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ABSTRACT Proton exchange membrane fuel cell (PEMFC) is a clean and efficient alternative technology
for transport applications. The degradation analysis of the PEFMC stack plays a vital role in electric vehicles.
We propose a hybrid method based on a deep neural network model, which uses the Monte Carlo dropout
approach called MC-DNN and a sparse autoencoder model to analyze the power degradation trend of the
PEMFC stack. The sparse autoencoder canmap high-dimensional data space to low-dimensional latent space
and significantly reduce noise data. Under static and dynamic operating conditions, using two experimental
PEMFC stack datasets the predictive performance of our proposed model is compared with some published
models. The results show that the MC-DNN model is better than other models. Regarding the remaining
useful life (RUL) prediction, the proposed model can obtain more accurate results under different training
lengths, and the relative error between 0.19% and 1.82%. In addition, the prediction interval of the predicted
RUL is derived by using the MC dropout approach.

INDEX TERMS Deep neural network model, Monte Carlo dropout approach, remaining useful life
prediction, sparse autoencoder model.

I. INTRODUCTION
A proton exchange membrane fuel cell (PEMFC) is an elec-
trochemical method that rapidly converts chemical energy
stored in a hydrogen tank into electrical energy. The main
application is focused on transportation, which has high
power density and excellent dynamic characteristics com-
pared to other types of fuel cells. The two major prognostics
jobs in prognostic and health management are to predict
degradation trends and estimate the remaining useful life
(RUL). The stack aging indexes such as total voltage, power,
polarization curves, and electrochemical impedance spec-
troscopy (EIS) can be used to characterize the degradation
trend of PEMFCs (see the first column of Table 1). Also,
many degradation model parameters based on the measure-
ment data can be used as the degradation indexes. The stack
voltage and the stack power are currently the most commonly
used measurement-based degradation indexes for PEMFCs.

PEMFCprognosticsmethods are classified asmodel-based
methods, model-free methods, and hybrid methods [1].
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Since the power generation system of the PEMFC is
a very complex nonlinear multi-dimensional dynamic
strongly-coupled machine, the principle of fuel cell generator
and internal chemical reaction process has not been thor-
oughly studied yet, so model-based PEMFC aging prediction
is complicated.

Model-based methods, such as the mechanism degrada-
tion model, the empirical degradation model [2]–[4], the
semi-mechanism degradation model, or the semi-empirical
degradation model [5]–[7], have been used to obtain the
prognostics of PEMFCs. Chen et al. [8] present an aging
prediction method based on a voltage aging model and an
extended Kalman filter algorithm. The experimental data of
postal fuel cell electric vehicles verified the feasibility of
the method. When the training data set exceeds 45 hours,
the average mean relative error in the prediction phase will
be reduced to 0.68%.

The model-free methods such as data-based method,
machine learning such as support vector regression (SVR),
deep learning, and signal processing algorithm can be used
to implement the degradation trend prediction and the RUL
estimation for PEMFCs. Liu et al. [9] present a data-based
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TABLE 1. Previous works on PEFMC prognostic based on measurement degradation indexes.

method based on the group method of data handling and
the wavelet analysis for a short-term PEMFC prognos-
tic. Liu et al. [10] report that the adaptive neuro-fuzzy
inference system (ANFIS) with fuzzy c-means (ANFIS-
FCM) strategy outperforms several methods such as the
Elman neural network, the group method of data handling,
and the wavelet decomposition approach in the short-term
prognostics. Ma et al. [11] use a grid long short-term
memory (G-LSTM) recurrent neural network (RNN) to
study the PEFMC degradation. A method based-on sparse
auto-encoder (SAE) and deep neural network (DNN) is
applied for the RUL prediction of a PEMFC system [12].
When the training set length is set to 500 hours, the prediction
accuracy can reach 99.68%. A discrete wavelet transform
(DWT) approach is used as an online prognostic [13]. Using
power signals of two PEMFC stacks under static and dynamic
operating conditions for RUL prediction, the results show
that prediction error is less than 3%. A data fusion method
based on LSTM and auto-regressive integrated moving aver-
age (ARIMA) is used to predict PEMFC degradation in
transportation applications with a minimum root mean square
error (RMSE) value of 0.0039 [14].

