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ABSTRACT The study of mobile entities that based on local information have to accomplish global tasks is
of main interest for the scientific community. Classic models for the activation and synchronization of mobile
entities are the fully-synchronous (FSync), semi-synchronous (SSync), and asynchronous (Async) models,
where entities alternate between active and inactive states with different timing. According to the assumed
synchronization model, very different results have been achieved in the field of distributed computing. One
of the main outcomes is the big gap between the Async and the other models in terms of manageability and
algorithm design. In fact, there are still many problems for which it is not known whether synchronicity
is crucial for designing resolution algorithms or not. In order to better understand the Async case, here we
propose a further model referred to as the semi-asynchronous (SAsync). This slightly deviates from SSync.
In fact, like in SSync (and FSync), the duration of the activation of an entity is kept of fixed time whereas,
like in Async, the starting instant of the activation is not fully synchronized with the possible activation of
other entities.We show that for entities moving on graphs, the SSyncmodel allows accomplishingmore tasks
than the SAsync that in turn allows accomplishing more tasks than the Async. Furthermore, our results show
that, especially to tackle problems in the Euclidean plane, the SAsync model is already quite challenging,
therefore there is no need to get involved with complications arising in the Async model.

INDEX TERMS Distributed algorithms, gathering, mobile robots, synchronization.

I. INTRODUCTION
In this paper, we investigate on feasibility issues in distributed
computing systems.We consider global tasks for autonomous
entities endowed with very weak capabilities. As a standard
notation, entities are usually referred to as robots in the
literature and so we do in the rest of the paper.

Standard and basic assumptions about capabilities consider
robots to be: autonomous, there is no central coordination
for their actions; disoriented, each robot refers to its own
local coordinate system that may have no relation with those
of other robots; anonymous, they are indistinguishable and
are not associated with any ids; homogeneous, they all have
the same capabilities and execute the same (deterministic)
algorithm; dimensionless, they are perceived as points in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Imran .

Euclidean plane or as occupying nodes of a graph; silent, they
have no direct means of communication, that is, although they
can see to each other, they cannot explicitly communicate.
It follows that all synchronizations, interactions, and informa-
tion spreadings among the robots take place solely by observ-
ing the position of the robots in the moving environment.

Concerning the behavior of the robots, one of the most
studied scenario assumes each robot to alternate between
active and inactive periods. When active, a robot operates in
standard Look-Compute-Move (LCM ) computational cycles,
see e.g. [8], [39], [52]. Within one cycle, a robot acquires a
snapshot of the current global positioning of the other robots
(Look phase) with respect to its own coordinate system.
Successively, in the Compute phase, it decides whether to
move toward a computed direction or not (i.e., it executes the
designed distributed algorithm), and then performs the move
(Move phase), possibly a nil movement.
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When dealing with such weak distributed robot systems,
it comes out that the feasibility of a global task depends on
many factors. The described robots’ behavior and capabilities
are certainly crucial but also the magnitude of synchrony
among the robots represents a main issue.

To this respect, in the literature, different characteriza-
tions of the environment, illustrated in Figure 1, have been
considered according whether robots are fully-synchronous,
semi-synchronous (cf. [14], [15], [52]–[54]) or asynchronous
(cf. [1], [24], [38], [41], [42]):

FIGURE 1. The Look-Compute-Move cycles that may occur during an
execution referring to the FSync, SSync, or Async models. For FSync and
SSync, notice the subdivision of the time axis into time units and the mark
related to each round.

• Fully-Synchronous (FSync): All robots are always
active, continuously executing their LCM cycles in a
synchronized way. Hence, the time can be logically
divided into global rounds. In each round all the robots,
obtain a snapshot of the environment, compute on the
basis of the obtained snapshot and perform their com-
puted move.

• Semi-Synchronous (SSync): It is basically equivalent to
the FSync model, with the only difference that within a
round not all robots must be active.

• Asynchronous (Async): Robots are activated indepen-
dently. Moreover, each phase may last for an undefined
but finite time. As a result, robots do not have a common
notion of time. Moreover, they can be seen while mov-
ing, and computations can be made based on obsolete
information about positions.

In Async, according to [38], [51], it is possible to assume
without loss of generality that the snapshot obtained during
the Look phase is in fact acquired at the beginning of such a
phase. The rationale behind it is that the Look phase can be
potentially thought as composed of three sub-phases: (i) acti-
vation of the sensors; (ii) instantaneous snapshot acquisition;
(iii) processing data. Hence, by considering sub-phase (i) as
part of the preceding inactivity phase, the assumption stands.
This clearly does not change the computational power of
Async but it reveals to be very useful when the behavior of

the robots is analyzed. We then assume such a constraint in
all the synchronization models.

Furthermore, it is usually assumed that for SSync and
Async schedulers, an ideal adversary determines the Look-
Compute-Move cycles timing (i.e., which robots are activated
at a given time). Anyway, the scheduler is always assumed to
be wait-free, that is each robot is activated, eventually, and
within finite time. Hence within a finite but unpredictable
window of time, each robot executes its LCM cycle. This
assumption is necessary to guarantee the evolution of the
system as, otherwise, an adversary may take it unchanged
forever.

One crucial property of the Async model, that does not
apply in FSync nor in SSync, concerns the possibility for the
robots to be perceived while they are moving or while robots
have decided to move but they have not yet started moving.
In fact, as shown in Figure 1, during the Look phase of a robot
in Async, other robots can be in any other phase, whereas
this cannot happen in FSync and SSync due to the synchro-
nization dictated by such models. It follows that, in Async a
move can be performed after a long time from the moment
it has been computed, that is the current configuration might
have drastically changed with respect to that moment. Such
occurrences might heavily affect the study of the Async
model where it might be very difficult sometimes to figure out
what is going on. Hence, Async reveals to be a model much
more hostile with respect to FSync and SSync for designing
distributed algorithms. This, of course, extraordinarily affects
also the arguments necessary to provide the proofs of correct-
ness of the proposed algorithms. To this respect, see [11] for
an extended discussion related to the difficulties encountered
when dealing with Async.

In this paper, our investigation is toward the definition of a
new synchronization model that may exploit some synchro-
nization issues, like in FSync and SSync, but still preserves
some properties specific of the Async model. In practice,
we look for a model that slightly deviates from SSync toward
Async. Our aim is to better catch the peculiarities that make
Async harder than SSync to deal with, but without incurring
in all the difficulties specific of Async. We will call our new
model as semy-asynchronous, SAsync in brief. Such a model
will help to better understand the big gap between SSync
and Async, in terms of computational power. To this respect,
our investigation heavily involves the study of the Gathering
problem. In general, this is the requirement, for a given set of
robots, to let them meet, eventually.

A. OUTLINE
The paper is organized as follows. In the next section,
we revise some related literature. In Section III, we formally
define our new synchronization model. Namely, we introduce
the so-called SAsync model, which lies in between SSync
and Async in terms of computational power. Successively,
we start discussing about its properties and then describe an
overview of our achievements. In Section IV, we formally
define the Gathering problem. In Section V, we provide
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results for the studied Gathering problem with respect to
SSync robots moving on a ring, while the same problem
is studied for SAsync robots in Section VI. In Section VII,
we analyze the new model with respect to the Gathering
problem for robots moving on the Euclidean plane. Finally,
in Section VIII, we conclude the paper by highlighting some
challenging research directions.

