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ABSTRACT Machine learning techniques heavily rely on available training data in a data set. Certain
features in the data can interfere with the learning process, so it is required to remove irrelevant and
redundant features to build a robust training model. As such, several feature selection techniques are usually
applied in a pre-processing phase to obtain the most appropriate set of features and improve the overall
learning process. In this paper, a new feature selection approach is proposed based on a modified Teaching-
Learning-based Optimization (TLBO) combined with four new binarization methods: the Elitist, the Elitist
Roulette, the Elitist Tournament, and the Rank-based method. The influence of these binarization methods
is studied and compared to other state-of-the-art techniques. The experimental results such as Shapiro-Wilk
normality and Wilcoxon ranksum test show that both transfer functions and binarization approaches have a
significant influence on the effectiveness of the binary TLBO. The experiments show that choosing a fitting
transfer function along with a suitable binarization method has a substantial impact on the exploratory and
exploitative potentials of the feature selection technique.

INDEX TERMS Teaching-learning, feature selection, metaheuristic, transfer function, binarization.

I. INTRODUCTION
The performance of Machine Learning (ML) techniques
mainly depends on the nature of datasets, which often contain
irrelevant or redundant features. such features could mislead
or bias the learning process. Moreover, collecting data from
different sources makes it possible to have redundant ele-
ments in the same dataset. To build a robust training model,
therefore, the irrelevant and unnecessary features should be
removed [1]. Feature Selection (FS), as a pre-processing step,
has been widely used to search for the most informative
features and increase the learning performance of a learning
algorithm (e.g., classification). The importance of FS as a
pre-processing step comes from the fact that there is a large
number of features in a dataset; i.e., a large feature space,
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which requires a higher computational cost for the learning
process.

FS methods can be broadly categorized into two classes:
searching for the best feature combinations and evaluating
those combinations. In the search stage, sequential forward,
sequential backward, exhaustive, random, and heuristic selec-
tion are all examples of search strategies that can be used to
search the feature space for finding the optimal or near opti-
mal feature subsets [2].Metaheuristic methods such as swarm
intelligence algorithms (e.g., Particle Swarm Optimization
(PSO) [3], Ant Colony Optimization (ACO) [4], Whale Opti-
mization Algorithm [5], Harris hawks optimizer (HHO) [6],
and Grey Wolf Optimizer (GWO) [7]), and Evolutionary
Algorithms (e.g., Genetic Algorithm (GA) [8], Differential
Evolution (DE) [9]) have been utilized by Chen et al. [10],
Aljarah et al. [11], Xu et al. [12], Heidari et al. [13] as
efficient search strategies in many optimization problems and
especially for FS tasks.
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From the evaluation perspective, FS methods are divided
into three main categories; filters, wrappers, and embedded
methods. Filter approaches (e.g., Chi-Square, Information
Gain, Gain Ratio, and ReliefF) depend on finding the corre-
lations between the features in evaluating the feature subset
while no external evaluator participates in the evaluation
process [14]. On the other hand, wrapper methods mainly
depend on an external learning algorithm (e.g., classification
algorithm, also known as induction algorithm) to evaluate the
feature subsets [15]. However, the feature selection method
is embedded in the learning process when considering the
integrated approaches [16].

Wrapper approaches attracted the attention of many
researchers in the literature, which is due to the involvement
of the learning algorithm in the selection process, hence the
selection of a feature is based on the resulting performance
of the learning algorithm (e.g., classification accuracy for a
specific classifier) [17]. Different classification algorithms
(e.g., K-nearest Neighbor (KNN), Decision Tree (DT), and
Artificial Neural Networks (ANN)) have been used in con-
junction with different FSmethods. Due to its simplicity, ease
of implementation, and low time complexity, KNN is one of
the most popular classification algorithms for the wrapper
approaches.

TLBO is a popular social-inspired metaheuristic algorithm
that was first introduced by Rao et al. [18]. Two phases of
the optimizer are ‘‘Learner Phase’’ and ‘‘Teacher Phase’’,
which bring superior performance for TLBO compared to
other well-regarded algorithms when applied to different
applications [19]. TLBO has been initially proposed to handle
continuous optimization problems. To tackle FS, which is
a binary optimization problem, TLBO requires adjustments
and even new operators. The two-step binarization technique
is popular in the literature utilized to transform continuous
algorithms into binary form. In this technique, the fuzzy
transfer functions are used firstly to map the continuous solu-
tions into intermediate probability values within [0,1] while a
binarization rule is applied as a second step to transform the
intermediate solution into binary [20].

This work proposes an efficient wrapper-based feature
selection approach that incorporates a modified binary TLBO
as the search algorithm. This modification is accomplished in
the algorithm at the level of the utilized binarization method
in conjunction with two types of TFs. Four new binarization
methods are introduced in our approach: the Elitist, the Elitist
Roulette, the Elitist Tournament, and the Rank-basedmethod.
The influence of such methods is tested and compared to two
other common binarizationmethods (i.e., the standard and the
complement method).

The main contributions of this paper are summarized as
follows:
• A new feature selection approach is proposed based on
a modified binary TLBO.

• Four new binarization methods are introduced with
TLBO: the Elitist, the Elitist Roulette, the Elitist Tour-
nament, and the Rank-based method.

The rest of the paper is organized as follows: after intro-
ducing the main background in Section I, the recent FS
approaches in the literature are analyzed, followed by a
description of the used algorithms in this paper in Section II.
A general overview of the TLBO algorithm is given in
Section III. Section IV describes the details of the pro-
posed approach. The results are discussed in Section V.
Finally, the conclusion and the future directions are drawn
in Section VI.