Hybrid methods combining the model-based and model-
free methods with different hybrid strategies can be found
in [15]–[23]. Liu et al. [23] proposed a multi-scale
hybrid degradation index that combines the degradation of
membranes and electrodes to estimate the aging state

of PEMFCs. They reported that when the prediction
length is less than 400 h, the automated machine learn-
ing algorithm can provide an estimation error of less
than 3.5%.

Some measurement-based degradation indexes have been
used in the RUL prediction, such as a particle filter (PF) [24],
an extended Kalman filter (EKF) [25], a PF-based hybrid
method [26]. The summary of previous studies on PEMFC
using the measurement-based degradation indexes is pre-
sented in Table 1.

However, most researches in the RUL analysis of PEMFCs
are not dealing with their prediction uncertainty. Deep neural
networks with the Monte-Carlo (MC) dropout method or
variational inference can avoid overfitting and offer uncer-
tainty estimates. In this study, we propose a hybrid method
based on a deep neural network model with an MC dropout
approach called MC-DNN and an SAE model to analyze the
degradation trend of the PEMFC stack, where power is used
as an aging index. In addition, we apply the rolling prediction
method to the MC-DNN model to obtain RUL prediction.
Using the SVR model, a multistep-ahead prediction of input
features such as total voltage and current can be derived. The
main contributions of our proposed method include:

1) Extracting high relevant features by compressing the
input dataset to low dimensions;

2) To obtain the estimated value, our model also provides
uncertainty of the PEMFC stack RUL; and
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3) The differential evolution (DE) algorithm used in the
MC-DNNmodel improves prediction performance by adjust-
ing hyperparameters.

The overall organization of the paper is as follows.
Section 2 introduces our proposed method. Section 3
describes the experimental data. Section 4 discusses the anal-
ysis results. Finally, Section 5 concludes the paper and pro-
vides directions for future work.

II. DEEP NEURAL NETWORK WITH MC DROPOUT
A. DEEP NEURAL NETWORK
Deep learning based on the artificial neural network is run
under a deep architecture or hierarchy, consisting of multiple
hidden layers, capturing the high-level abstraction behind
data and characterizing the complicated nonlinear relation-
ship between inputs and targets. Such a deep neural network
has been successfully applied for several regression and clas-
sification systems, including speech recognition, natural lan-
guage processing, and music information retrieval [41]–[44].
Shrestha and Mahmood [45] provide a thorough overview
of the neural networks and deep neural networks. The
DNN receives data at the input layer, merges the input data
with the weights in each node, and transforms it in a nonlinear
manner. The final output acts accordingly at the output layer
by calculating the average gradient and adjusting the weights
and activation.

The output of the k th layer is given by

Ak = g(WkAk−1 + bk ) (1)

where k = 1, 2, . . . ,K ; Ak−1 is the input datum of the
k th layer; Wk is the connection weight matrix between the
(k − 1) layer and the k layer; bk is the bias of the k th layer;
g represents the activation function of the k th layer. Recti-
fied linear unit (ReLU) is usually employed as an activation
function of neurons in DNNs, where ReLU(A)=max{0,A}.
Figure 1 depicts a DNN with two hidden layers.

FIGURE 1. The architecture of a deep neural network with two hidden
layers.

B. MC DROPOUT
Besides letting the network predict future data better (reduce
overfitting), the dropout also enables us to obtain the model
uncertainty [46], [47]. While predicting new data, instead of
using all neurons (disabling dropout layers), we can keep
dropout enabled and predict multiple times (see Figure 2).
In the MC dropout approach, the dropout is applied at both
training and test time. Given the same data point, our model

FIGURE 2. Neural network with and without dropout.

could predict different values depending on which nodes are
chosen to be kept. During test time, the prediction is not
deterministic, as in the case of ordinary dropout. MC dropout
generates random predictions and interprets them as samples
from the probabilistic distribution, and it is called Bayesian
interpretation. By running multiple forward passes through
the model with a different dropout optimization method
mask every time, we can model the uncertainty with the
MC dropout approach.

