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ABSTRACT Block pulse functions (BPFs) are piecewise constant and not sufficiently smooth. Therefore,
their accuracy is limited when it comes to identifying the parameters of fractional order systems (FOSs).
This in turn means that BPFs are incapable of offering highly accurate parameter identification results.
However, using a great number of BPFs would significantly increase the dimension of the operational
matrix and thereby adds to the computational complexity and burden. To overcome this problem, we present
here a hybrid function method for identifying FOSs. The method utilizes a hybrid of Bernoulli polynomials
and block pulse functions (HBPBPFs) as the base functions to approximate input and output signals. The
fractional integral operational matrix of HBPBPFs is derived and used to convert an FOS to an algebraic
system. The parameters of the FOS are successfully identified by minimizing the mean square error between
the output of the true system and that of the algebraic representation of the FOS. The simulation experiment
verifies that our proposed HBPBPFsmethod is effective and can generate more accurate identification results
than existing BPFs methods.

INDEX TERMS Bernoulli polynomials, block pulse functions, fractional order system, operational matrix,
parameter identification.

I. INTRODUCTION
Due to their inherent global property and historical
dependence, fractional order models (FOMs) or fractional
differential equations (FDEs) exhibit great advantages in
describing the dynamic behaviors of real-world systems such
as viscoelastic systems [1], the electrical characteristics of a
solid oxide fuel cell (SOFC) [2], lithium-ion batteries [3],
and anomalous diffusion [4]. Therefore, many researchers
have been working on methods for building FOMs for real-
world systems by using various identification methods and
controlling FOSs [5]–[8].

A number of methods have been proposed for FOS
identification. These methods can be roughly divided into
two classes: frequency domain methods and time domain
methods. For frequency domain methods, D. Valério et al.
extended the traditional Levy’s method to identify an FOS
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transfer function with commensurate orders [9], and the idea
has been adopted to identify arbitrary fractional systems
from a frequency response [10]. In [11], a variable damping
least squares algorithm was adopted to investigate frequency
response based identification of FOSs. In [12], a set member-
ship algorithmwas used to identify the coefficients and orders
of FOSs with the unknown but bounded noise in frequency
domain. In [13], [14], a frequency domain subspace method,
which was expressed by a state space model, was proposed to
identify FOSs. Several time domain methods have been pro-
posed for FOS identification, including a simplified refined
instrumental variable (SRIV) method [15], a recursive error
prediction approach [16], and a modulating function method
[17]–[19]. In [20], [21], a BPFs-based method was proposed
to identify the parameters of FOSs. In this method, the frac-
tional integral operational matrix of BPFs is derived, and the
FOS to be identified is converted to an algebraic system. In
this way, it avoids the complex and costly computations of
the fractional derivatives of input and output signals. While
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the BPFs method is simple and effective, it suffers from at
least one important limitation. Specifically, BPFs are piece-
wise constant and are therefore not sufficiently smooth. This
means that using a smaller number of BPFs would compro-
mise the identification accuracy and using a larger number
of BPFs would lead to greatly increased dimension of the
operational matrix and thus more complex computation.

To overcome the limitation of the BPFs method, a new
hybrid functions based identification method is proposed in
this paper. The method incorporates a hybrid of Bernoulli
polynomials and block pulse functions as the base functions
to approximate input and output signals. The fractional inte-
gral operational matrix of the hybrid functions is derived and
then used to convert the FOS to be identified to an algebraic
system. The parameter and order are simultaneously identi-
fied by minimizing the mean square error between the output
of the true system and that of the algebraic system. Since
the hybrid functions are piecewise polynomial, they are more
smooth than BPFs. Therefore, the proposed method offers
higher identification accuracy than the BPFs method when
the same number of base functions are used.

The remainder of the paper is structured as follows. Some
basics about fractional calculus are given in Section II.
Section III elaborates on the HBPBPFs-based identification
method. Section IV gives the error analysis. Numerical sim-
ulations are presented in Section V. Finally, conclusions are
presented in Section VI.