II. RELATED WORKS
There are a growing number of problems that need to
be solved by analytical methods [21]–[27]. Recently, var-
ious Swarm Intelligence (SI) algorithms have been uti-
lized in various fields as alternative approaches [28]–[31].
One of the areas is as search strategies in different wrap-
per FS methods [32]–[34]. As a primary SI algorithm,
PSO has been widely used with FS methods. A combi-
nation of PSO and a micro GA approach was proposed
by Mistry et al. [35] to perform FS. Another FS approach
that is based on PSO-GA algorithms with the adap-
tive neuro-fuzzy inference systems (ANFIS) was pro-
posed by Semero et al. [36]. Tran et al. [37] proposed first
variable-length PSO to handle the feature selection prob-
lem. In addition, Wu et al. [38] solved the FS problem
using a hybrid improved quantum-behavior PSO. Further-
more, a multi-objective PSO was used by Zhang et al. [39]
to solve the feature selection problems. Mafarja et al. [40]
and Mafarja and Sabar [41] proposed two recent approaches
that employed two variants of PSO algorithm as searching
strategies in wrapper FS methods. Also, a hybrid approach
between PSO and Shuffled Frog Leaping Algorithm (SFLA)
was proposed in [42] to improve the accuracy of fake reviews
identification. Chen et al. [43] proposed an enhanced PSO
approach with two crossover operators to tackle FS problems.
De Souza et al. [44] proposed a new wrapper approach based
in a v-shaped transfer function using one of recent meta
algorithm called Crow SearchAlgorithm (CSA), the accuracy
results of their approach were very good results. Ant Colony
Optimization (ACO) algorithm was also applied in many
FS methods. For instance, Shunmugapriya and Kanmani [45]
proposed a hybrid FS approach that combines the charac-
teristics of ACO with Artificial Bees Colony (ABC) (called
AC-ABC) to enhance the search process. In AC-ABC,
the ACO algorithm employs bees in the exploitation process,
while ABC uses the ants as food sources in the search process.
A combination of a modified binary coded ACO algorithm
with GA was proposed by Wan et al. [46] as an FS method
called MBACO. In MBACO, GA was used to generate either
the visibility information or the initial pheromone informa-
tion. Manbari et al. [47] proposed a filter FS approach that
is based on a modified version of the binary ACO algorithm
with a combination with a clustering technique.

The Salp Swarm Algorithm (SSA) is a recent meta-
heuristic algorithm that mimics the behavior of salps in
nature. Although the SSA is still new, it has been used as a
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search strategy in many FS approaches. Aljarah et al. [48]
and Faris et al. [49] proposed two SSA-based FS methods.
The experimental results in both works proved the abil-
ity of the SSA to outperform other optimizers. Moreover,
another SSA-based approach was proposed in [50]. In this
approach, a set of chaotic maps is used to control the balance
between exploration and exploitation in the SSA algorithm.
Sayed et al. [51] proposed a chaotic based SSA for global
optimization and FS.

In addition to the above-mentioned works, in which SI
algorithms have been used as search strategies in FSmethods,
another algorithm widely used in this area is called Sine
Cosine Algorithm (SCA) [52], which works based on sine
and cosine functions in moving the positions of the solutions
in the search space. Sindhu et al. [53] proposed a novel FS
method that is based on an Improved SCA variant called
(ICSA). In ICSA, an elitism strategy was used to select
the global solution, and a new updating mechanism for the
new solution was proposed. As other global optimization
algorithms, SCA suffers from the stagnation in local optima.
To overcome this drawback, Elaziz et al. [54] proposed a
hybrid model between the SCA and the DE’s operators that
served as a local search method. This hybrid model helps the
SCA algorithm to skip local optima.

Recently, a wide range of metaheuristics have been studied
and integrated into different FS approaches [55]. One of
the most interesting point about these approaches that they
tend to significantly outperform the traditional approaches
[56], [57]. For instance, Arora and Anand [58] proposed two
FS approaches based on the binary Butterfly Optimization
Algorithm (BOA), in wihch two transfer functions were used
to convert the continuous version of the BOA to binary.
In [59], another FS approach that is based on the binary
Brain Storm Optimization (BSO) was proposed. In their
work, the authors proposed eight variants of the BBSO
by employing eight different transfer functions. The same
algorithm (i.e., BSO) has been recently used in another FS
approach by Pourpanah et al. [60]. A combination of BSO
and the Fuzzy ARTMAP (FAM) model was proposed where
the BSO was used as a selection strategy to search for the
optimal feature subset from the prototype nodes that were
incrementally produced by the FAM model. Ten datasets
were used to evaluate the proposed BSO-FAM model, and
the results were promising. A filter FS approach that is based
on a binary version of the Differential Evolution (DE) as a
searching strategy, and on the entropy as an evaluator, was
proposed in [61].

In the past decades, metaheuristic algorithms were shown
to be very successful for solving various optimization prob-
lems [62]–[66]. TLBO is a recent, nature-inspired meta-
heuristic, that has been widely used in tackling different
optimization problems in many fields and different real-life
applications [67]. Despite some drawbacks highlighted by
C̆repins̆ek et al. [68], Waghmare [69], Pickard et al. [70],
Chinta et al. [71], many variants of TLBO have been

proposed to tackle the FS problem in recent years. For
instance, a multi-objective TLBO version, with differ-
ent update mechanisms was proposed in [72] to find
Pareto-optimal set of solutions for a multi-objective formu-
lation of the FS problem. Another binary TLBO version was
used with varying algorithms of classification in a wrapper
FS approach in [73]. Moreover, Sevinç and Dökeroğlu [74]
proposed a TLBO FS approach with the Extreme Learning
Machines (ELM), called TLBO-ELM. For more details about
the TLBO based methods, readers can refer to the surveys
conducted by Rao [75] and Zou et al. [67] and the book
written by Rao [76].

In the previous FS approaches, either the algorithm is
binary by itself (e.g., GA), or a conversion method such as
Transfer Function (TF) was used to convert the continuous
feature vectors into binary in the internal process of the
algorithms. In literature, there are two basic types of TFs: in
the first one, the sigmoid function that was used by [3] to
convert the PSO into a successful binary version. The second
TF was called V-shaped TF, which was used with Gravitation
Search Algorithm (GSA) by Rashedi et al. [77]. The main
idea behind using the TFs is to utilize them as a conversion
method based on a defined probability for updating each ele-
ment in the continuous representation of the solution into 1 or
0 according to this probability. Following this step, a bina-
rization rule is applied to map the value of TF into a binary
one. The most commonly used techniques for this step are the
standard and complement methods. In this work, we extend
this research direction by proposing four new binarization
methods and explore their effectiveness in combination with
both V-shape and S-shape TFs.