II. RELATED WORK
The research, in the field described in Introduction, has
mainly studied feasibility issues. In particular, for the most
of the tasks, the question has been whether such tasks are
solvable or if further assumptions must be introduced. The
choice of the synchronization model very often determines
whether a task is feasible or not. Tasks well investigated to
this respect are the Gathering, see [5]–[7], [9], [18], [21],
[22], [31], [32], [37], [43], [44], [46], in which all robots
are required to reach a common destination not known in
advance; the Pattern formation, see [4], [11], [33], [40], [41],
in which robots are required to form a specific geometric
pattern in the Euclidean plane or to suitable dispose on the
nodes of a graph; the Leader Election problem, see [8], [19],
[20], [33], where one robot (when possible) must be selected
and recognized by all the others as the leader; the Exploration
problem, see [3], [17], [25], [27], [29], [34]–[36], [47], [48],
where the robots are required to visit / explore an area of
interest or a graph.

The environment where robots move can be the Euclidean
space [35], [54] or a graph where robots are constrained to
follow the path dictated by the edges [12], [13], [17]–[19],
[27]. Robots might be endowed with communication means,
e.g. by means of tokens as in [34], or they only exploit
stigmergic properties, see e.g. [36]. Along with feasibil-
ity, sometimes also optimization issues have been explored,
see [5], [7], [9], [31], [32]. Objective functions to accomplish
a specific task may refer to the number of robots as in [27],
or the number of LCM cycles as in [15].

Our work has been mainly inspired by [23], [26], [28],
[51]. Such papers concern how synchronization impacts on
the resolution of problems in the LCM context.

As defined in [26], here we use the same notation to
compare synchronization models with respect to the induced
computational power. In particular, given two synchroniza-
tion models M and N , inequality M ≥ N means that any
task that can be solved in N is also solvable in M. In other
words, M is not less powerful than N . Inequality M > N
means that M ≥ N holds and there exists a task that can
be solved in M but not in N . In other words, M is more
powerful than N .
As described in [23], it is known that FSync> SSync. The

inequality has been obtained by showing that the Rendezvous
problem (that is, theGathering of two robots), in the Euclidian
plane, is solvable by means of FSync robots but not by SSync
robots (see, e.g. [52]).

Another interesting result about synchronization model
is that SSync > Async. This inequality has been obtained

by introducing the so-called Movement Awareness problem
in the Euclidian plane that is solvable by means of robots
equipped with some memory in the SSync model but not in
the Async model (see, e.g. [51]).

III. THE SAsync MODEL
In this section, we first define the new SAsync synchroniza-
tion model and provide some useful outcoming properties.
Then, we discuss about the roadmap of our investigation on
SAsync.

A. DEFINING SAsync
We now provide the formal definition of our new synchro-
nization model:
• Semi-Asynchronous (SAsync): Similarly to Async,
robots are activated independently so that two robots
can be in different phases. Like in FSync or SSync,
robots are synchronized with respect to phases, that is
two robots in two different phases started such phases
concurrently. Moreover, the duration of an LCM cycle
equals exactly two time units, the first one associated
with the Look (instantaneously executed at the begin-
ning) and the Compute phases, whereas the second one
to the Move phase (cf. Figure 2).

FIGURE 2. The Look-Compute-Move cycles that may occur during an
execution referring to the SAsync model.

Clearly, the wait-freedom of the adversary is maintained
in the SAsync model as well as the assumption by which
the snapshot obtained during the Look phase is acquired
at the beginning of such a phase. Moreover, in SAsync a
robot cannot infer from the snapshot whether other robots
are inactive or performing one of the phases of the LCM
cycle. Hence, similarly to Async, robots can move based on
a configuration that has changed meanwhile.
Remark 1: According to the defined SAsync model,

the order in which the moves are performed equals exactly the
order in which robots have been activated (FIFO behavior).
This represents the main difference with respect to Async
where instead moves can be performed in any order. In par-
ticular, in Async a move computed later can occur before
moves computed earlier. In SAsync, instead, each LCM cycle
lasts for exactly the same amount of time for each robot.
Hence, although the Look phase performed by a robot r might
overlap the Move phase performed by any other robot r ′,
the move of r ′ will be effective always before the move of r.
Definition 1: A move that has been computed from a con-

figuration that is not the current one is called pending if it
has not been performed yet.
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It turns out that, in Async, there might occur a pending
move that has been computed very far away in time, whereas
in SAsync a pending move can refer only to at most one time
unit back in time (where a time unit refers to one half of the
duration of the whole LCM cycle, cf. Figure 2).

When robots move within the Euclidean space, movements
can be assumed of two types: a movement is rigid when a
robot is always ensured to reach its target point within one
LCM cycle; a movement is non-rigid if the robot does not
have such a guarantee, that is the adversary can stop it before
reaching the target. However, within one move the length
of the trajectory traced is neither infinitesimally small nor
infinite. In particular, the adversary may prevent a robot to
reach its destination as long as such a point is further than
a distance δ > 0, unknown to the robots. In such a case,
the robot is only ensured to move of at least δ. Whenever
the destination is within distance δ, then the robot is ensured
to reach it. Clearly, without introducing the assumption on
the constant δ, the adversary may prevent a robot to ever
reach its destination. When robots move along the edges of
a graphs, a move is realized by reaching a neighboring node
as destination, and it is assumed to be instantaneous, hence
rigid. It follows that robots are never perceived on the edges
but always on the nodes.
Remark 2: Differently from Async, if a robot r in SAsync

is performing the Move phase, while another robot r ′ is
performing the Look phase, then r ′ cannot perceive the move
of r. In fact, r ′ acquires the snapshot at the beginning of the
LCM cycle, that is before r starts its movement. It follows
that robots cannot be seen while they are moving. However,
differently from SSync, robots in SAsync can be seen while
they have already decided where to move.
Remark 3: The introduced SAsync model could be easily

extended by defining further levels of obsolescence for the
pending moves. Starting by observing that, in the introduced
SAsyncmodel, a pending move cannot stand as such for more
than one time unit (whereas in Async a pending move can
last for a finite but unpredictable time), we could define a
hierarchy of models by using an integer parameter k ≥ 1
to represent the number of time units a pending move can
stand. In any of suchmodels, the FIFO behavior would be still
preserved because of the fixed dimension of the LCM cycle
of k + 1 time units. However, for our purposes we prefer to
deal with just the basic case of the defined SAsync, hence
deviating from SSync as less as possible.

B. INVESTIGATION OVERVIEW
Our aim is to find out the relations holding among the various
synchronization models, including SAsync, in terms of com-
putable tasks. The next theorem anticipates one of the main
results achieved within this paper. It relates the computational
power of SAsync with that of the SSync and Async models
for robots moving on graphs.
Theorem 1: For robots moving on graphs, it holds:
SSync > SAsync > Async.

By definition, it trivially holds SSync ≥ SAsync ≥ Async
also for robots moving in the Euclidean plane. However, The-
orem 1 shows that the strict inequalities hold. In particular,
on graphs the SSyncmodel is computationally more powerful
(i.e. more tasks can be solved) than the SAsync model, that in
turn is computationally more powerful than the Async model.

In order to prove Theorem 1, we have deeply investigated,
with respect to the various synchronization models, the Gath-
ering problem for robots moving on a ring. The Gathering
problem on rings has been almost completely characterized
in [21] for Async robots. In particular, there are some config-
urations that have been classified as unsolvable, i.e. configu-
rations from which the Gathering problem cannot be solved.
For robots moving on rings, unsolvable configurations are
those with exactly two robots and those admitting some
specific symmetries. For all the other ones, but the class of
the so-called SP4 configurations, a resolution algorithm has
been provided. A configuration is of type SP4 if it admits a
geometrical axis of reflection, with four robots on a ring with
an odd number of nodes and some constraints on the disposal
of the robots (the formal definition of SP4 configurations
will be provided later). Hence, whether SP4 configurations
are solvable or not in Async remains an open problem.