II. BASIC KNOWLEDGE
A. DEFINITION OF FRACTIONAL INTEGRAL AND
DERIVATIVE
Unlike integer calculus, fractional calculus comes with non-
unique definitions. Among the most frequently used defi-
nitions for fractional calculus are Riemann-Liouville (R-L)
definition, Grünwald-Letnikov (G-L) definition, and Caputo
definition. In this paper, the R-L fractional integral definition
and the Caputo fractional derivative definition are used. The
definition details are as follows:
Definition 1: The R-L fractional integral definition of a

continuous f (t) is expressed as [22]

Iαf (t) =
1

0(α)

∫ t

a
(t − τ )α−1f (τ )dτ,

where α > 0 is called the integral order, and a is the lower
limit of the integral.
Definition 2: The Caputo fractional derivative definition

of order α (n− 1 < α 6 n) is expressed as [22]

Dαf (t) =
1

0(n− α)

∫ t

0
(t − τ )n−α−1f (n)(τ )dτ,

where α > 0 is the order of the derivative, and n is the
smallest integer greater than α.

The Caputo derivative and R-L fractional integral of a
function f (t) are related to each other as follows:

Iα(Dαf (t)) = f (t)−
n−1∑
k=0

f (k)(0)
tk

k!
,

and under zero initial conditions, in particular, their relation
can be expressed as

Iα(Dαf (t)) = f (t).

B. HYBRID OF BERNOULLI POLYNOMIALS AND BLOCK
PULSE FUNCTIONS
The BPFs are a set of piecewise orthogonal functions defined
on the interval [0,T) as

φi(t) =

 1,
i− 1
N

T 6 t <
i
N
T

0, otherwise,
(1)

where i = 1, 2, . . . ,N , and N is the number of BPFs.
The Bernoulli polynomials are a special kind of generating

function. The Bernoulli polynomials δm(t) of order m are
defined as [23]

δm(t) =
m∑
k=0

(
m
k

)
cm−k tk ,

where ck (k = 0, 1, . . . ,m) is called Bernoulli numbers, and
it is defined through power series of function t

et−1 as

t
et − 1

=

∞∑
k=0

ck
tk

k!
= 1−

t
2
+

∞∑
k=0

c2k
t2k

(2k)!
|t| < 2π.

The term 1− t
2 is moved to the left side. Since t

et−1 − 1+ t
2

is odd for t ∈ R, the Bernoulli numbers c2k+1 = 0 for k ∈ N.
The first five Bernoulli numbers and Bernoulli polynomials
are listed as follows:

c0 = 1, c1 = −
1
2
, c2 =

1
6
, c4 = −

1
30
, c6 =

1
42
,

δ0(t) = 1, δ1(t) = t −
1
2
, δ2(t) = t2 − t +

1
6
,

δ3(t) = t3 −
3
2
t2 +

1
2
t, δ4(t) = t4 − 2t3 + t2 −

1
30
.

Definition 3: The HBPBPFs γnm(t) (n = 1, 2, . . . ,N ,
m = 0, 1, 2, . . . ,M ) are a set of piecewise functions defined
on the interval [0,T) as [24]

γnm(t) =

 δm(
N
T
t − n+ 1),

n− 1
N

T 6 t <
n
N
T

0, otherwise,
(2)

where n is the number of the elementary BPFs and m is the
order of Bernoulli polynomials.

C. FUNCTION APPROXIMATION USING HBPBPFS
An absolutely integrable function f (t) ∈ [0,T ) can be
expanded onto HBPBPFs as

f (t) =
∞∑
n=1

∞∑
m=0

µnmγnm(t), (3)

where

µnm =
〈f (t), γnm(t)〉
〈γnm(t), γnm(t)〉

. (4)
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The symbol 〈·, ·〉 in (4) is the inner product. Truncating (3) to
a finite term, the function f (t) can be approximated as

f (t) ∼=
N∑
n=1

M∑
m=0

µnmγnm(t) = Y Tϒ(t),

where

Y = [µ10, . . . , µ1M , µ20, . . . , µ2M , . . . , µN0, . . . , µNM ]T,

and

ϒ(t) = [γ10(t), . . . , γ1M (t), γ20(t), . . . , γ2M (t), . . . ,

γN0(t), . . . , γNM (t)]T.