A sample of possible model output for sample t with a
given trained neural network model with dropout fh can be
obtained as:

f d0h (t) , f d1h (t) , . . . f dMh (t) (2)

where di is the dropout mask and M is the number of infer-
ences. Predictive posterior mean (p) and an estimate of the
uncertainty (u) of the model regarding t can be computed by
using the following two formulas [46], [47].

p =
1
M

∑M

i=0

(
f dih (t)

)
(3)

u =
1
M

∑M

i=0

[
f dih (t)− p

]2
(4)

C. PROPOSED MODEL
The proposed method is based on the DNN model with MC
dropout for PEMFC aging analysis, as shown in Figure 3.

FIGURE 3. Architecture of the proposed method.

The details of the analysis steps are given as follows:
Step 1: Locally estimated scatterplot smoothing (LOESS)

combines much of the simplicity of linear least squares
regression with the flexibility of nonlinear regression [48].
LOESS does this by fitting simple models to localized sub-
sets of the data to build up a function that describes the
deterministic part of the data’s variation, point by point.
LOESS is essentially used to visually assess the relation-
ship between two variables and is especially useful for large
datasets, where trends can be hard to visualize.
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TABLE 2. Parameters used for SAE model.

Step 2: Sparse auto-encoder is an extension of the
auto-encoder, which can learn relatively sparse features by
introducing a sparse penalty (see Figure 4) [49].

FIGURE 4. Structure of sparse auto-encoder.

The difference between sparse autoencoder and autoen-
coder is the sparsity penalty. The loss function in SAE
most involves penalized activations in the hidden layer.
The activation can reduce the overfitting problem to reach
the Sparsity. There are different ways to construct the
sparse penalty for SAE, such as L1 regularization and the
KL-divergence-based approach. In this paper, we use L1 reg-
ularization, which is widely used in deep learning. The
SAE improves the efficiency of traditional autoencoder algo-
rithms. The parameters of the SAE in this study are shown
in Table 2.

The input layer, which is the encoder layer, can compress
the input data points between the input and hidden layers. The
original data points will be extracted by the linear layer with
activation function Hj, as shown in Equation (5).

Hj = ReLU

(
k∑
i=1

Wijxi + bj

)
(5)

where i is the number of neurons of the input layer, j is the
number of neurons in the hidden layer, x is the input data
points, Hi is the hidden layer’s output data, Wij is defined as
weight and bj is the bias. The output data of the hidden layer
with the ReLU activation function. Moreover, L1 regulariza-
tion is used to compute the weight in the hidden layer, where
L1 regularization is defined by

L1 = λ
∥∥Wij

∥∥ , dL1
dw
=

∥∥Wij
∥∥

dw
(6)

where λ is penalty parameter or sparse parameter
(see Figure 5) [50].

The input data go through the hidden layer with
L1 regularization. The weight, which is Wij is controlled
by L1 regulation. Through forward and backpropagation,
the output of the hidden layer would be changed to close
1 or −1. The output layer, which is the decoder layer, uses
a linear layer with an ReLU activation function where Oi =
ReLU

(∑k
j=1WjiHj + bi

)
. The decoder layer can reconstruct

the data points to the original features generating similar data
points with input data. The features can be reduced by SAE,
which means the output data have a higher correlation.
Step 3: The normalized SAE output data is used to train the

DNNmodel with two hidden layers to predict the degradation
trend.
Step 4: The optimal hyperparameters are found from the

DE algorithm, and theMC dropout approach is used to obtain
the prediction intervals.

The procedure of the DE algorithm [51] for obtaining the
optimal hyperparameters is given as follows.
Step 1: Set up the hyperparameters range, the number of

parameter vectors, the differential weighting factor, and the
crossover probability.
Step 2: Define the fitness function as the mean absolute

percentage error (MAPE):

MAPE =

∑n
t=1 |(At − Ft )/At |

n
× 100%, (7)

where Ai is the actual value at the period i, Fi is the predicted
value at the period i, and n is the number of periods used in
the calculation.
Step 3: Perform the proposed model on each individual in

the population and calculate the MAPE.
Step 4: If the convergence rule or the maximum iteration

number (=100) is reached, the estimated values of hyperpa-
rameters such as the number of neurons and the dropout rate
are output.