III. TEACHING LEARNING-BASED OPTIMIZATION (TLBO)
TLBO is a successful human-inspired optimizer classi-
fied under the umbrella of metaheuristic methods [78].
Initially, Rao et al. [19] tried to mimic the communications
and interactions between teachers and students in a class-
room or any other location for developing a metaheuristic
approach. In population-based TLBO, the population of stu-
dents, which is also called learners, plays the role of search
agents, while the teacher leads the search agents. The fitness
value of each agent shows the level of that learner’ results
during the learning (optimization) process. The subjects that
the teacher (a learner with the highest score) teaches are
treated as the decision variables of the optimization problem.
In TLBO, the exploratory and exploitative phases are done
during two core processes: Teacher phase and Learner phase.
In the teacher phase, the learning of the agents occurs based
on the knowledge of teacher (leader) himself, while, the sec-
ond phase is devoted to the interaction between the learners
(following agents).

A. TEACHER PHASE
In this phase, the purpose is to increase the average grades
of the learners in the classroom concerning the personal
knowledge of the teacher. Hence, the best learner is selected
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as the teacher, which is the position of a learner agent with
the lowest fitness value in a minimization scenario. Also,
the average position of all agents is obtained. Then, the posi-
tions of all agents are updated using Eq. (1):

DM j,i = r ×
(
Xj,kbest,i − Tf ×Mj,i

)
(1)

Xnewj,k,i = Xoldj,k,i + DM j,i (2)

where i is iteration, j is the subject (dimension) (j =
1, . . . ,m), k is the learner (search agent) (k = 1, . . . , n),
r is a random number inside (0,1), Xj,kbest,i is the score of
the teacher in subject j, Mj,i denotes the average score of all
learners in subject j, DM j,i denotes the difference between
the teacher score and the updated average score of the learner
agents in each subject, Xj,k,i denotes the score of learner k
in subject j, Xnewj,k,i is the updated position of the old position
vector Xoldj,k,i, and Tf denotes the teaching factor, which is
obtained as rule in Eq. (3):

Tf = round[1+ r ′] (3)

where r ′ is a random number inside (0, 1). Note that the value
of Tf is 1 or 2 based on the obtained random value. Where
Tf is set to 1 when r ′ < 0.5 and 2 when r ′ ≥ 0.5. The Tf
parameter controls the neighborhood size in the search space,
which affects the exploitation and exploration abilities of the
TLBO algorithm.

B. LEARNER PHASE
In the second phase, the way the learners interact with each
other’s is considered. The fact is that a learner can also acquire
the information from other superior learners in the class. If we
have two distinct learners, p and q, which is denoted byXp and
Xq, we can choose one of them randomly. Hence, the updated
status of the learner Xp can be obtained using Eq. (4):

Xnewj,p,i =

Xoldj,p,i + r
′′

(
Xoldj,p,i − X

old
j,q,i

)
f (Xp) < f (Xq)

Xoldj,p,i − r
′′

(
Xoldj,q,i − X

old
j,p,i

)
f (Xq) < f (Xp)

(4)

where r ′′ is a random number inside (0,1), and f (Xp) and
f (Xq) are the fitness values of Xp and Xq agents, respectively.
Based on this rule, only the better quality agents are saved to
be improved in the next iterations.

The pseudo-code of continuous TLBO is shown in
Algorithm 1.

IV. THE PROPOSED APPROACH
The majority of metaheuristic algorithms have been proposed
to optimize continuous optimization problems. To tackle
binary optimization problems (e.g., FS), these algorithms
require adjustments and even new operators. In the litera-
ture, three main groups of binarization techniques are used
to convert continuous algorithms into the binary form. The
first group is called the two-steps binarization techniques,
in which the operators of the algorithms remain unchanged,
and two steps take place to convert the continuous solution
into the binary one after the original continuous iteration.

Algorithm 1 Pseudo-Code of TLBO
Initialize number of agents N , dimensions D, and number
of iterations (L)
Generate the candidate solutions (learners) Xi(i =

1, 2, . . . ,N )
Obtain the fitness value of all N agents
Set XT as the best agent
Set l = 1
while (l ≤ L) do F Teacher phase

Set the best learner as XTeacher
Obtain the mean value across the D design variables
for (each learner (Xnewj,k,i)) do

Obtain Tf using Eq. (3)
Update the positions using Eqs. (1) and (2)

end for
Evaluate the new learners
Save the new agents if they are superior to the old one
for (each learner (Xnewj,k,i)) do F Learner phase

Randomly choose another learner
Update the current agents using Eq. (4)

end for
Assess the new learners
Save the new agents if they are superior to the old one
Update XT if there is a superior agent
l = l + 1

end while
Return XT

In the second group called the continuous-binary operator
transformation, however, the operators of the algorithm are
reformulated, and the algebra of the search space is rede-
fined [20]. Moreover, in the third category, a novel binariza-
tion method, that is based on a clustering technique (called
K-means Transition Algorithm (KMTA)), was recently pro-
posed by García et al. [79] as a general binarization method.

Transfer Functions (TF) and binarization are two-steps
techniques that have been widely used to convert the continu-
ous search space to binary pair in many algorithms (e.g., PSO
[80], GSA [77]). In this technique, the TF is considered as the
first step, which aims to produce an intermediate solution,
with values in the interval [0, 1], that defines the probability
of converting the corresponding dimension in the original
solution into zero or one. The second step in these techniques
is the binarization, where a binarization rule is applied to map
the intermediate solution into a binary solution.