D. FRACTIONAL INTEGRAL OPERATIONAL MATRIX OF
HBPBPFS
Definition 4: [20] The fractional integral of the BPFs

vector 8(t), i.e.,

Iα8(t) =
1

0(α)

∫ t

0
(t − τ )α−18(τ )dτ

can be written in a matrix form as

Iα8(t) = FαN×Nϒ(t), (5)

where FαN×N is an N order square matrix and is called the
fractional integral operational matrix of BPFs.
Definition 5: The fractional integral of the HBPBPFs vec-

tor ϒ(t), i.e.,

Iαϒ(t) =
1

0(α)

∫ t

0
(t − τ )α−1ϒ(τ )dτ

can be written in a matrix form as

Iαϒ(t) = Pαs×sϒ(t), (6)

where Pαs×s is an s order square matrix and is called the
fractional integral operational matrix of HBPBPFs.
Pαs×s can be obtained by expanding HBPBPFs onto the

following BPFs:

ϒ(t) = 9s×s8(t) (s = N (M + 1)), (7)

where 8(t) = [φ1(t), φ2(t), · · · , φs(t)]T is the BPFs vec-
tor, and the matrix 9s×s is called the transition matrix
from HBPBPFs to BPFs. In general, for arbitrary N and
M , the matrix 9s×s is a block-diagonal matrix and can be
expressed as

9s×s =


A 0 0 · · · 0
0 A 0 · · · 0
0 0 A · · · 0

0 0 0
. . .

...

0 0 0 0 A

 ,

where A = (ω(m)
ni )(M+1)×(M+1) is an M + 1 order square

matrix, and its element ω(m)
ni is

ω
(m)
ni =

m∑
k=0

(
m
k

)
cm−k [ik+1 − (i− 1)k+1]

(k + 1)(M + 1)k

with 1 6 i 6 M .

Using the transition matrix 9s×s, one can obtain

Iαϒ(t) = Iα(9s×s8(t)) = 9s×s(Iα8(t))

= 9s×sFα8(t). (8)

From (7), it can be known that 8(t) = 9−1s×sϒ(t), and by
substituting this equation into (8), one has

Iαϒ(t) = 9s×sFα9
−1
s×sϒ(t).

Therefore, the fractional integral operational matrix of the
HBPBPFs can be expressed as

Pαs×s = 9s×sFα9
−1
s×s.

III. PARAMETER IDENTIFICATION OF FOSS USING AN
HBPBPFS OPERATIONAL MATRIX
Consider an FOS described by the fractional differential
equation

n∑
i=1

aiDαiy(t) =
m∑
j=1

bjDβju(t), (9)

where u(t) and y(t) represent the input and output signals of
the system, (ai, bj) ∈ R, αi and βj are arbitrary real positive
numbers that satisfy α1 6 α2 6 · · · 6 αn, β1 6 β2 6 · · · 6
βm, and βm < αn.
Performing αn order fractional integration on both sides of

system (9), one can get

n−1∑
i=1

aiIαn−αiy(t)+ any(t) =
m∑
j=1

bjIαn−βju(t). (10)

y(t) and u(t) are expanded onto HBPBPFs as follows:

y(t) = Y Tϒ(t), u(t) = UTϒ(t).

Then, the fractional integral of y(t) and u(t) can be expressed
as

Iαn−αiy(t) = Y T(Iαn−αiϒ(t)) = Y TPαn−αiϒ(t), (11)

and

Iαn−βju(t) = UT(Iαn−βjϒ(t)) = UTPαn−βjϒ(t). (12)

(11) and (12) are substituted into system (10), which can be
written as

Y T(anI + an−1Pαn−αn−1 + · · · + a1Pαn−α1 )ϒ(t)

= UT(bmPαn−βm + bm−1Pαn−βm−1 + · · ·

+ b1Pαn−β1 )ϒ(t). (13)

Let

H = anI + an−1Pαn−αn−1 + · · · + a1Pαn−α1 ,

E = bmPαn−βm + bm−1Pαn−βm−1 + · · · + b1Pαn−β1 .

Eliminating the ϒ(t) in (13), one can get

Y T
= UTEH−1.
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Accordingly, the output y(t) can be written as

y(t) = UTEH−1ϒ(t). (14)

Remark 1: Equation (14) is the HBPBPFs operational
matrix representation of FOS (9). It is an algebraic rep-
resentation. An advantage of this representation is that it
eliminates the need for fractional integration of input and
output signals. Instead, it only involves algebraic computa-
tion, which means much less computational complexity. Fur-
thermore, the matrices H−1,E contain the system parameters
ai, bj and the fractional orders αi, βj, which makes it possible
to identify both coefficients and orders.

Let θ̂ = [â1, · · · , ân, b̂1, · · · , b̂m; α̂1, · · · , α̂n, β̂1, · · · ,
β̂m] be the estimation of the true parameters θ∗ =

[a1, · · · , an, b1, · · · , bm;α1, · · · , αn, β1, · · · , βm]. For a
specific estimation of system parameters, the corresponding
output is given by

ŷ(t) = UTÊĤ−1ϒ(t).