Theorem 1 is obtained by specifically studying the Gather-
ing problem on configurations in SP4. In particular, we show
that SSync robots suffice to always solve the Gathering from
configurations of four robots on rings with n ≥ 7 nodes.
Considering instead robots in SAsync, we provide an algo-
rithm to solve the case of four robots on seven-node rings,
whereas we prove that SP4 configurations with n = 9 nodes
are unsolvable. Since in [30] it has been proven that the case
of four robots on a seven-node ring in Async is unsolvable,
then Theorem 1 follows.
Interestingly, our investigation also leads to fully charac-

terize the Gathering problem for robots moving on rings in
the SSync model.

Finally, we provide some evidence about the relevance of
the SAsync model in the context of robots moving in the
Euclidean plane. In particular, we show that the resolution
of the Gathering problem of SAsync robots seems to main-
tain the same difficulties encountered in the Async context,
hence suggesting that SAsync might be a ‘‘sufficiently hard’’
environment to compare the synchronization models.

IV. THE GATHERING PROBLEM
In general, the Gathering task requires robots to reach a
common placement, not known in advance. This might be a
point in the Euclidean plane or a node of a graph. If more
than one robot occupies the same location, then we say that
a multiplicity occurs. The Gathering task is easily solvable
once a configuration is reached without pending moves and
with exactly onemultiplicity, detectable by the robots. In fact,
all the robots not composing the multiplicity can move cau-
tiously toward it, that is, they move as soon as their trajectory
does not encounter other robots.

VOLUME 9, 2021 41543



S. Cicerone et al.: ‘‘SAync’’: New Scheduler in Distributed Computing

Solving the Gathering problem depends on the capabilities
assumed for the robots. According to the basic capabilities
introduced before and to the the setting defined in [21], here
robots are considered to be:

• Autonomous: no centralized control;
• Disoriented : No common coordinate system, no com-
mon left-right orientation;

• Anonymous: no unique identifiers;
• Homogeneous: they all execute the same deterministic
algorithm;

• Dimensionless: no occupancy constraints, no volume;
• Silent: no means of direct communication;
• Stateless (Oblivious): no memory of past events;
• Asynchronous: Async LCM cycles;

As in [21], in this work we consider the Gathering problem
where robots are located on a ring of n nodes, where initially
k < n nodes are occupied by k robots. Moreover, during the
Look phase, robots can detect multiplicities, but not the exact
number of robots composing them.1

During a Look operation, a robot basically acquires a
snaphsot of the environment. More specifically, it perceives
the relative locations on the ring of multiplicities and single
robots. The global status of the system can be defined by
the current disposal of the robots plus their status, that is,
whether they are inactive or they are performing the Look,
the Compute or the Move phase, and what they have possibly
already computed. Clearly, the global status of the system
cannot be deduced from the snapshot, includingwhether there
is a pending move or not. It is a common assumption, in the
graph environment, that within one move a robot can either
stay still or reach a neighboring node, that is only one edge per
move can be traversed. Moreover, moves are instantaneous,
that is robots are always perceived on nodes and not on edges.

The current disposal of the robots, referred to as a
configuration, can be described in terms of the view of
a robot r . This is the sequence of single robots, mul-
tiplicities and empty nodes (represented by characters
‘1’, ‘M’, and ‘0’, respectively) seen by r starting from
its position and proceeding toward an arbitrary direc-
tion. For instance, by referring to Figure 3, the view
of the robot denoted as x can be represented by the
sequence [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] (or
[1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0], resp.) obtained
starting from x and proceeding in the clockwise (anti-
clockwise, resp.) direction.2 Once a robot has acquired the
snapshot of the configuration during the Look phase, in terms
of the view, it can process the obtained sequence during the
Compute phase in order to infer useful information.

A configuration is said to be symmetric if the ring admits
a geometrical axis of symmetry that reflects single robots
into single robots, multiplicities intomultiplicities, and empty

1This is usually referred to as the global weak multiplicity detection
capability.

2Robots have no common orientation which means the ‘clockwise’ direc-
tion of a robot does not necessarily coincide with that of another robot.

nodes into empty nodes; it is said periodic if it is invari-
ant with respect to a rotation of more than 0 and less than
360 degrees. We remind that robots are assumed to be disori-
ented, that is they do not share chirality.

The Gathering problem of robots moving on rings has been
almost completely characterized in [21]. In order to describe
such a characterization, we first remind that a configuration
C is said to be initial if there are no multiplicities. Symbol I
is used to denote the set of all initial configurations.

The following negative result has been provided.
Theorem 2 [21]: The Gathering problem is unsolvable

(even for SSync robots) with respect to any configuration
C ∈ I satisfying at least one of the following conditions:

• there are only two robots in C;
• C is periodic;
• C is symmetric admitting an axis of symmetry that cuts
the ring along two edges.

In the remainder, we call unsolvable any configuration C
as characterized by Theorem 2, and use symbol U to denote
the set of all the unsolvable configurations.

In [21], a distributed algorithm has been designed that
solves the Gathering problem from all the configurations in
I \ (U ∪ SP4), where SP4 ⊂ I is a very special subset of
initial configurations. To define SP4, consider four robots
disposed on different nodes of a ring. As shown in Figure 3,
the robots partition the ring into four intervals. An interval
is intended as the maximal set of consecutive nodes not
occupied by robots between two robots; two adjacent robots
generate an empty interval.
Definition 2: Let C ∈ I be a symmetric configuration with

four robots on a ring composed by an odd number of nodes
(i.e., the axis of symmetry passes through one unoccupied
node and one edge). If the interval constituted by an odd
number of nodes cut by the axis of symmetry is bigger than
the one constituted by an even number of nodes, then C is
said to belong to the set of SP4 configurations.
By looking at Figure 3, there are two intervals cut by

an axis of symmetry, namely IA and IC , consisting of three
and two nodes, respectively. The other two intervals, both
referred to as IB, have the same size since the configuration is
symmetric. Further sample configurations in SP4 are shown
in Figure 5, configurations (1) and (2), and in Figure 7,
configurations (1), (2), (3), and (4).

FIGURE 3. A configuration in SP4 and its illustration in terms of
intervals of nodes not occupied by robots.
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The only initial configuration of four robots on a five-node
ring belongs to SP4. In [28], it has been proved that such a
configuration is solvable by means of FSync robots, whereas
it is unsolvable in both SSync and Async. Actually, all the
four moves that can be designed (and their compositions)
are shown to lead either to two multiplicities or to cyclic
sequences of configurations. Clearly, we can deduce the same
result of unsolvability also for SAsync robots as any execu-
tion in the SSync model can occur in the SAsync model as
well, in fact SSync ≥ SAsync.
Corollary 1: The Gathering problem is unsolvable for

SAsync robots with respect to the configuration C ∈ SP4
consisting of four robots on a five-node ring.

Indeed, specific configurations in SP4 could be solvable
but they may require specific strategies not prone to be gener-
alized. One of the main difficulties arising when approaching
SP4 configurations is due to the property bywhich the bigger
interval cut by the axis of symmetry is the odd one. In fact,
by the result shown in [32], it is known that the only node
candidate to finalize the Gathering in configurations in SP4
is the middle node of the odd interval cut by the axis. This
remains true also for robots in the FSync model. It turns
out that robots must move toward such a node, eventually,
in order to create amultiplicity. For instance, if robots x and x ′

or y and y′ of Figure 3 are allowed to move, by the algorithm,
in the up direction, the adversary may make only one of them
moving. Then, if the intervals cut by the axis of symmetry
differ of just one node, the obtained configuration is made of
two intervals of the same size, those that were originally cut
by the axis of symmetry, and hence it is symmetric. However,
the new axis of symmetry is different from the original one.
This may cause many troubles if also pending moves occur.

