, tDK represents delegation token gen-
eration time, tCE represents the ciphertext evolution time, sC
represents the storage space for one ciphertext copy of data
m, and tC represents the time required to upload one copy
of ciphertext to the cloud server. In schemes [17], [22], [23],
the data owner encrypts the data with different requesters’
identities. So the data owner needs to encrypt the data n times
and generates n ciphertext copies of the data if there are n
visitors (data owner and n − 1 sharers). While in schemes
[19], [24], [25] and the proposed scheme, the data owner
encrypts the data with her/his own identity directly. The data
only needs to be encrypted one time, and only one ciphertext
copy is generated and uploaded to the cloud for storage. This
ciphertext can be decrypted by the data owner, and delegated
to other requesters by proxy. In Liang et al.’ scheme [17],
n update tokens to be used for updating n ciphertext copies
of the same data for different requesters are computed, and
n ciphertext copies are transformed. In schemes [22], [23],
no update token needs to be calculated, but the n ciphertext
copies need to be updated by the proxy. In scheme [24], [25]
and proposed scheme, only one update token needs to be
generated, and the ciphertext evolution transformation only
needs to be conducted one time. In Xiong et al.’s scheme [19],

the calculation of update token generation and ciphertext
evolution are not included. In schemes [17], [22], [23], the
authorization token is not required. In schemes [19], [24],
[25] and the proposed scheme, n − 1 new authorization re-
encryption key need to be generated by the data owner for
n − 1 legitimate sharers after the data owner updating the
ciphertext stored on the cloud.

Next, Table 4 shows the computational complexity com-
parison of each algorithm in proposed scheme and schemes
[17], [19], [22]–[25], where tp, te, ts, tv and tm denote
the computation time of pairing, modular exponentiation,
signature, ciphertext verification and multiplication opera-
tion, respectively. And the symbol ‘‘-’’ represents that the
scheme does not support the algorithm. The multiplication
time is ignored for simplicity when multiple calculations are
included simultaneously because the multiplication time (in
microseconds) is far shorter than other operations (in mil-
liseconds). Except for the newly added update key generation
and ciphertext evolution algorithm, other algorithms in the
proposed scheme have the same computational complexity
as the scheme [19]. The computational complexity of update
key generation and ciphertext evolution algorithm is less than
that of delegation key generation and delegation ciphertext
generation algorithm. Also, in terms of ciphertext evolution
algorithm, if the cost of ciphertext verification is not taken
into account, the proposed scheme has one more modular
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TABLE 4. Computation complexity comparison.

exponentiation calculation than scheme [24], one less pairing
operation than scheme [23], which has certain advantages in
the term of efficiency. Compared with the scheme [25], the
re-encryption key generation’s complexity in the proposed
scheme is lower. Therefore, it can be said that the proposed
scheme not only improves the security and practicability of
the system but also ensures efficiency.

Fig. 5 shows each algorithm’s calculation time in several
secure data sharing schemes [24], [25] with ciphertext evo-
lution. Note that the verification time (about 92ms) is not
included in the proposed scheme because schemes [24], [25]
do not need to verify the ciphertext before decryption and re-
encryption. These evaluations are performed on a computer
with a 3.4GHz Intel Core i5-3570 processor, 8GB RAM, and
the operating system is Windows 10 Professional. All the
programs are based on the PBC library, where the parameter
is the type A curve. Although each algorithm calculation time
in the proposed scheme is more than the other two schemes,
its’ security (CCA-secure, collusion resistant, and without
random oracle) is the highest.

VII. CONCLUSION
This paper improved Xiong et al.’s identity-based conditional
proxy re-encryption scheme with features such as multi-
purpose, constant ciphertext length, collusion security, CCA
security by adding a ciphertext update function to support key
update and authorization revocation. Although the function
of ciphertext evolution has been added to the scheme, the
efficiency and security have not been reduced. For ciphertext
authorization, the efficiency of the proposed scheme is the
same as the original one. Moreover, the computational com-
plexity of the increased algorithms used to generate update
re-encryption keys and ciphertext evolution is lower than
that used for authorization. In addition to being applicable to
secure cloud data sharing environment, the proposed scheme
is also suitable to other systems that need to consider key
change, which has certain practicability and security.
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