Kennedy and Eberhart [80] introduced the use of the sig-
moid function (as in Eq. 5) to transform the continuous PSO
into a binary version. In 2010, Rashedi et al. [77] introduced
the use of the tanh function (as in Eq. (6)) to binarize the
GSA. These two TFs belong to two different families that
have distinguished based on their shape. These families were
called the S-shaped (as in Fig. 1a) and the V-shaped (as
in Fig. 1b).

T (x ij (t)) =
1

1+ e−x
i
j (t)

(5)
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T (x ij (t)) = | tanh(x
i
j (t))| (6)

In these works, two binarization methods were used; the
standard and complement methods. In the standard tech-
niques (see Eq. (7)), which was first used with the S-shaped
TF as in Kennedy and Eberhart [80], a random number is
generated, if its value is less than the probability value of
the ith element of the intermediate solution at the k th iter-
ation, then, ith element of the binary solution is set to 1,
otherwise, it is set to zero. In the complement method
(see Eq. (8)), which was used with the V-shaped TF as in
Rashedi et al. [77], the values (0 or 1) of the binary solution
are set based on the benefits of the current solution, that is to
say, based on the probability value (T (vki (t))), the i

th element
is either kept the same or flipped.

X ki (t + 1) =

{
1 r < T (xki (t))
0 Otherwise

(7)

X ki (t + 1) =

{
v X ki (t) r < T (xki (t))
X ki (t) Otherwise

(8)

where r is a random number in [0, 1] interval.
In both TFs groups (i.e., S-shaped and V-shaped), the prob-

ability of updating the solution’s element to 0 or 1 mainly
depends on the step vector, which is considered as the only
input to the TF. A higher probability value indicates that this
solution is far from the best solution so far and requires an
abrupt change (exploration). In contrast, a lower value indi-
cates that the individual is very close to the best solution and
requires smaller steps (exploitation) [81]. Therefore, the TF
plays a significant role in balancing between exploration
and exploitation for binary algorithms since different TFs
have different behaviors when calculating the probability of
updating the solution’s element.

Mirjalili and Lewis [82] considered the same assumption of
Kennedy and Eberhart [80] and Rashedi et al. [77], and used
the standard Binarization Methods (BM) with four S-shaped
functions, and the complement BM with four V-shaped func-
tions. The standardmethod sets the solution’s elements to 0 or
1 based on the calculated probability from the TF regardless
of the current value in the solution. Which means that the
solution may remain in its current position while we need to
move it to achieve the exploration, and its position may be
changed while we need to keep it to achieve the exploitation.
However, the complement method considers the current value
of the position to set the new value. For the large probability
values, the solution is flipped to move it into a different
region, while the small probability values keep the position
value as is.

The main difference between the standard and the comple-
ment methods is the binarization mechanism, and revealed
different results when used with different TFs. After a careful
literature review, we found that most of the previous studies
considered different TFs, while a few binarization methods
were used. However, both TFs and binarization methods have
a significant impact on the effectiveness of the optimization

algorithm. Our experiments show that both using a suitable
binarization mechanism with a TF has a substantial impact
on the exploitative and exploratory potentials of the utilized
binary algorithm. This motivated our attempts to propose
different binarization methods.

As mentioned above, in both standard and complement
methods, the updating mechanisms do not consider the best
solution so far. Because the intermediate solution is a muta-
tion probability of changing the solution and is based on the
behavior of the evolutionary algorithms, the best solution
so far (called elitist) may be used to re-position the current
solution.

In this paper, four different binarization methods that con-
sider other solution than the current one in the re-positioning
process are proposed. In the proposed approaches, the guide
solution is selected based on different selection criteria;
best selection, where the solution with the best fitness
value (called elitist) is selected, Roulette Wheel Selection
(RWS) [83], Tournament Selection (TS) [84] and finally
based on the solution’s rank compared to other solutions in
the population. Eq. (9) represents the general formula for
using a selected solution to update the position of the current
one. The mutation probability is calculated using the TF
based on the selected solution. If a random number is less
than that value, the dimension of the new solution will be
the complement of the corresponding one of the selected
solution. Otherwise, it will be set to the actual value of the
selected solution.

X knew(t + 1) =

{
v XKselected (t) r < T (xki (t + 1))
XKselected (t) Otherwise

(9)

where v represents the complement, xKselected is the corre-
sponding value of the selected solution.

The following remarks represent the brief description of
the four BMs proposed in this paper:

1) BTLBO_E: Elitist method, where the best solution so
far, according to the fitness value, is selected. In this
mechanism, the position of the solution being pro-
cessed is changed towards or away from the best solu-
tion. As the FS is a minimization problem, the solution
with the minimum fitness value is selected. According
to Eq. (9), if r is lower than T (vki (t + 1), then, the solu-
tion is moved far from the best solution. Otherwise,
the move will be towards that solution.

2) BTLBO_ERW: The name of this method is given based
on the concept of Elitist Roulette. In this method,
the selection process is based on the RWS mechanism.
A chance to the other solutions in the population is
given by employing the RWS to avoid moving all
agents towards the best solution, especially in the last
stages of the search process. Based on this fact, it gives
a probability (p) for each solution to be selected accord-
ing to its fitness value, where p is calculated according
to Eq. (10). Then, the selected solution is considered as
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FIGURE 1. (a) S-shaped and (b) V-shaped TFs.

FIGURE 2. Tournament Selection mechanism.

a guiding solution in Eq. (9).

pi =
fi∑n
j=1 fj

(10)

where fi is the fitness of the ith solution, and n represents
the population size.

3) BTLBO_ET: The name of this method is given based
on the concept of Elitist Tournament. In this method,
the TS mechanism is utilized to select a guiding solu-
tion instead of selecting the best one. In this mecha-
nism, a set (with size τ ) of solutions, which is called
tournament, is randomly selected, then, the best solu-
tion in the tournament is picked up as the guiding
solution. Then, the selected solution is considered
as a guiding solution in Eq. (9). Figure 2 illustrates
the process of selecting a solution following the TS
mechanism.