Proving that initial configurations with four robots on
a seven-node ring are unsolvable in Async has been
challenging, since exploring exhaustively all the possible
moves becomes computationally intractable. In fact, in [30],
both theoretical and computer-assisted analysis have been
exploited to prove such a claim. In [28], instead, it has been
proved that four robots on a seven-node ring are solvable
in SSync.

In Table 1, we report the current state-of-art with respect to
the Gathering problem for configurations in SP4. From such
results we can deduce the following relations: FSync> SSync
> Async. This means that FSync robots are more powerful
(i.e. they can solve more tasks) than SSync robots that in turn
are more powerful than Async robots.

TABLE 1. State-of-art about the Gathering problem for configurations in
SP4. Unsolvable cases are reported in gray cells, whereas question
marks refer problems that are still open.

Configurations in SP4 for Async robots have been also
investigated in [2]. However, in that paper the proposed algo-
rithm only deals with a proper subset of the possible initial
configurations, i.e. the authors overcome the main difficulties
faced with SP4 configurations by simply ignoring some of
them. Hence, this still leaves open the question whether con-
figurations in SP4 are in general solvable for Async robots
or not.

A. GATHERING FOR SP4 CONFIGURATIONS
In this section, we provide notation and definitions about the
Gathering problem for SP4 configurations.
Given an initial asymmetric configuration, according to

its view, a robot can recognize its own position in the ring.
In fact, from the snapshot the robot knows the current con-
figuration and where it is placed with respect to the other
robots. In an initial symmetric configuration, instead, a robot
may have two possible choices for its current position. For
instance, referring to Figure 3 and to Figure 5.(1), (2) and (3),
robots denoted x and x ′ are indistinguishable since they can-
not distinguish left from right (i.e., they do not share chiral-
ity). In initial symmetric configurations on rings constituted
of an odd number of nodes, we will denote by x and x ′

the two robots closest to the node on the axis, whereas the
other two robots will be denoted y and y′. Such naming is
only meant for the analysis purpose but, as already observed,
x is indistinguishable from x ′ and y is indistinguishable
from y′.

The set of consecutive nodes not occupied by robots in
between x and x ′ is referred to as interval IA. The interval
of free nodes between y and y′ is denoted by IC . The interval
of free nodes between x and y, and that between x ′ and y′ are
both denoted by IB as they have the same size.
Reminding that during a move a robot can traverse at

most one edge, we make use of some additional notation
in the designed algorithms: from symmetric configurations,
we denote by r ↑ a move of a robot r toward the middle
node of IA, while by r↓ we denote the move in the opposite
direction.

In the unique initial asymmetric configuration of four
robots on a seven-node ring reported in Figure 5.(4), robots
are referred to as a, b, c, and d . We denote by r → r ′ the
move of robot r along the shortest path toward robot r ′ (it is
worth noting that in a ring composed by an odd number of
nodes, such a direction is unique).

Concerning the already used notion of symmetric robots,
here we extend it into the more general version of equivalent
robots. The latter holds in any configuration defined on any
graph. In particular, in a configuration C defined on any
graph G, a pair of distinct robots r and r ′ on nodes v and
v′, respectively, are equivalent if there exists a graph isomor-
phism ϕ from G into itself that maps v into v′, and any pair
of equivalent nodes (including v and v′) in the isomorphism ϕ
must be occupied by the same number of robots. This equiv-
alence relation induces a partition on the set of all robots: an
element of this partition is any maximal subset containing
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FIGURE 4. A configuration with seven robots defined on a graph
(numbers refer to the multiplicity on each node).

FIGURE 5. The four possible initial configurations of four robots on a
seven-node ring, and other three configurations with possible pending
moves. Edges composing the ring between consecutive nodes are not
drawn. An arrow on top of a robot represents a pending move, that is a
move already computed by the robot that has not yet been performed.

pairwise equivalent robots. For instance, in Figure 4 it is
shown a configuration whose robots are partitioned into three
sets: one set contains the four equivalent robots located on the
pendant nodes with multiplicity two, another set contains the
robot adjacent to the empty node, and the last set contains
the remaining two robots. Referring to configurations (i), (ii)
or (iii) of Figure 5, robots denoted as x and x ′ are equivalent
as well as robots denoted as y and y′. From an algorithmic
view point, in such a case it can be observed that the robots
belonging to the same maximal subset of equivalent robots
cannot be distinguished. As a consequence, no algorithm can
avoid that all such equivalent robots perform a same move
simultaneously (whereas the adversary may decide not to
activate all of them). Finally, we need to define what is meant
by a transition among configurations. Given an algorithm A
and a configuration C (possibly admitting pending moves),
a transition from C to a configuration C ′ occurs if C ′ can
be obtained during an execution of A that from C generates
C ′ after at least one robot has moved. Note that the performed
movement might be generated byA fromC or due to pending
moves.

V. RESULTS FOR SEMI-SYNCHRONOUS ROBOTS
In this section, we provide results for semi-synchronous
robots. It is worth reminding that when dealing with syn-
chronous environments like FSync or SSync, instead of
SAsync or Async, pending moves cannot occur, i.e. robots
cannot be seen while they are moving nor even while they
have already computed the move but not started it.

We first propose Algorithm 1 referred to as SP4-SSync,
that takes as input a configuration in SP4, excluding the case
of five-node rings, and outputs either a configuration with
one multiplicity, or an asymmetric configuration, eventually.
Then, such an algorithm is used as a subroutine for the Gath-
ering algorithm proposed in [21]. The resulting algorithm
obtained as the composition of SP4-SSync with the algorithm
in [21], not only solves the problem for SP4 configurations,
but also provides a full characterization of the Gathering
problem in the SSync model.

Algorithm 1 SP4-SSync. A Move of a Robot r Toward the
Middle Node of Interval IA (cf. Figure 3, Right Side) Is
Denoted by r↑
Require: Configuration in SP4 on a ring of n ≥ 7 nodes.
Ensure: Gathering.
1: if(|IA| > |IC |+1)∨ (|IB| is odd)∨ (x and y are adjacent)
2: thenx↑
3: else y↑

Before proving the correctness of SP4-SSync, we describe
an example of execution just as a warm-up for the reader.

Consider configuration (2) of Figure 5 as input. It belongs
to SP4. Recalling from Figure 3 how configurations in SP4
can be interpreted, here we have |IA| = |IC |+ 1. Moreover, x
and y are not adjacent. However, |IB| = 1, i.e. it is odd. The
move dictated by algorithm SP4-SSync is then x ↑. Being
the configuration symmetric, the move allows both x and
x ′ to move. If they both move concurrently, a multiplicity
is created and the algorithm terminates. If without loss of
generality, only x moves, then configuration (3) of Figure 5
is obtained. From there we have |IA| = |IC | + 1, |IB| = 0 but
x and y are adjacent. Hence, algorithm SP4-SSync says x↑.
Again, if both x and x ′ move concurrently, then a multiplicity
is created. Otherwise, the asymmetric configuration (4) of
Figure 5 is obtained.
Lemma 1: Given a configuration C ∈ SP4 on rings of

n ≥ 7 nodes, Algorithm SP4-SSync moves robots so that,
within a finite number of moves, the obtained configuration
C ′ either contains one multiplicity or C ′ ∈ I \ (U ∪ SP4).

Proof: Assume |IA| > |IC | + 1 and consider move x↑
at Line 1. If, without loss of generality, only x moves, then
the obtained configuration C ′ is asymmetric. In fact, being
the ring composed by an odd number of nodes, there cannot
be an axis with robots. So, any possible axis should cut two
intervals among those of resulting size |IA| − 1, |IB| + 1, |IC |
and |IB|. Clearly, the axis cannot cut intervals with |IA| − 1
and |IC | nodes, as the other two intervals have different size.
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There cannot be an axis passing through intervals with |IB|+1
and |IB| nodes because |IA|−1 > |IC |. Being asymmetric, C ′

is not in SP4.
If both x and x ′ move, still a configuration in SP4 is

obtained but with interval IA decreased of two units, and
intervals IB increased by one. In this way, within a finite
number of moves, either an asymmetric configuration or a
configuration with |IA| = |IC | + 1 is obtained.