If θ̂ is as close as θ∗, then ŷ(t) will also be as close as y(t).
More specifically, if θ̂ → θ∗, then ŷ(t) → y(t). Observing
this, one can get the optimal estimation θ̂∗ by minimizing
the mean square error between the true output y(t) and the
estimated output ŷ(t), i.e.,

θ̂∗ = argmin
1
L

L∑
k=1

[y(kh)− ŷ(kh)]2, (15)

where h is the sampling interval, and L is the number of
the data. The optimization problem (15) can be solved using
a well-developed optimization tool, for example, the inter-
point method. For the sake of simplification, the fmincon
function in MATLAB optimization toolbox is adopted. The
principle of parameter identification of the fractional system
using the proposed method is shown in Fig. 1.

FIGURE 1. Step responses for Example 1 without noise.

IV. ERROR BOUNDS
In this section, we obtain the error bounds of best approxima-
tion for the HBPBPFs. The following theorem is established
in terms of a Sobolev norm. Assuming that y(k)(t) is continu-
ous and bounded on [0,T ], one has

∃L ′ > 0, ∀t ∈ [0,T ],
∣∣∣y(k)(t)∣∣∣ 6 L ′,

where k is a nonnegative integer.

Definition 6: [26] The Sobolev norm is defined on the
interval (a, b) for µ > 0 by

‖ f ‖Hµ(a,b) =

(
µ∑
k=0

∫ b

a
|f (k)(x)|

2
dx

) 1
2

=

(
µ∑
k=0

‖ f (k)(x) ‖2L2(a,b)

) 1
2

,

where f (k)(x) denotes the kth derivative of f (x).
The symbol |f |Hµ;M (0,T ), which was introduced in [26], is

expanded by

|f |Hµ;M (0,T ) =

 µ∑
k=min(µ,M+1)

‖f (k)‖2L2(0,T )

 1
2

.

Lemma 1: [26] Assuming that f ∈ Hµ(0, 1), if PM f =
M∑
m=0

cmβm is the best approximation of f , then

‖f − PM f ‖L2(0,1) 6 cM−µ|f |Hµ;M (0,1),

where c depends on µ, and µ > 0.
Theorem 1: Suppose that yn : ( n−1N T , nN T ) → R (n =

1, 2, . . . ,N ) is a function in Hµ( n−1N T , nN T ). For t ∈ (0,T ),
consider the function Fnyn : (0,T ) → R such that
(Fnyn)(t) = yn( 1N (t + (n − 1)T )), then for 0 6 l 6 µ, one
has ∥∥∥(Fnyn)(l)∥∥∥

L2(0,T )
= N 1−2l

∥∥∥y(l)n ∥∥∥2L2( n−1N T , nN T )
.

Proof: For 0 6 l 6 µ, one has∥∥∥(Fnyn)(l)∥∥∥2
L2(0,T )

=

∫ T

0

∣∣∣(Fnyn)(l)(t)∣∣∣2 dt
=

∫ T

0

∣∣∣∣y(l)n (
1
N
(t + (n− 1)T ))

∣∣∣∣2 dt
u =

1
N
(t + (n− 1)T )

∫ n
N T

n−1
N T

N−2l
∣∣∣y(l)n (u)

∣∣∣2 Ndu

= N 1−2l
∥∥∥y(l)n (u)

∥∥∥2
L2( n−1N T , nN T )

.

�
Theorem 2: Assuming that function y(t) ∈ Hµ(0,T ) is

expanded onto HBPBPFs as y(t) = Y Tϒ(t), and YTϒ(t) is
the best approximation of y(t), then the error is bounded as
follows: ∥∥∥y(t)− Y Tϒ(t)

∥∥∥
L2(0,T )

6
cL ′
√
T

(MN )µ
,

where N is the number of BPFs, M is the order of Bernoulli
polynomials, and µ > 0, M > µ− 1.