4) BTLBO_ER Rank-based method: Each solution in the
population has a probability to be selected based on its
rank in terms of the fitness value. In this method, each
solution is given a rank from 1 to n based on the fitness
value, where the best solution is given the rank n (recall
that n is the population size), while the worst solution
is given a rank of 1. Then, the probability of selecting
each solution is calculated based on Eq. (11).

pi =
ranki

n× (n− 1)
(11)

where ranki represents the rank of the ith solution.

The advantages of this method are that each solution is
given a chance to be selected since the ranks of the indi-
viduals are scaled. If the fitness of the fittest solution
is much higher than that of others, it would be chosen
probably in most of the iterations. This mechanism
can help the proposed variant to avoid the premature
convergence event.

To make fair comparisons, the two basic binarization
methods (standard and complement) will be investigated as
follows:

1) BTLBO_S: Standard method as defined in Eq. (7).
2) BTLBO_C: Complement Method as defined in Eq. (8).

A. BTLBO FOR FS
One of the significant issues that should be considered when
designing an optimization algorithm is the solution represen-
tation. As the FS is a binary optimization problem, a binary
vector (with a length that is equal to the number of features
in the original dataset) is used to represent a solution to a FS
problemwhere a zero indicates that the corresponding feature
is not selected and a one means that the relevant element
is selected. In this work, two TFs are used to transform the
TLBO algorithm into binary based on six different binariza-
tion methods.

Eq. (12) represents the fitness function adopted in the
proposed feature selection approaches. As it can be seen
the equation, the fitness function incorporates two important
objectives which are the miss-classification rate of the under-
lying classifier (i.e., KNN classifier [85], and the reduction
rate in the number of selected features by the optimizer.

↓ Fitness = αγR(D)+ β
|R|
|C|

(12)

where γR(D) is the classification error rate resulted by the
underlying induction algorithm, |R| is the number of selected
features by the optimizer, and |C| is the total number of
features in the original dataset, and α and β are weighting
constants. The latter two are used to quantify the impor-
tance of the main objectives, which are the accuracy and the
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reduction rate. The value of α is set in [0,1], while
β = (1− α) [86].

V. EXPERIMENTAL RESULTS AND SIMULATIONS
A. EXPERIMENTAL SETUP
Eighteen well-regarded datasets obtained from UCI repos-
itory [87] are employed here to study the effectiveness of
the proposed binary TLBO variants. These problems were
chosen carefully with various details and properties (e.g.,
number of features, instances, and classes) to cover varied
types of real-life tasks. Table 1 describes a brief explanation
for each employed dataset.

TABLE 1. List of datasets.

The same hardware and operating system configuration
have been used to have a fair study. Details have been reported
in Table 2.

TABLE 2. The system properties.

All the optimizers are assessed using the same common
configurations and settings (α = 0.99, β = 0.01, Number of
runs = 30, and number of agents = 40, number of fitness
function calls), as reported in Table 3. Please note that these
settings were obtained from well-known FS approaches in
the literature [88], [89] Since the TLBO algorithm calls the
fitness function two times in each iteration, we executed it
for the half number of iterations of the other algorithms. For
the specific configurations mentioned in Table 3, we used
the recommended values by other researchers in different
papers, for instance, Rashedi et al. [77] recommended the
value 10 for the parameterG0 in BGSA,while the a parameter
was recommend by Mirjalili et al. [7] to be from 2 to 0. The
parameter values for the BBA algorithm were obtained from
Mirjalili et al. [90]. The same case is with the parameters of

TABLE 3. Experimental setup.

the WOA algorithm which ordained form [5]. Because the
experiments in this paper are devoted to meta-heuristic meth-
ods which incorporate randomness, we present the average
results using 30 independent runs on each dataset. For for the
value ofK in KNN, previous works recommended thatK = 5
so it was set to this value int this work for fair comparison as
well [77], [86], [89], [91].

Please note that bold values in all reported tables show
the best-obtained results. To identify if there is a significant
difference between the solutions of different variants and
competitors, we performed aWilcoxon non-parametric statis-
tical test [92] with significance level of 0.05. In order to judge
the normality assumption of Wilcoxon test, we conducted
Shapiro-Wilk (SW) test as a powerful and recommended
procedure in the literature [93]. If the SW test is not applicable
(i.e the sample standard deviation is zero), we performed
Kolmogorov-Smirnov (KS) test.

B. RESULTS AND DISCUSSIONS
In this section, various extensive experiments are performed,
and the results are presented in details to find the best variant
of proposed BTLBO for solving FS datasets. First, we inves-
tigate the impact of each binarization method on the perfor-
mance of the binary TLBO with S-shaped TFs according to
different metrics. By these experiments, we can find the best
binarization technique when using S-shaped TFs.

1) DIFFERENT BINARIZATION METHODS WITH
S-SHAPED TFs
Table 4 shows the accuracy results obtained using different
binarization methods with S-shaped TFs. As per F-test results
in Table 4, it is observed that the BTLBO_ET has attained
the best results. It also provides 100% accuracy on 33.33% of
datasets. It can be seen that there is a competition between the
BTLBO_E, BTLBO_ERW, BTLBO_ET, and BTLBO_ER
variants in terms of accuracy rates, while BTLBO_S and
BTLBO_C variants show similar overall efficacy.

Table 5 compares the average number of features attained
by different binarization methods with S-shaped TFs.
According to the number of features, the BTLBO_E has
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TABLE 4. Comparison between different binarization methods with
S-shaped TFs in terms of average accuracy.

shown the best efficacy, while BTLBO_ET has attained the
next place.

Table 6 shows the average fitness values attained by dif-
ferent binarization methods with S-shaped TFs. Regarding
the fitness results, the best variant is BTLBO_E technique.
It has attained the minimum results on 44.44% of problems.
We observe that the BTLBO_ET version is placed at the sec-
ond stage.