We can now assume |IA| = |IC | + 1. If |IB| is odd, then we
have to analyze what happens performing x↑. If both x and
x ′ move, the obtained configuration maintains the original
axis of symmetry but it is not in SP4 as |IA| − 2 < |IC |.
Moreover, a multiplicity is created in case |IC | = 0. If only x
moves, |IA| − 1 = |IC | and there is an axis passing through
intervals of size |IB| and |IB|+1. Even though it is a symmetric
configuration, it is not in SP4 as, by assumption, |IB| is odd
and of course it is smaller than |IB| + 1.
We can now assume |IB| even. If x and y are adjacent, then

we have to analyze what happens performing x↑. As above,
if both x and x ′ move, the obtained configuration is not in
SP4 and a multiplicity is created in case |IC | = 0. If only
x moves, |IA| − 1 = |IC | and there is an axis of symmetry
passing through intervals of size |IB| and |IB| + 1. Now,
the obtained configuration C̃ is in SP4 because |IB| is even.
With respect to C̃ , we are in the case where |IA| = |IC | + 1,
|IB| is even, but x and y are not adjacent as the ring has at least
seven nodes.3

We can now assume that x and y are not adjacent. In this
case, move y↑ is applied at Line 1. If both y and y′ move,
a configuration with intervals with |IA|, |IB| − 1, |IB| − 1 and
|IC | + 2 nodes is achieved, which is not in SP4 since now
|IA| = |IC | − 1 (it was |IA| = |IC | + 1 before the moves).
If, without loss of generality, only ymoves, then the obtained
configuration admits an axis of symmetry passing through the
two intervals of size |IB| and |IB|−1 since the interval of size
|IC | has been increased of one unit and |IC | + 1 = |IA|. Since
|IB| is even, the obtained configuration is not in SP4.
Finally, it is easy to check that each configuration obtained

in the analyzed cases is not in U since, for each of them, none
of the cases of Theorem 2 applies. �

Reminding the result of [21] concerning Async robots,
we can then exploit the above lemma in order to obtain a
full characterization of the Gathering problem on rings in the
SSync model. In fact:
Theorem 3 [21]: The Gathering problem on rings can be

solved with Async robots with respect to any configuration
in I \ (U ∪ SP4) without ever leading to a configuration in
SP4.
Since Lemma 1 ensures that any configuration in SP4 of

SSync robots, on a ring of n ≥ 7 nodes, can be transformed
either into a configuration with one multiplicity or into a
configuration in I \ (U ∪ SP4), within a finite number of
moves, then, in order to obtain a general Gathering algorithm

3We remind that n > 5 is required by the fact that the unique initial
configuration of four robots on a five-node ring is unsolvable even in SSync.

for SSync robots on rings, we can distinguish two cases: i) the
input configuration is in SP4 on a ring of n ≥ 7 nodes; ii) the
input configuration is in I \ (U ∪ SP4).
In case i), the resolution algorithm can apply Algo-

rithm SP4-SSync to obtain either a configuration with a
multiplicity or a configuration in I \ (U ∪SP4). From there,
the configuration can be managed by the algorithm in [21].
In fact, such an algorithm is able tomanage the configurations
with exactly one multiplicity and by Theorem 3, it copes with
all the configurations in I \ (U ∪ SP4) of Async (and hence
also of SSync) robots without ever leading to a configuration
in SP4.
In case ii), the algorithm in [21] can be applied

straightforwardly.
Summarizing, by combining Algorithm SP4-SSync with

that in [21], we obtain that the Gathering on rings can be
accomplished by SSync robots starting from any configu-
ration which has not been proved to be unsolvable. More
specifically:
Theorem 4: TheGathering problem on rings can be solved

by SSync robots with respect to any configuration C if and
only if C ∈ I \ (U ∪ SP4) or C ∈ SP4 on a ring of n ≥ 7
nodes.

Proof: (H⇒) If C belongs to U , it is clearly unsolvable
by Theorem 2. If C belongs to I \ U and it is in SP4 with
n < 7 nodes, thenwe get exactly the only initial configuration
of four robots on a five-node ring. According to [28], such a
configuration is unsolvable in SSync.

(⇐H) Let us first assume that C belongs to I \ (U ∪SP4).
To show that C is solvable, it is enough to consider the algo-
rithm provided in [21] designed for Gathering any configura-
tion in I\(U∪SP4) bymeans of Async robots. Clearly, it can
be applied also in the SSync context. Hence, by Theorem 3,
C is solvable without ever leading to a configuration in SP4.
If C ∈ SP4 on a ring of n ≥ 7 nodes, then we can

combine the algorithm provided in [21] with Algorithm SP4-
SSync. In fact, according to Lemma 1, Algorithm SP4-SSync
handlesC in order to obtain either a configurationC ′ with one
multiplicity (and without pending moves) or a configuration
C ′ ∈ I \ (U ∪ SP4). From C ′, the algorithm in [21] used in
the SSync context guarantees to finalize the Gathering. �
Notice that the above result provides a full characterization

of the Gathering problem on rings in the SSync model.

VI. RESULTS FOR SEMI-ASYNCHRONOUS ROBOTS
This section is mainly devoted to prove the inequalities SSync
> SAsync > Async. We first show that inequality SAsync
> Async holds by proving that configurations of four robots
on rings of n = 7 nodes can be always solved in SAsync,
whereas it is known that those belonging to SP4 cannot be
solved in Async (see [30]). Then, we show that inequality
SSync > SAsync holds by proving that configurations in
SP4 with n = 9 cannot be solved in SAsync, whereas
in Section V we have shown that such configurations are
solvable in SSync. Finally, we also present an algorithm for
SAsync robots that solves all the configurations of four robots
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on rings of n = 11 nodes. Such a case remains open in the
Async model.

For the case n = 7, Algorithm 2 referred to as 4on7-
SAsync brings SAsync robots to a configuration with one
multiplicity within a finite number of moves. From there,
the Gathering can be then easily solved.

Algorithm 2 4on7-SAsync
Require: Configuration C on a seven-node ring. Ensure:
Gathering.
1: if C contains a multiplicity m then
2: the robot(s) closest to m, but not on it,
3: moves toward m along the shortest path
4: else
5: ifC is symmetric then x↑
6: else d → c;

Theorem 5: The Gathering problem can be solved for
SAsync robots with respect to any initial configuration C
with four robots on seven-node rings.

Proof: Figure 5, cases (1)–(4), shows all the possible
configurations in I with four robots on seven-node rings that
Algorithm 4on7-SAsync can take as input, with (1) and (2)
belonging to SP4. We now analyze the behavior of the algo-
rithm with respect to all the possible handled configurations
(cf. Figure 5).

• From (1), the algorithmmakes x↑. Thismay lead to three
different cases: (2), (4), or (4.1) where the move of a
robot is pending.

• From (2), x ↑ is applied. If both the equivalent robots
move, a multiplicity is created without pending moves,
hence Gathering can be easily finalized. If only one
robot moves, the other may be pending or not, hence
reaching configurations (3) or (3.1), respectively.

• From (3) the algorithm makes x↑. If both robots move,
a multiplicity is created. If only one robot moves, con-
figurations (4) or (4.2) are possibly reached.

• From (4) the algorithm makes robot d move toward
robot c, hence creating a multiplicity. From there,
the Gathering can be finalized.