When the optimal hyperparameters are obtained, these
values will be used as input parameters in the proposed model
for the training and test data.

Regarding the RUL prediction, RUL is defined as the time
span from the current time to the end of life (EOL), where a
certain amount of power losses gives EOL. That is, it can be
expressed as RULt = tEOL−tsp, where RULt is the remaining
life at tsp, tEOL is the end of life, and tsp is the time at the start-
ing point for RUL prediction.We consider three input features
such as time, voltage, and current to predict a PEMFC stack’s
power. Because input features after the starting time are
unknown, a rolling forecasting approach based on the SVR
model is used to obtain the multistep-ahead prediction for
the input features such as voltage and current. The predicted
voltage and current values are then used for power prediction
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FIGURE 5. L1 regularization and differential L1 regularization.

using the MC-DNNmodel. Figure 6 provides the structure of
the RUL prediction using the MC-DNN model with a rolling
forecasting approach. When the predicted power reaches
the EOL value, the predicted RUL is obtained. Note the
number of multistep-ahead forecasts affects the prediction
performance.

III. EXPERIMENTAL EVALUATION
A. DATA DESCRIPTION
We verify the proposed method using data from the two
experimental PEMFC stacks of the IEEE PHM 2014 Data
Challenge [40]. The maximum setting of the test bench for
full cells is 1 kW. Each stack has five fuel cells. Two aging
tests were performed at a constant current of 70A and a
dynamic current of 70A with 7A oscillation. Several parame-
ters were collected, including single-cell and stack voltages,
temperatures, gas flows, air, and hydrogen hygrometry rates.
Other characteristics and experimental operating parameters
of the PEMFC stack are provided in Table 3.

TABLE 3. PEFMC stack characteristics and experimental operating
parameters.

The total of 143862 sets called FC1 under the constant
current testing condition are recorded from 0 h to 1054 h. For
the dynamic current testing condition, a total of 127370 sets
are recorded from 0 h to 1020 h. In this study, we recon-
structed the raw data by using the mean of each variable
per hour. Thus, 1055 sets and 1021 sets with 25 variables

are used for further analysis. The plot of power for FC1 is
shown in Figure 7(a). The plots of power for FC2 with raw
data shows five outliers (see Figure 7(b). These outliers are
replaced by a smoothing method called locally estimated
scatterplot smoothing (LOESS).

B. HYPERPARAMETERS SETTING
The DNN model with two hidden layers is configured as
follows: the number of neurons in the first and second hidden
layers are 15 and 12, respectively, batch size = 10, dropout
rate = 0.002, the number of epochs = 5000, activation func-
tion = ReLU, the loss function is mean square error (MSE),

and the optimizer is Adam, in which MSE =
∑n

i=1 (Ai−Fi)
2

n ,
where Ai is the actual value at the period i, Fi is the pre-
dicted value at the period i, and n is the number of periods.
This setting is used for RUL prediction when the training
length = 550. The other analysis under different training
lengths will be provided in the following sections. The system
runs on the Visual Studio Code 1.43.0 environment with
the Torch library. The computer configuration is as follows:
Memory: 8.00 GiB; Processor: Intel Core i7-7700HQ CPU
with Intel HD Graphics 630 and NVIDIA GeForce GX 1050;
OS: Windows NT x64; Disk: 1050 GB.

IV. ANALYSIS RESULTS
A. POWER DEGRADATION ANALYSIS
The PEMFC state of health can be monitored by different
parameters like voltage, air and hydrogen stoichiometry rates,
and temperature. Under these health monitoring parameters,
the PEMFC stack under dynamic or constant operating condi-
tions goes through aging in the experiment. Figure 8 depicts
the behavior of some monitoring variables for the PEMFC
stack under the experiment. From the figure, it can be seen
that, as time increases, the power drops, which indicates the
aging of the PEMFC stack.

The training lengths are set to 500 hours, 600 hours,
and 700 hours, respectively, and the remaining time is used
as the test data set. The three test lengths are 655 hours,
555 hours, and 455 hours for FC1 and 520 hours, 420 hours,
and 320 hours for FC2. Three measures such as MSE, root
mean square error (RMSE), and MAE are used to compare
the prediction performance of different models, in which
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FIGURE 6. Structure of the RUL prediction.