Table 7 shows the average running time obtained by differ-
ent binarization methods with S-shaped TFs. Based on run-
ning time, the fastest variant is BTLBO_S, while BTLBO_E
and BTLBO_ERW are in the next stages.

The p-values of the normality test for accuracy results of
variants with S-shaped TF are presented in Table 8. It is
evident that most of the cases the p-value is less than 5%
and the null hypothesis is rejected. This fact shows that there
is evidence that the results of the different variants are not
normally distributed.

Table 9 shows the p-values of the Wilcoxon test for the
accuracy results of BTLBO-ET versus other techniques with
S-shaped TF. The p-values evidently show that the recorded
differences between the accuracy rates of the BTLBO-ET and
other variants with S-shaped TFs are significantlymeaningful
in most of the cases.

Figures 3 and 4 demonstrate the convergence curves for
BTLBO with different binarization approaches for S-shaped

TABLE 5. Comparison between different binarization methods with
S-shaped TFs in terms of average number of features.

TABLE 6. Comparison between different binarization methods with
S-shaped TFs in terms of average fitness.

TFs in dealing with all datasets. According to convergence
plots, firstly, it can be seen several patterns in convergence
of different methods, while for some datasets like Exactly
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TABLE 7. Comparison between different binarization methods with
S-shaped TFs in terms of average running time.

TABLE 8. P-values of the Shapiro-Wilk and Kolmogorov-Smirnov
normality tests for the classification accuracy results of methods with
S-shaped TF (p ≤ 0.05 are shown in bold face).

and M-of-n, the patterns are similar and there is a com-
petition between different variants. Secondly, some variants
show more stagnation drawbacks. If we consider all curves,
it can be seen that the BTLBO_E technique has shown
the fastest trends for majority of datasets. After BTLBO_E,
the BTLBO_ERW variant also shows the second best conver-
gence rate.

TABLE 9. P-values of the Wilcoxon test for the classification accuracy
results of BTLBO-ET versus other versions for S-shaped TF (p ≤ 0.05 are
shown in bold face, NaN: Not Applicable).

TABLE 10. Comparison between different binarization methods with
V-shaped TFs in terms of average accuracy.

As per the average number of features and fitness values,
it can be seen that the elitist method is the fittest binarization
technique in the case of S-shaped TFs. The elitist approach
also led to the best accuracy rates on nine datasets. This
observation shows that when using S-shaped TFs, BTLBO
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FIGURE 3. Convergence curves for BTLBO with different binarization methods for S-shaped TFs on Breastcancer, BreastEW, CongressEW, Exactly, Exactly2,
HeartEW, IonosphereEW, KrvskpEW, and Lymphography datasets.

with elitist method shows the best efficacy compared to other
variants with other binarization techniques.

2) DIFFERENT BINARIZATION METHODS WITH
V-SHAPED TFs
In this subsection, we study the impact of each bina-
rization method on the performance of the binary TLBO
with V-shaped TFs using different performance measures.
By these experiments, it can be recognized as the most appro-
priate binarization approach when using V-shaped TFs.

Table 10 compares the accuracy results obtained by differ-
ent binarization methods with V-shaped TFs. Based on accu-
racy rates in Table 10, the BTLBO_ER has scored first (see
F-test results), whereas BTLBO_ERW also obtained the best
results on 38.88 % of datasets. It is evident that BTLBO_ET

has attained the best results on 50% of cases. Also, it can
be seen that the BTLBO_C and BTLBO_E variants show no
superiority on each other and has obtained the same overall
place. If we consider the BTLBO_S variant, we observe that
it is the last preference based on the accuracy results.

Table 11 exposes the average number of features found
by different binarization methods with V-shaped TFs. As per
number of features in Table 11, it can be seen that the method
with lowest accuracy, BTLBO_S, is the best performing vari-
ant (superior results on 38.88%) in terms of average number
of features.

Table 12 presents the average fitness results found by dif-
ferent binarizationmethodswith V-shaped TFs. As per results
in Table 12, we observe that BTLBO_ET has attained the
minimum results on 38.88 % of cases, while BTLBO_ERW
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FIGURE 4. Convergence curves for BTLBO with different binarization methods for S-shaped TFs on M-of-n, penglungEW, SonarEW, SpectEW, Tic-tac-toe,
Vote, WaveformEW, WineEW, and Zoo datasets.

and BTLBO_ER are in the next places by finding the best
results on 27.77% of problems. Based on F-test results,
the BTLBO_ER is the ranked one approach, whereas
BTLBO_ET, BTLBO_ERW, BTLBO_C, BTLBO_E, and
BTLBO_S are in the next preferences, respectively.

Table 13 shows the average running time spent by different
binarization methods with V-shaped TFs. Based on CPU time
analysis, the fastest version with V-shaped TFs on 83.33%
of problems is still BTLBO_S, similarly to the observations
in the variants with S-shaped TFs. For most of the cases,
except the KrvskpEW, Tic-tac-toe, and WaveformEW, it is
detected that the time gaps between various variants are not
considerable.

The p-values of the normality test for accuracy results
of variants with V-shaped TF are exposed in Table 14.

We observe from Table 14 that the p-value is less than 5 % for
most of the cases. Hence, the null hypothesis is not approved.
This fact reveals that the obtained results follow a non-normal
distribution.

Table 15 reveals the p-values of the Wilcoxon test for
the accuracy results of BTLBO-ER compared to other peers
when using V-shaped TF. The p-values clearly verify that
the detected variations of the accuracy rates obtained by
the BTLBO-ER and other variants with V-shaped TFs are
statistically significant in most of the cases.

Figures 5 and 6 reveal the convergence behaviors for
BTLBO with different binarization approaches for V-shaped
TFs on all datasets. According to curves, it can be
seen that BTLBO_ET shows the fastest rates in dealing
with BreastEW, HeartEW, IonosphereEW, SpectEW, and
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TABLE 11. Comparison between different binarization methods with
V-shaped TFs in terms of average number of features.