• From (3.1), the algorithm makes x↑. Within at most two
phases of the LCM cycle, the pending move will create
a multiplicity, whereas the other robot, possibly moving
with respect to x ↑, does not interfere with such an
event since its move is ‘compatible’ with the movement
toward the multiplicity, that is such a move is toward
the multiplicity and does not create other multiplicities.
Notice that, by the SAsync model, the pending move is
performed before a subsequent move takes place.

• From (4.1), d would move in the opposite direction with
respect to that specified by the algorithm, but no other
robot moves. This leads to (2).

• From (4.2), as noted above, the pending robot will
always create a multiplicity before the move d → c
applied in (4.2) is completed. Also in this case the move

FIGURE 6. Possible transitions among configurations without
multiplicities produced by Algorithm 4on7-SAsync. Nodes in the graph
represents any possible configuration handled by Algorithm 4on7-SAsync
(for node labels refer to Figure 5), while nodes with thick border
represent configurations leading to a multiplicity.

d → c dictated by the algorithm from (4.2) is compati-
ble with the movement toward the multiplicity.

Summarizing, Figure 6 shows all the transitions (represented
as directed arcs) among the configurations handled by Algo-
rithm 4on7-SAsync.

From Figure 6, it is easy to see that Algorithm 4on7-
SAsync never creates cycles among configurations and that
it eventually creates a multiplicity starting from any input
configuration. Notice that, possibly pending moves are left
but they are compatible with the movement toward the multi-
plicity where the Gathering will be finalized, that is, they do
not affect the correctness of the algorithm. �
Theorem 6: The Gathering problem is unsolvable for

SAsync robots with respect to any initial configuration C ∈
SP4 with nine-node rings.

Proof: We now prove the claim by defining a spe-
cific behavior of the adversary when the configuration does
not contain multiplicities: Starting from one configuration
in SP4, whatever a Gathering algorithm specifies to move,
the adversary always allows the robots belonging to one
maximal subset of equivalent robots to move. In particular,
it allows synchronous moves as long as the configuration
remains in SP4 or become unsolvable, otherwise only one
robot is allowed to move, possibly leaving a pending move.

It is easy to see that in nine-node rings, there are 10 possible
initial configurations, 6 of which are symmetric. Out of the
6 symmetric configurations, 4 are SP4 configurations (see
Figure 7, configurations (1)–(4)).

FIGURE 7. The possible initial configurations of four robots on nine-node
rings that are symmetric. Configurations (1)–(4) belong to SP4.
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FIGURE 8. The four possible initial configurations belonging to SP4 of four robots over a
nine-node ring and a configuration not in SP4 with two possible pending moves (cf. proof of
Theorem 6).

Before proceeding with the proof, we need to observe that
a configuration composed of just two multiplicities can be
thought as equivalent to a configuration with just two robots,
i.e. it is unsolvable according to Theorem 2. In fact, the adver-
sary can make all the robots composing a multiplicity move
synchronously.

We now analyze the behavior of any possible Gathering
algorithm with respect to all the possible handled configura-
tions (cf. Figure 8), considering that only one maximal subset
of equivalent robots can move according to the considered
adversary. Note that, this does not mean that the hypothetic
Gathering algorithm must specify only one maximal subset
of equivalent robots to move from a given configuration.
However, among the maximal subsets involved, the adversary
will allow only one to move, not necessarily the same subset
from the same configuration as this might be subject to
wait-freedom constraints. By proving that for any maximal
subset of moving robots the reached configurations are either
unsolvable or belong to SP4, provides the proof as this
does not depend on the behavior of the adversary and its
wait-freedom constraint.

• From (1), only x ↑ can make the configuration evolve
as any other move would lead to either an unsolvable
configuration with two multiplicities (x↓ and y↑ cases),
or to an infinite loop (y↓ case) remaining in (1). By the
defined adversary, configuration (2) is then reached.

• From (2) only two moves can be allowed by any Gath-
ering algorithm, that is x↑ and y↑ that lead to (3) and
(4), respectively. In fact, x↓ would lead back to (1), cre-
ating a loop, whereas y↓ would leave the configuration
unchanged in (2).

• From (3), the only ways to exit SP4 are either by x ↑
or y↑. Concerning x↑, by making move only one robot
between x and x ′, configuration in (4) is again obtained.
Concerning y↑, configuration in (5) is obtained either
by moving only one robot or by moving both y and y′

but with the pending move of y′, as shown in (5.1). The
actual move is chosen by the adversary according to the
move scheduled by the Gathering algorithmwith respect
to case (5).

Notice that, since we are considering SAsync robots,
the pending move in (5.1) cannot last for long as in the
Asyncmodel, but we are guaranteed it will be performed
within a time unit after it has been computed.
The other possible moves are x↓, which would lead back
to (2) thus creating a loop, or y↓, that would leave the
configuration unchanged in (3).

• From (4), the only way to exit SP4 is by x↑, in which
case the adversary makes only one robot move, hence
leading to (3). Concerning the other possible moves:
both y↑ and x ↓ would lead to an unsolvable configu-
ration with two multiplicities, whereas y↓ would lead
back to (2).

• From (5), let us analyze any possible move performed
by the Gathering algorithm. Recall that (5) is not in SP4
but it could be generated from (3), either as (5) or with
the pending move in (5.1). Then:

- - if the algorithm applies x ↑, the adversary brings
the configuration to (3) starting from (5.1) and per-
forming both the move of the pending robot and
x ↑ (where x ↑ moves only one robot). Note that
the adversary can do that by awaking the robot
that would apply x ↑ before the pending move is
performed. It follows that move x↑ from (5) is not
effective;

- - if the algorithm applies x↓, the adversary brings the
configuration to (4) by starting from (5);

- - if the algorithm applies y↓, the adversary brings the
configuration to (3) by starting from (5);

- - if the algorithm applies y ↑, the adversary brings
the configuration to (5.2) by starting from (5.1),
performing the pending move and leaving pending
y↑ which now corresponds to x↑. Then, from (5.2),
by performing both the pending move x↑ and the
move y↑, again (2) is obtained.

In conclusion, we have exhaustively considered all possible
moves (and implicitly also their combinations) from all pos-
sible initial configurations belonging to SP4, hence showing
there exists no strategy that ensures to reach a configuration
outside those in SP4. �
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FIGURE 9. The symmetric initial configurations of four robots on eleven-node rings. Note that configurations (1)–(6) belong to SP4.

FIGURE 10. The asymmetric initial configurations of four robots on eleven-node rings.

Algorithm 3 4on11-SAsync
Require: Configuration C on an eleven-node ring.
Ensure: Gathering.
1: if C contains a multiplicity m then
2: the robot(s) closest to m, but not on it,
3: moves toward m along the shortest path
4:else
5: if C is symmetric then
6: if C ≡ (9) then y↑
7: else x↑
8: else
9: if C ≡ (14) then d → c
10: else
11: if C ∈ {(17), (19)} then c→ d
12: else
13: if C ≡ (20) then c→ b
14: else a→ b

We now provide Algorithm 3, referred to as 4on11-
SAsync, to solve the Gathering problem from configurations
on eleven-node rings with four robots. The aim is to show the
impact of the SAsync model on the resolution of the problem
when n = 11 that actually remains open in Async.

Theorem 7: The Gathering problem can be solved for
SAsync robots with respect to any initial configuration C
with four robots on eleven-node rings.

Proof: Figures 9 and 10 show all the possible configura-
tions in I with four robots on an eleven-node ring. In partic-
ular, Figure 9 shows all the initial symmetric configurations
(out of which the first six belong to SP4), while Figure 10
shows all the initial asymmetric configurations. Concern-
ing the asymmetric configurations, according to Figure 10,
the robots encountered on the depicted rings, starting from the
leftmost one and proceeding in the anti-clockwise direction,
are denoted by a, b, c, d .