Proof: For n = 1, 2, . . . ,N , we consider the function
yn : ( n−1N T , nN T ) → R such that yn(t) = y(t) for all
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t ∈ ( n−1N T , nN T ). For simplicity, we denote that PMyn =
M∑
m=0

µnmγnm(t). By using Theorem 1, one has

∥∥∥y(t)− Y Tϒ(t)
∥∥∥2
L2(0,T )

=

N∑
n=1

∥∥∥∥∥yn −
M∑
m=0

µnmγnm(t)

∥∥∥∥∥
2

L2( n−1N T , nN T )

= N−1
N∑
n=1

‖Fnyn − PM (Fnyn)‖2L2(0,T )

6 c2N−1M−2µ
µ∑

k=min(µ,M+1)

N∑
n=1

∥∥∥(Fnyn)(k)∥∥∥2
L2(0,T )

= c2M−2µ
µ∑

k=min(µ,M+1)

N∑
n=1

N−2k
∥∥∥y(k)n ∥∥∥2L2( n−1N T , nN T )

= c2M−2µ
µ∑

k=min(µ,M+1)

N−2k
∥∥∥y(k)∥∥∥2

L2(0,T )

= c2M−2µN−2µ
∥∥∥y(µ)∥∥∥2

L2(0,T )

6 c2M−2µN−2µL ′2T .

Therefore, ∥∥∥y(t)− Y Tϒ(t)
∥∥∥
L2(0,T )

6
cL ′
√
T

(MN )µ
. (16)

�
Theorem 3: Suppose that function y(t) ∈ Hµ(0,T ) is

expanded onto BPFs as y(t) = KT8(t). Then the error is
bounded as follows:∥∥∥y(t)− KT8(t)

∥∥∥
L2(0,T )

6
cL ′
√
T

Nµ
,

where µ > 0, and N > µ− 1.
Proof: Suppose that the function y(t) is expanded onto

BPFs as

y(t) =
N∑
i=1

k ′iφi(t) = KT8(t) = PN y(t).

Then, from Lemma 1, one has

‖y(t)− PN y(t)‖2L2(0,T )

6 c2N−2µ

 µ∑
k=min{µ,N+1}

‖y(k)‖2L2(0,T )


6 c2N−2µ‖y(µ)‖2L2(0,T )
6 c2N−2µL ′2T .

Therefore,

‖y(t)− PN y(t)‖L2(0,T ) 6
cL ′
√
T

Nµ
. (17)

�

Theorem 4: Suppose y(t) ∈ Hµ(0,T ). Then

‖Iαy(t)− Iα(Y Tϒ(t))‖L2(0,T ) 6
1

0(α)
cL ′
√
T

(MN )µ

where µ > 0 and α > 1.
Proof:

‖Iαy(t)− Iα(Y Tϒ(t))‖L2(0,T )

6

∥∥∥∥ 1
0(α)

∫ t

0
(t − τ )α−1(y(τ )− Y Tϒ(τ ))dτ

∥∥∥∥
L2(0,T )

6

∥∥∥∥ 1
0(α)

∫ T

0
(T − τ )α−1(y(τ )− Y Tϒ(τ ))dτ

∥∥∥∥
L2(0,T )

6
1

0(α)

∫ T

0

∥∥∥y(τ )− Y Tϒ(τ )
∥∥∥
L2(0,T )

dτ

6
1

0(α)
cM−µN−µ

∥∥∥y(µ)∥∥∥
L2(0,T )

=
1

0(α)
cL ′T
(MN )µ

.

�
Theorem 5: Suppose y(t) ∈ Hµ(0,T ). Then

‖Iαy(t)− Iα(KT8(t))‖L2(0,T ) 6
1

0(α)
cL ′
√
T

Nµ

where µ > 0 and α > 1.
Proof:

‖Iαy(t)− Iα(KT8(t))‖L2(0,T )

6

∥∥∥∥ 1
0(α)

∫ t

0
(t − τ )α−1(y(τ )− KT8(τ ))dτ

∥∥∥∥
L2(0,T )

6

∥∥∥∥ 1
0(α)

∫ T

0
(T − τ )α−1(y(τ )− KT8(τ ))dτ

∥∥∥∥
L2(0,T )

6
1

0(α)

∫ T

0

∥∥∥y(τ )− KT8(τ )
∥∥∥
L2(0,T )

dτ

6
1

0(α)
cN−µ

∥∥∥y(µ)∥∥∥
L2(0,T )

=
1

0(α)
cL ′T
Nµ

.