FIGURE 7. Power degradation of the PEMFC stack: (a) FC1 (raw data) and
(b) FC2 (raw data & smoothed data).

MAE =
∑n

i=1 |Ai−Fi|
n , where Ai is the actual value at the

period i, Fi is the predicted value at the period i, and n is the
number of periods.

The three models’ prediction results under the three differ-
ent training lengths with their batch size and dropout value
for FC1 are shown in Table 4. The DNN model is based on
raw data. The SAE-DNN model is with the optimal param-
eter of batch size. The MC-DNN model is with two hidden
layers and the optimal parameters of batch size and dropout.
When the training length is set to 600 h, the MC-DNNmodel

with a batch size of 27 and a dropout value of 0.04 can
provide an MSE value of 0.0015. Compared with the DNN
model and the SAE-DNN with a batch size of 27, the MSE
values are 0.0114 and 0.0234. The MC-DNN model with
the optimal parameters outperforms the DNN model and
SAE-DNN model in MSE, RMSE, and MAE in all training
lengths. Besides, we found that the prediction performance is
affected by the training length.

We compare our proposed model with other models using
the FC2 data for the stack’s dynamic operating condition. The
MC-DNN model with two hidden layers and the batch sizes
of 25, 24, and 10 for 500 h, 600 h, and 700 h training lengths
respectively, results in an improved accuracy compared to the
SAE-DNN model with a dropout value of 0.4 [12]. It should
be noted that Liu et al. [12] do not provide the number of
hidden layers and the batch size in theDNNmodel.Moreover,
the dropout parameter is derived from the DE algorithm. The
dropout values of 0.1, 0.04, and 0.006 are found for 500 h,
600 h, and 700 h training lengths, respectively. In Table 5,
we found that our proposed model outperforms the other two
models in terms of MSE, RMSE, and MAE.

When the training length is at 700 h, our model with a
batch size of 10 and a dropout value of 0.006 provides the
best MSE, RMSE, and MAE values of 0.0001, 0.0120, and
0.0082, respectively (see Table 5). The result shows that
the prediction performance of the MC-DNN model with the
optimized parameters provides a better result compared to the
other two models.

B. RUL PREDICTION
For the PEMFC stack, the US Department of Energy (DoE)
pointed out that PEMFC cannot achieve its function when the
initial power is reduced by 10% [52]. However, the testing
time of FC2 is limited. Here, 5 power drops were considered:
3.5 %, 4%, 4.5 %, 5%, and 5.5 % of its initial power for FC2.
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TABLE 4. Prediction results of different model on FC1.

FIGURE 8. The behavior of some monitoring parameters for the PEMFC stack.

TABLE 5. Prediction results of different model on FC2.

Thus, the remaining useful life prediction before those power
losses are starting after 550 h. Using the MC-DNN model
with a multistep-ahead prediction (=3), the predictive power
and its prediction interval at 95% confidence level are shown
in Figure 9. The prediction MSE, RMSE, and MAE values
are obtained as 0.2216, 0.1474, and 0.3839, respectively.

To evaluate the performance of different methods, the final
Score of 5 RUL estimates is derived by

Score =

∑5
i=1 Ai
5

(8)

where Ai =
{
exp(− ln(0.5)× (Eri/5)) if Eri ≤ 0
exp(ln(0.5)× (Eri/20)) if Eri > 0

and Eri =

Acutal_RULi−Predicted_RULi
Acutal_RULi

× 100%. The positive value of

Er means the prediction RUL signaling early than the end of
life. The larger the value of Score, the higher the prediction
accuracy.

The predicted RUL values and percent errors of the pro-
posed method, a model based on PF [53], and a power
model [54] for FC2 under five different failure threshold
values are provided in Table 6. Note: failure threshold (FT)
is defined as the percentage value of the initial power drop.
The average and standard deviation of the percent errors are
shown in the last two rows of Table 6, where the percent
error values of the PF power, and MC-DNN models are
obtained as−9.437,−8.479, and−0.396, respectively.More-
over, the standard deviations of percent error using the PF,
power and MC-DNN models are obtained as 19.798, 18.635,
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FIGURE 9. The prediction intervals of the power at the training length = 550.