TABLE 12. Comparison between different binarization methods with
V-shaped TFs in terms of average fitness.

penglungEW. As the next variants, the BTLBO_ERW and
BTLBO_ER also show competitive rates on 27.77% of prob-
lems. Among other variants, it can be seen that BTLBO_S

TABLE 13. Comparison between different binarization methods with
V-shaped TFs in terms of average running time.

TABLE 14. P-values of the Shapiro-Wilk and Kolmogorov-Smirnov
normality test for the classification accuracy results of V-shaped TF
approaches (p ≤ 0.05 are shown in bold face).

shows the repetitive stagnation problems on the majority of
cases.

Referring to the average accuracy rates and fitness values,
we recognize that the rank-based elitist strategy is the best
performing binarization technique in the case of V-shaped
TFs. This observation reveals that when using V-shaped TFs,
BTLBOwith rank-based elitist method demonstrates the best
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FIGURE 5. Convergence curves for BTLBO with different binarization methods for V-shaped TFs on Breastcancer, BreastEW, CongressEW, Exactly, Exactly2,
HeartEW, IonosphereEW, KrvskpEW, and Lymphography datasets.

performance compared to other peers with different binariza-
tion techniques.

After all, the results and discussed showed that both the
TF and binarization approach has a significant influence
on the effectiveness of the binary TLBO. Hence, choosing
a proper TF along with a fitting binarization scheme has
a considerable impact on the exploratory and exploitative
potentials of the final wrapper FS technique. One reason for
improvements when using V-shaped TFs is that they follow
an aggressive exploration tactic. V-shaped TFs allocate high
mutation chances for both near and far optimal features,
which this characteristic assist in outperforming on datasets
with a lower number of features. In contrast, S-shaped TFs
have a conservative exploration manner, and they provide
high mutation chances only for far optimal features. This trait

assists S-shaped TFs in delivering better results for datasets
with a higher number of features.

C. COMPARISON OF TOP VARIANTS OF BTLBO
The accuracy, number of features, fitness values, and running
time of top variants, BTLBO-S-ET and BTLBO-V-ER are
compared in Table 16.

Based on the results of top variants, it can be seen that
the BTLBO-V-ER variant shows a better overall performance
than BTLBO-S-ET in all metrics. In terms of accuracy
rates, BTLBO-V-ER shows a superior efficacy on 55.55%
of cases, and it obtains similar results on four problems:
WineEW, M-of-n, penglungEW, and Exactly. Considering
the number of features, the BTLBO-V-ER outperforms the
BTLBO-S-ET on 83.33% of problems and only in three
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FIGURE 6. Convergence curves for BTLBO with different binarization methods for V-shaped TFs on M-of-n, penglungEW, SonarEW, SpectEW, Tic-tac-toe,
Vote, WaveformEW, WineEW, and Zoo datasets.

cases, BTLBO-S-ET finds better results. According to fitness
and time results, BTLBO-V-ER outperforms the other peer on
77.77% of problems.

The main reason that the BTLBO_ER can carry out a
smoother shift from the exploration to exploitation procliv-
ity because of the V-shaped TF that assists the variant in
aggressive exploring the feature space and allocating higher
mutation chances for both near and far optimal features.
It also utilizes a rank-based strategy to choose a solution
and adopt the solutions in the next iteration. The advantage
of rank-based selection scheme is that it helps the BTLBO
variant to prevent rapid and premature convergence. Hence,
the results are more enriched during more exploratory trends,
and this led to more high-quality features.

D. COMPARISON OF BTLBO-V-ER WITH OTHER
OPTIMIZERS
In this subsection, the performance of the BTLBO-V-ER
variant is compared to other well-regarded optimizers from
previous works. Numerical comparisons play a crucial role in
detecting the overall ranks of developed methods [94]–[97].
The performance of the proposed BTLBO-V-ER is com-
pared to the well-established bGWO [89], BGSA [77], BBA
[86], and WOA [88] optimizers in terms of average accu-
racy, the number of features, fitness values are presented
in Tables 17-19, respectively. Its worth mentioning that
these methods were implemented and executed in the same
environment to make a fair comparisons with the proposed
approaches.
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TABLE 15. P-values of the Wilcoxon test for the classification accuracy
results of BTLBO-ER versus other versions for V-shaped Transfer Function
(p ≤ 0.05 are shown in bold face, NaN: Not Applicable).

As per accuracy results, it can be seen that the proposed
BTLBO-V-ER has outperformed other peers on 60% of cases.
F-test shows that the BTLBO-V-ER is ranked one, followed

by bGWO,WOA, BGSA, and BBA techniques. It is seen that
when the bGWO is ranked one (Breastcancer, CongressEW,
M-of-n, SonarEW, WaveformEW, and Zoo), the results are
very competitive and similar. We also observe that BBA
cannot show a superior accuracy rate in dealing with any case.

Based on the average number of features in Table 18,
the WOA has attained the best rates on 77.77% of cases.
Based on F-test results, the BTLBO-V-ER is ranked three,
followed by BBA and BGSA.

The p-values of the normality test for accuracy results of
BTLBO-V-ER and other methods are reported in Table 20.
We observe from Table 20 that the p-value is less than 5 %
for most of the cases. Therefore, the null hypothesis is not
accepted. This fact proves that the utilized results of 30 runs
(sample) for the considered dataset are not normally dis-
tributed.

Table 21 indicates the p-values of the Wilcoxon test for
the accuracy results of BTLBO-V-ER versus other peers. The
p-values evidently confirm the meaningful variations of the
accuracy results obtained by the BTLBO-V-ER and other
competitors in most of the cases.

TABLE 16. Comparison between the BTLBO-S-ET and BTLBO-V-ER based on accuracy, number of features, fitness, and running time.
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TABLE 17. Comparison between BTLBO-V-ER and other methods in terms
of average accuracy.