�
Remark 2: From Theorem 2 and Theorem 4, we can see

that
∥∥y(t)− Y Tϒ(t)

∥∥→ 0 and ‖Iαy(t)− Iα(Y Tϒ(t))‖ → 0
when NM →∞. The larger the value of NM, the more accu-
rate the approximation for Y Tϒ(t) to y(t) and Iα(Y Tϒ(t)) to
Iαy(t). Accordingly, the identified output ŷ(t) is closer to the
real output y∗(t).
Remark 3: From Theorem 3 and Theorem 5, we can see

that the error of BPFs depends on N. Because (NM )µ is
larger thanNµ, the approximation error caused byHBPBPFs
is smaller than that by BPFs when the number of BPFs is
the same. Accordingly, the identification results obtained by
HBPBPFs are more accurate than those by BPFs.
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V. EXPERIMENT RESULTS
In this section, we use the derived HBPBPFs operational
matrix of the fractional order integration to identify FOSs in
order to demonstrate the better effectiveness and accuracy of
the proposed method than the BPFs method. We also provide
two types of error criteria to represent the good performance.
One is the relative error ε1 and the other is the mean square
error ε2. They are defined as

ε1 =
‖ θ̂ − θ∗ ‖

‖ θ∗ ‖
,

ε2 =
1
L

L∑
k=1

[y(kh)− ŷ(kh)]2,

where y(t) is the output of the true system, ŷ(t) is the output
of the identified system, θ∗ is the vector of true parameters,
and θ̂ is the vector of identified parameters.

A. EXAMPLE 1
Consider an FOS as follows:

a1Dα1y(t)+ a2Dα2y(t) = b1Dβ1u(t). (18)

The parameter vector of system (18) is θ∗ = [a1, a2, b1;α1,
α2, β1], where a1 = 1, a2 = 1, b1 = 1, α1 = 0, α2 = 1.7,
and β1 = 0. All these parameters are supposed to be unknown
and need to be identified.

First, the case that the system output is not corrupted
by noise is tested. A unit step signal as the input signal is
selected to excite the system, and then the output signal is
recorded. In the experiment, the number of elementary BPFs
N is set to 40 and 100, respectively, the order of Bernoulli
polynomialsM = 1, T is set to 20, and the sampling interval
is h = 0.01s. In the optimization process, the optimization
initial condition is [1 1 · · · 1], where the dimension of
optimization initial condition vector is the same as the number
of identified parameters. Table 1 lists the identification results
obtained using our proposed method and the BPFs method.
Obviously, with the increase in the N value, our proposed
method generates decreased relative error and mean square
error, and when the N value stays the same, offers more
accurate identification results than the BPFs method. A more
straightforward illustration of this finding is given by Fig. 1
and Fig. 2, showing the step responses and the Bode diagrams
of the true system and those of the identified systems. It can
be seen that the identified output of our proposed method ŷ(t)
is closer to the real output y(t) than that of the BPFs method.
Second, the case that the system output is corrupted by

noise is tested. Two different white noises, one with an SNR
of 5 and the other with an SNR of 10, are considered. The
value ofN is set to 40, andM = 1. AMonte Carlo simulation
is completed by executing 50 identifications independently.
The mean value of the 50 identification results is regarded
as the final identification result, as listed in Table 2. It can
be seen that the identification results are satisfactory even
though the output is corrupted by noise. Furthermore, our
proposed method offers more accurate results than the BPFs

TABLE 1. Identification results for Example 1 without noise.

FIGURE 2. Bode diagrams for Example 1 without noise.

TABLE 2. Identification results for Example 1 with noise.

FIGURE 3. Step responses for Example 1 with SNR = 5dB.

method. Again, a more straightforward illustration of this
finding is given by Fig. 3 and Fig. 4, showing the step
responses and Bode diagrams of the true system and those
of the identified systems with SNR = 5dB. We can see that
the identified output of our proposed method is closer to the
real output than that of the BPFs method.
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FIGURE 4. Bode diagrams for Example 1 with SNR = 5dB.

FIGURE 5. Impedance spectra of the lithium-ion battery [3].

B. EXAMPLE 2: MODELING OF LITHIUM-ION BATTERIES
As a new secondary clean and renewable energy, lithium-
ion batteries have been used widely in electric vehicles due
to their high specific energy, long service life, and low self-
discharge rate [3]. The state of charge (SOC) indicates how
much energy is remaining with a battery. The accuracy of
SOC estimation is a key problem in battery management
systems (BMSs). Therefore, proper estimation of battery
power can effectively predict and control the driving distance
of electric vehicles and helps to extend the service life of
batteries. Accurate estimation of SOC is the first consider-
ation to make when developing power batteries. However,
SOC cannot be measured directly, but indirectly by measured
variables such as current and terminal voltage. Here, we build
a fractional order model between current and terminal voltage
so that our proposed method can be used to estimate the SOC
of lithium-ion batteries.