Algorithm 4on11-SAsync is designed to solve the Gather-
ing problem from all those configurations.

The proof about the correctness of Algorithm 4on11-
SAsync is done by an exhaustive case-by-case analysis of the
configurations that can be generated and that in fact lead to
Gathering. In order to understand it, we need to specify some
notation.

Configurations denoted by a decimal number – e.g., con-
figuration (3.1), see Figure 11 – concern those with pending
moves that may occur according to the defined algorithm.
In Figure 12, any node with thick border represents a case
in which there could be a transition leading to the creation
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FIGURE 11. All possible configurations with pending moves that can be generated before creating a
multiplicity by algorithm 4on11-SAsync(1).

of a multiplicity. For the ease of notation, such transitions
are simply omitted. Moreover, in such cases there might still
be pending moves by means of robots not belonging to the
multiplicity, however it can be checked they do not interfere
with the finalization of the Gathering.

According to the algorithm, it can be checked that all the
possible transitions among configurations are those shown
(or implicitly represented) in Figure 12. Configurations (12),
(13) and (15) do not appear in the figure as, from each of
them, the algorithm would generate a multiplicity just after
the first move, whereas no transition leads to them.

From the discussion above and from the analysis of the
transitions shown in Figure 12, it can be observed that algo-
rithm 4on11-SAsync is able to solve the Gathering problem
from each initial configuration. �

We conclude this section by summarizing all the results
obtained with respect to the considered synchronization mod-
els. This is done by presenting Table 2, which also updates
the current status of the Gathering problem in SP4 config-
urations and, in turn, represents a proof of Theorem 1. In
particular, Table 2 shows a first relevant difference between
SAsync and Async (i.e., SAsync > Async); it refers to the
Gathering problem in SP4 configurations for the case n = 7.
In fact, in [30] it has been proved that Gathering four robots
on seven-node rings is unsolvable for Async robots. The
provided proof is rather involving as it exploits both the-
oretical aspects and computer-assisted evaluations in order
to exhaustively explore all possibilities. In SAsync, instead,

TABLE 2. State-of-art about the Gathering problem for configurations in
SP4 after including our results (cf. Tables 1). Unsolvable cases are
reported in gray cells, question marks refer to problems that are still
open, whereas results obtained within this paper are highlighted in bold.

Algorithm 4on7-SAsync represents a rather easy solution,
also with respect to the associated proof of correctness.

The other difference, necessary to complete the proof of
Theorem 1, comes out by comparing Theorems 4 and 6.
Table 2 shows that such theorems imply SSync > SAsync;
this result refers to the Gathering problem in SP4 configura-
tions for the case n = 9, solvable in SSync and unsolvable in
SAsync.

Finally, the case n = 11 solvable in SAsync according
to Theorem 7 remains open for Async. Still the result is
interesting as it shows there is not a net separation between
solvable and unsolvable cases in SAsync due to the size of
the ring.

VII. ABOUT THE EUCLIDEAN PLANE
Similarly to what has been done in [50] to show that SSync
> Async, here we can prove that SAsync > Async. In fact,
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FIGURE 12. Transitions produced by Algorithm 4on11-SAsync before creating a multiplicity (for node
labels refer to Figures 9, 10, and 11; nodes with thick border represent configurations leading to a
multiplicity). Nodes with scattered border represent configurations which already appeared in a
preceding sub-figure. For the sake of simplicity, configurations (12), (13) and (15) do not appear in the
figure as from each of them the algorithm generates a multiplicity (without pending moves) just after
the first move.

this can be achieved by considering the task referred to as
Movement Awareness defined in [50] for robots admitting
states (i.e., non-oblivious). Still remains open to establish
whether the inequality SSync ≥ SAsync is strict also for
stateless robots.

In the remainder, we investigate on the computational rela-
tion between SAsync and SSync for stateless robots. In par-
ticular, we consider the Gathering task for robots moving in

the Euclidean plane with exactly the same setting of [16]
and [52], that is, the same assumptions as in Section IV plus
the following one:

• Non-rigid: robots are not guaranteed to reach a destina-
tion within one move;

When considering the algorithms provided in the litera-
ture to solve the Gathering problem in Async [16] and in
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SSync [52], it leaps out the main difference in the complexity
required. In fact, both the design of the algorithms as well as
the related proofs of correctness look very different in terms
of readability and argumentations. Still, both algorithms solve
the Gathering problem starting from any initial configuration
but those composed of just two robots. Hence, investigating
on Gathering cannot lead to a prove that the inequality Async
≤ SAsync≤ SSync is strict as we did in the context of robots
moving on graphs. However, we felt to examine in more
depth the context of robots moving in the Euclidean plane in
order to better understand how SAsync can be approached.
In particular, can we provide a simple algorithm as in the
SSync case or the difficulties arising in the Async case are
already present in SAsync? From our investigation, it seems
that SAsync does not prevent to introduce the arguments
required for Async, hence showing its ‘hostile’ nature. It fol-
lows that, the drastic reduction concerning the obsolescence
of the pending moves occurring in SAsync with respect to
Async seems to be not effective when looking for a resolution
algorithm in the context of robots moving in the Euclidean
plane. As a benefit of our investigation, instead, our outcome
seems to suggest that, when dealing with robots moving in
the Euclidean plane, it is enough to focus on the SAsync
model rather than approaching the Async one along with all
its complications.

Before providing the algorithm designed in [52], we first
need some notation. Let R be a multiset of points in the plane.
By C(R) and c(R) we denote the smallest enclosing circle of
R and its center, respectively. Let C be any circle concentric
to C(R). We say that a robot r ∈ R is on C if and only if r is
on the circumference of C ; ∂C denotes all the robots on C .
We say that a robot r ∈ R is inside C if and only if r is in
the area enclosed by C but not in ∂C ; int(C) denotes all the
robots inside C . The smallest enclosing circle C(R) is unique
and can be computed in linear time [49].

For a fair comparison among the two algorithms,
we restrict to the case of configurations composed by n ≥ 5
robots, initially occupying different positions. In such a set-
ting, Algorithm 4 summarizes the strategy proposed in [52].
Since, by definition, in SSync there cannot occur pend-

ing moves, then it is quite easy to infer the correctness of
Algorithm 4. In fact, before a multiplicity is created, only the
three cases caught by Lines 1–1 can occur. Moreover, during
the movements, no undesired multiplicities can be created.
Once a multiplicity is done, each other robot is cautiously
moved toward it, that is without overpassing other robots.

By means of the next lemma, we show that the cases
caught by Lines 1–1 represent a strategy necessary also when
assuming FSync robots.
Lemma 2: Let R be an initial configuration with n ≥ 5

robots forming a regular n-gon on C(R). Any Gathering
algorithm must move robots toward c(R).

Proof: As the robots form a regular n-gon, they are all
equivalent. It means that, any move dictated by a resolution
strategy involves all such robots. It follows that the adversary
may force all the robots to work synchronously, and hence

Algorithm 4 Algorithm for n ≥ 5 Robots in SSync [52]
Require: Configuration R with n ≥ 5 robots.
Ensure: Gathering.
1: if there is a multiplicity at point m then
2: all robots in R cautiously move toward m
3: else
4: if |int(C(R))| = 0 then
5: all robots in R cautiously move toward c(R)
6: if |int(C(R))| = 1 then
7: r ∈ int(C(R)) moves toward the closest robot
8: if |int(C(R))| > 1 then
9: robots in int(C(R)) cautiously move toward c(R)

anymove toward a point different from c(R) can be performed
by all the robots. This would leave the configuration similar
to the initial one. In fact, the robots would keep on forming
always a regular n-gon even though the smallest enclosing
circle may change. Hence, the claim holds. �
We now consider Algorithm 4 in the context of SAsync,

hence showing themain difficulties arising andwhy that algo-
rithm does not work. Clearly, Lemma 2 also holds in SAsync.
Hence, if the initial configuration is given by n robots forming
a regular n-gon on C(R), the resolution strategy must move
them toward c(R). However, now pending moves can occur,
even though they can stand as such just for one time unit.
Unfortunately, this is already enough to face much more
difficulties in designing a resolution strategy.We can describe
a possible execution R = R0,R1,R2, . . . (with Ri being the
configuration observed at time i) of Algorithm 4 with respect
to the SAsync model where complications arise.