E. PERFORMANCE OF BTLBO-V-ER WITH DIFFERENT
CLASSIFIERS
In this subsection, the performance of the BTLBO-V-ER
variant with the KNN classifier is compared to Linear Dis-
criminant Analysis (LDA), Decision Tree (DT), and Adaptive
Boosting (AdaBoost) classifiers in terms of average accuracy,
and time. Table 22 shows the performance results of BTLBO-
V-ER with four different classifiers. Based on the results,
it can be seen that the BTLBO-V-ERwith KNN shows a good
performance compared to BTLBO-V-ER with LDA, DT, and
AdaBoost in terms of average accuracy, and time. In terms
of accuracy rates, BTLBO-V-ER with KNN shows better
performance on five datasets, and it obtains similar results on
four datasets. According to time results, BTLBO-V-ER with
KNN outperforms the other classifiers on 16 datasets.

F. COMPARISON WITH RESULTS OF LITERATURE
This subsection compares the results in term of classifica-
tion rates with those obtained by previous well-established

TABLE 18. Comparison between BTLBO-V-ER and other meta-heuristics
in terms of average number of features.

methods on a number of datasets. For this purpose, we com-
pared the results of BTLBO-V-ER with BSSA_S3_CP
proposed by Faris et al. [98], WOA-CM proposed by
Mafarja and Mirjalili [88], BGOA_EPD_Tour proposed
by afarja et al. [86], GA-based method proposed by
Kashef and Nezamabadi-pour [99], PSO-based technique
proposed by Kashef and Nezamabadi-pour [99], another
GA-based method by Emary et al. [89], another method
based on PSO Emary et al. [89], bGWO1 proposed
by [89], bGWO2 developed by Emary et al. [89], HGSA
designed by Taradeh et al. [100], BGOA-M method intro-
duced by Mafarja et al. [101], BDA-TVv4 developed by
Mafarja et al. [102], BGWOPSO technique developed by
Al-Tashi et al. [103], and S-bBOA proposed by Arora and
Anand [58]. Here, we focus on the final reported accuracy
value of comparedmethods regardless of the same computing
conditions and settings. We suppose that the reported rates
in referred works represent the overall average accuracy of
that method on the used datasets independent of settings and
parameters.
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TABLE 19. Comparison between BTLBO-V-ER and other meta-heuristics
in terms of average fitness.

From results of the BTLBO-V-ER in Table 23, it is
observed that the developed method realizes the best
results on nine datasets including Breastcancer, BreastEW,
IonosphereEW, KrvskpEW, Lymphography, penglungEW,
SonarEW, Tic-tac-toe, and Vote cases. There is a tie for
three datasets. For WineEW case, which has 13 features
and 178 instances, the proposed BTLBO-V-ER has the
extreme accuracy rate of 100% similar to the obtained rate
of BGWOPSO. For penglungEW that is a moderately larger
scale dataset with 325 features, BTLBO-V-ER archives the
ideal average accuracy of 100%. This observation indicates
the boosted exploratory and exploitative capabilities of the
proposed TLBO-based method and its more steady perfor-
mance in harmonizing the exploration and exploitation drifts.
It is seen that the accuracy of GA, PSO, bGWO1, and
bGWO2 in [89] are not remarkable for this case, and the rates
are located between the interval of [58], [60]. We observe

TABLE 20. P-values of the Shapiro-Wilk and Kolmogorov-Smirnov
normality tests for the classification accuracy results obtained by
BTLBO-V-ER and other meta-heuristics (p ≤ 0.05 are bolded).

TABLE 21. P-values of the Wilcoxon test for the classification accuracy
results obtained by BTLBO-V-ER versus other meta-heuristics (p ≤

0.05 are bolded), NaN: Not applicaple.

that methods such as GA [99], PSO [99], GA [89], PSO [89],
bGWO1 [89], bGWO2 [89], S-bBOA [58] have not achieved
the relatively best rates in dealing with any of datasets. As per
overall ranking rates (F-test), we observe that the BTLBO-V-
ER attains the best place, followed by BGWOPSO, HGSA,
BDA-TVv4, BGOA-M, BGOA_EPD_Tour, BSSA_S3_CP,
S-bBOA,WOA-CM, bGWO2, PSO [99], bGWO1, PSO [89],
GA [99], and GA [89].
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TABLE 22. Performance results of BTLBO-V-ER with KNN and with other classifiers (Linear Discriminant Analysis (LDA), Decision Tree (DT), and Adaptive
Boosting (AdaBoost) in terms of average accuracy, and time.

TABLE 23. Comparison of BTLBO-V-ER with other meta-heuristics from the literature in terms of average accuracy.

These results also show that the designed modifications,
V-shaped TF, and used rank-based selection structure have
assisted this method in achieving high-quality solutions com-
pared to the reported results in recent literature.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this work, an efficient wrapper-based feature selection
approach based on a modified binary TLBO as a search algo-
rithm was proposed for variant datasets. Four binarization
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methods were proposed: Elitist, the Elitist Roulette, the Elitist
Tournament, and the Rank based approach. Their impact on
the efficacy of different variants were compared to other
common binarization methods. The experimental demon-
strated that both TFs and binarization approaches have
a significant influence on the effectiveness of the pro-
posed binary TLBO, taking into account its exploratory and
exploitative potentials, in comparison with well-regarded and
recent feature selection methods. It was also noticed that
the proposed binarization methods have a more significant
impact on the performance of the TLBO algorithm than
other methods used in the comparisons. Further investiga-
tion on the best combination between binarization meth-
ods and TFs revealed that Elitist Tournament is the best
for S-shaped TF, while Elitist Rank-based is the best when
combined with V-shaped TF. All in all, the BTLBO algo-
rithm combined with Elitist Rank-based and V-shaped is
recommended in terms of accuracy and feature reduction
rates.

For future work, there are some research avenues. First,
investigating other novel binarization methods that consider
different strategies in repositioning the current solutions. Sec-
ond, different TFs can be tested with the proposed binariza-
tion methods. This way, researchers can study the behavior of
each TF with the different binarization methods. Moreover,
other variants of TLBO and other SI algorithms can be tested
with the new binarization methods.
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