Fig. 5 shows a common lithium-ion electrochemical
impedance spectrogram [3]. From this spectrogram, a frac-
tional order SOC model can be easily obtained, which can be
expressed as [3]

Ud (s)− UOCV (s)
I (s)

=
R1

1+ R1C1sα
+

R2
1+ R2C2sβ

+
1

Wsγ
+ R0.

According to the electrochemical principle and Fig. 5, we
propose a fractional order model for lithium-ion batteries
based on Randles circuit [27], where the fractional differ-
ential orders are within (0, 1). Fig.6 shows the fractional
equivalent impedance circuit of Randles circuit. The elec-
tronic component CPE in Fig.6 represents a fractional order
impedance component such as the constant phase element.

FIGURE 6. Schematic of fractional equivalent circuit model.

FIGURE 7. The output of the true system, HBPBPFs identified system and
BPFs identified system for Example 2.

Based on what we know from the electrochemical principle,
the impedance of CPE can be expressed in the following
transfer function equation:

ZCPE (s) =
1

CsαCPE
,

whereC is the parameter of model element, αCPE is the order,
CPE represents the ideal capacitor if αCPE = 1 and the
resistor if αCPE = 0. Then, the Warburg element’s transfer
function is given as

ZW (s) =
1

WDsαD
,

where ZW is the impedance of theWarburg element,WD is the
coefficient of the element, and αD is the order. The transfer
function of the fractional impedance model of lithium-ion
batteries can be expressed as

Ud (s)− UOCV (s)
I (s)

(19)

=
R1WDsαD + 1

WDsαD + R1CWDsαD+αCPE + CsαCPE
+ R0, (20)

where R0 is the pure resistance, and R1 is the charge transfer
resistance. LettingU (s) = I (s) and Y (s) = Ud (s)−UOCV (s),
equation (19) can be written as a fractional differential equa-
tion:

WDDαDy(t)+ CDαCPE y(t)+ R1CWDDαD+αCPE y(t)

= u(t)+ (R0 + R1)WDDαDu(t)

+R0CDαCPE u(t)+ R0R1CWDDαD+αCPE u(t), (21)

where the parameter to be estimated is as follows:

θ = [R0 R1 C WD αCPE αD].
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TABLE 3. Identification results of Example 2.

The proposed method is used to identify model (21). The
number of elementary BPFs to be used N is set to 50, the
order of Bernoulli polynomialsM is set to 1, T is equal to 10,
and h = 0.05s. In the optimization process, the optimization
initial condition is [1 1 · · · 1], where the dimension of the
optimization initial condition vector is the same as the number
of identified parameters. The sinusoidal input signal u(t) =
sin(t) is applied to excite the system, and the parameter θ is
estimated using the proposed method and the BPFs method.
Table 3 shows the identification results. We can see that the
mean square error generated by the HBPBPFs method is
smaller than that by the BPFs method. This suggests that
the system (21) modeled by the HBPBPFs method is more
accurate than that by the BPFs method. Fig. 7 gives the
sinusoidal response of the true system and the HBPBPFs
identified system.

VI. CONCLUSION
In this paper, we propose a method based on the fractional
integral operational matrix of HBPBPFs to investigate the
FOS identification problem, in which the orders and param-
eters are unknown. This HBPBPFs-based method is different
from existing BPFs methods in that it comprises of polyno-
mial functions that are piecewise smooth on each subinterval.
This uniqueness enables the proposed method to approximate
signals more accurately than BPFs-based methods if the same
number of elemental BPFs are used. The proposed method
utilizes the fractional integral operationalmatrix ofHBPBPFs
to convert an FOS to an algebraic system, which simplifies
the computation of fractional derivatives of input and output
signals and allows for estimating both the coefficients and
orders of the FOS. Therefore, we conclude that the proposed
method is more accurate than BPFs-based methods. This
conclusion is experimentally verified by several simulation
examples. However, the fractional integral operational matrix
of HBPBPFs involves the complex operation of matrix inver-
sion, the proposed method’s computation time is too high, so
the proposed method cannot be employed in online system
identification studies. For future research works, we will use
the proposed method to identify FOSs with time delays.
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