TABLE 6. Comparison results of different models.

and 1.191, respectively. The results indicate that the proposed
method performs better than the PF model in terms of the
RUL prediction’s accuracy and stability

The PF is based on the MCmethod and recursive Bayesian
estimation method, which employs random sample particles
and associated weights to represent posterior probability den-
sity. The following two equations formulate the PF method:

xk = fk (xk−1,wk−1) (9)

zk = hk (xk , vk ) (10)

where xk is the system state, zk is the observation, fk is the
state transition function, hk is the measurement function, w
and v are the system’s Gaussian noises and themeasurements,
respectively. In a particle filtering framework, the Bayesian
update is processed sequentially with particles having proba-
bility information of unknown parameters. The details of the
PF algorithm can be found in [53].

The degradation trend model used in [53] is given by

xk = a · (tk − tk−1)2 + b · (tk − tk−1)+ xk−1 (11)

where xk is the current state, a and b are the 2nd order
polynomial degradation model parameters, tk and tk−1 are the
current time step and previous time step, respectively.

The power model used in [54] is given by

x(t) = λ·tβ + σBB(t) (12)

where x(t) is the current state, λ, β and σB are the model
parameters, t is the current tme, and B(t) is a standard Brow-
nian motion.

The final scores of PF, power and MC-DNN models
are obtained as 0.7379, 0.7847, and 0.9121, respectively
(see Table 7). The results show that the MC-DNN model
outperforms the other two models in terms of Score. There-
fore, the proposed method can offer a more reliable RUL
prediction for the PEMFC stack. Note: MC-DNN parame-
ters are the number of neurons = 15 and 12 for the first
and second hidden layers, batch_size= 10, dropout= 0.002,
epochs = 5000.

TABLE 7. The final scores of different models.

C. ROBUSTNESS OF PROPOSED METHOD
To demonstrate the robustness of the proposed MC-DNN
model on the RUL prediction of a PEMFC stack, we consider
six training lengths, and the failure threshold is set at 935 h.
Note: different training lengths for predicting RUL with the
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TABLE 8. RUL prediction results and errors under different training lengths.

batch size in parentheses: 550 (12); 600 (17); 650 (19);
700 (15); 750 (9); 800 (6). The predicted RUL values and their
prediction interval at the 95% confidence level are shown
in Table 8. For example, when the training length is set at
700 h, the RUL prediction error is 1.36. The results show
that the proposed model can provide more accurate RUL
prediction under a larger training length.

V. CONCLUSION
The power degradation analysis of the PEFMC stack plays
an important role in electric vehicles. This paper proposes
a hybrid method based on a deep neural network model,
which has a dropout approach called MC-DNN and a sparse
autoencoder model to analyze the power degradation trend
of the PEMFC stack and its RUL prediction. We use LOESS
to smooth the raw data from the PEMFC stack. The sparse
autoencoder model is used to generate new data as input in the
DNN model. The DE algorithm is used to obtain the optimal
hyperparameters of the DDN model, and the MC dropout
approach is used to obtain the prediction interval.

The experimental PEMFC stack is used to verify our
proposed model. The results show that the prediction per-
formance of the MC-DNN model with two hidden layers
and optimized parameters provides better results compared
with the other two models such as DNN and SAE-DNN.
In addition, the data of the first 550 hours was used to obtain
the trained model, and the five power drop values at 3.5 %,
4 %, 4.5 %, 5 %, and 5.5 % of the initial power value were
selected as the end of life. The RUL prediction performance
of our proposedmodel is compared with the score value of the
PF model. The results show that our model is better than the
PF model with a score value of 0.9121 while the Score values
of PF and power model are 0.7379 and 0.7847, respectively.
Furthermore, our proposed model can achieve more accurate
RUL prediction, and the relative error is between 0.19% and
1.82% under different training lengths of the PEMFC stack.
Based on the above analysis results, we can conclude that
the proposed model is suitable for the RUL prediction of the
PEMFC stack.

The proposed method could be applied to other fuel cells
and help practitioners make more reliable RUL prediction.
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