The scenario is described by Figure 13.(a), by means of a
configuration R = R0 composed of five robots disposed as a
pentagon. As non-rigid movements are assumed, the adver-
sary can make move any subset of robots toward c(R0) at
different distances. This implies that, at the initial time 0, only
a subset of robots could be active; moreover, the adversary
may prevent such active robots to form a multiplicity in c(R0)
and to obtain a configuration at time 2 where c(R2) 6= c(R0).
In the case described by Figure 13, the active robots at time 0
are r1 and r2, and in R2 we have that r1 has reached c(R0),
whereas r2 has been stopped before. Figure 13.(b) shows
the activation schema of all the five robots. With respect
to such a schema, it turns out that robots r3 and r4 have
already computed their moves (that are pending) at time 2.
In fact, their target is c(R0) and it has been computed at
time 1 according to the algorithm. However, the computed
moves are performed in the subsequent time step, while
robots r2 and r5 are finalizing their Compute phase on the
basis of the snapshot acquired at time 1, that is, the snapshot
acquired by r3 and r4 reveals configuration R1 = R0. Hence,
at time 3, configuration R3 may occur in which r3 and r4
have formed a multiplicity on c(R0) where also r1 resides.
Since both r1 and r5 perform their Look phase at time 2,
they both execute Lines 1–1 of Algorithm 4 (because they
both belong to int(C(R2))). It follows that r2 and r5 move
toward c(R2) and the adversary can make both complete their
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FIGURE 13. A visualization of the execution of Algorithm 4 in the SAsync model.

movements at time 4. The obtained configuration R4 then
contains two multiplicities, one at c(R0) and one at c(R2).
FromR4, the adversarymay prevent the robots to ever finalize
the Gathering since a configuration composed by just two
multiplicities is basically equivalent to have just two robots.
In fact, the adversary canmakemove all the robots composing
one multiplicity in a synchronous way, i.e., like if they were a
unique entity. Since it is known that the Gathering is unsolv-
able for n = 2 even in SSync, see [52], then the obtained
configuration R4 is unsolvable. It follows that Algorithm 4
cannot be applied as it is to solve the Gathering problem in
SAsync. In fact, the scenario reported in Figures 13 can be
easily extended to configurations with an arbitrary number of
robots.

Modifications to the strategy proposed by Algorithm 4 to
avoid the difficulty described above are then required. Hypo-
thetically, we may want to find a move that can ‘waste time’
before moving the robots toward the center of the current
smallest enclosing circle. This may allow possible pending
moves to be realized, hence either creating only one multi-
plicity in the original c(R) or letting the robot move succes-
sively to the new center. For instance, from R2 one may think
about rotating the robots on C(R) along the circumference
toward specific targets that permit to infer the termination of
the rotation. If such amovement can be realized, all the robots
can deduce from there that no pending moves are standing.
Clearly, it is possible that pending moves originated in R0
are performed and they either create a multiplicity or simply
change the number of robots involved by the move designed
for R2. Unfortunately, it seems it is not that obvious to realize
such a strategy.

On the other extreme, there is of corse the strategy pro-
posed in [16] dealing with Async robots. This is based on the
preliminary step where robots first check whether the current
configuration is equiangular or not. A configuration is said
to be equiangular if there exists a point p such that by drawing
all n half-lines starting from p and passing through any robot,
the intersections of the drawn lines with any circle centered
in p form a regular n-gon. From an equiangular configuration
is rather easy to accomplish the Gathering, it is enough for
the robots to move toward the detected point p. From R0,
for instance, the point p is exactly c(R). Hence, if the robots
are always able to detect such a point during the execution
of the algorithm then there is no risk to create undesired
multiplicities. However, as shown in [16], the main problems
start when the configuration is not equiangular but it may
become as such due to some movement. This constitute the
main difficulty arisen in [16] and its resolution is shown to be
quite involving. It is still not clear whether by dealing with
SAsync still requires such arguments or somehow they can
be simplified.

VIII. CONCLUDING REMARKS
In this work, we have studied the computational power of
distributed systems consisting of very simple autonomous
robots. Since it is known that the ability of a system of mobile
robots to solve a given distributed problem is strongly influ-
enced by the extent of synchrony between the robots, we have
introduced a new synchronization model that is located in
between Async and SSync. This new model, called SAsync,
is defined in order to better understand the big gap between
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Async and SSync in terms of level of difficulty to approach
problems.

Our first result proves that SSync robots can solve more
tasks (i.e., they are more powerful) than SAsync robots, that
in turn can solve more tasks than Async robots. This is
obtained by investigating the Gathering problem on rings,
in particular on SP4 configurations.
Before stating the main message that comes from this

work, we need to recall the main differences between FSync,
SSync, Async models and the new SAsync. One of the
main difference between Async and the synchronized models
FSync and SSync is that in Async, when a robot performs
the Look phase, it can perceive other robots in each of their
possible phases with respect to the LCM model. In partic-
ular, it is possible to perceive a robot while it is moving.
On the contrary, in FSync and SSync, when a robot performs
the Look phase, other robots are either inactive or performing
the same Look phase. As an intermediate behavior, in SAsync
a robot that performs the Look phase cannot perceive other
robots while these are moving, but it can perceive robots that
have already computed the move but have not yet performed
it. Importantly, in SAsync a pending move will always be per-
formed before any other move computed later in time (while
in Async there might occur pending moves computed very
far away in time that become effective after moves computed
more recently by other robots). It follows that, in SAsync,
pending moves are resolved in the order they are computed
(FIFO behavior).

Concerning the obtained results and according to the dis-
cussion about the Gathering problem on the Euclidean plane,
it seems that the SAsync model is already ‘‘sufficiently hard’’
to deal with. In particular, it seems that studying SAsync
instead of Async may already provide useful information
about the complexity of the studied problem.

So, the main message coming from the new synchroniza-
tion model could be twofold: (1) the Async model is hos-
tile for designing distributed algorithms because of pending
moves. Less relevance seems to concern the possibility of
Async robots to be seen while they are moving; (2) when
a new task must be studied according to the LCM model,
it is sufficient to use the SAsync model in order to face
the main difficulties that usually characterize asynchronous
systems.

There are also some challenging research directions that
deserve to be investigated:

• Concerning the Gathering problem on graphs, from
Table 2 we see that the main question left open is
whether for n ≥ 11, configurations inSP4 can be solved
in Async or not. In [30], it has been conjectured that in
Async such configurations are unsolvable;

• About Gathering on graphs within SAsync, it remains
open whether configurations in SP4 with n ≥ 13 can
be solved or not;

• Another problem that remains open is whether the strict
hierarchy SSync > SAsync > Async also holds for

robots moving on the Euclidean plane. Moreover, for the
Gathering problem, it is not clear whether for SAsync
robots it is possible to design a simpler algorithm than
that provided in [16] for Async robots.

• Finally, it would be interesting also to explore how
the four synchronization models relate when considered
within a same problem with respect to optimization
issues rather than simply feasibility.
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