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ABSTRACT In most of existing Internet of Things (IoT) applications, data compression, data encryption
and error/erasure correction are implemented separately. To achieve reliable communication, in particular,
in harsh wireless environment with strong interference, error/erasure correction codes with higher correction
capability or Automatic repeat request (ARQ) scheme are desirable but at the cost of increasing complexity
and energy consumption. Due to resource-constrained IoT device, it is often challenging to implement all
of them. In this paper, we propose a novel lightweight efficient secure error-robust scheme, ENCRUST,
which is able to achieve these three functions using simple matrix multiplication. ENCRUST is built on the
new theoretical foundation of projection-based encoding presented in this paper, by leveraging the sparsity
inherent in the signal. We perform theoretical analysis and experimental study of the proposed scheme in
comparison with the conventional schemes. It shows that the proposed scheme can work in low SINR range
and the reconstructed signal quality shows graceful degradation. Furthermore, we apply the proposed scheme
on real-life electrocardiogram (ECG) dataset and images. The results demonstrate that ENCRUST achieves
decent compression, information secrecy as well as strong error recovery in one go.

INDEX TERMS Error robust encryption, joint compression and error recovery, projection matrix, wireless

body area network, resource-constrained, Industrial Internet of Things.

I. INTRODUCTION

The Internet of Things (IoT) has been developing at an accel-
erating pace in the recent years. A variety of IoT services
are solving business problems or create added values across
different verticals ranging from industrial automation, smart
city all the way to E-health. To facilitate the sustainable devel-
opment of IoT, we need to tackle multiple critical challenges
in IoT.

The massive number of installed [oT device devices gen-
erates a huge amount of data. On the one hand, data com-
pression methods can handle exponential IoT data growth to
alleviate the stress on the communication network infrastruc-
ture and data storage. On the other hand, data compression
introduces additional processing complexity in IoT devices.
Furthermore, conventional compression schemes typically
make the compressed data sensitive to channel errors as well;
hence, forward error correction (FEC) is needed to ensure
good quality of decompressed data.
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Fast deployment of IoT solutions globally and massive
IoT devices are exacerbating the issue of interference in IoT.
Wireless interference can cause channel errors, even long
burst errors and erasures.

Apart from data compression and interference there is
increasing concern about data security and privacy, which
calls for sensor data encryption at resource constrained IoT
device to keep data confidentiality in the end-to-end solu-
tion. However, the existing data encryption schemes are very
sensitive to channel errors, which is referred to as sensitivity
encryption, as channel errors can result in decryption failure
or low-quality decrypted data [1]. For example, due to the
avalanche property of advanced encryption algorithm (AES)
[2], the decrypted plaintext will be completely corrupted
when there is only a single bit of error. One way to protect
encrypted data from channel errors is to apply forward error
correction (FEC) codes with high error correction capability.
Its drawback is the increased processing complexity and
energy consumption at IoT device, since higher error cor-
rection capability is often realized through longer codewords
and lower coding rate (i.e., higher redundancy overhead).
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Therefore, it is highly desirable to design robust encryption
scheme that errors / erasures in data barely affect the quality
of decrypted data, in particular, in harsh wireless environ-
ment with various co-channel and external interferences, e.g.,
industrial IoT and E-health.

Although most of IoT applications desire data compres-
sion, data secrecy and error correction, it is challenging or not
always feasible to implement them all at resource constrained
IoT device. In the existing IoT solutions, these functions are
typically implemented separately by independent processing
modules as shown in Fig. 1. Namely, sensor data have to go
through Nyquist sampling, data compression, data encryption
and FEC encoding processing module sequentially.

Input signal ‘ | Coded signal

Nyquist
sampling

Compression ‘ Encryption ‘ FEC

[ ENCRUST |

FIGURE 1. Block diagram of the general communication system and the
ENCRUST scheme.

In this paper, we aim at designing a feasible scheme that
can perform data compression, encryption and error recovery
within one single processing module at resource constrained
IoT device. We propose the efficient secure error-robust
(ENCRUST) scheme by leveraging the true potential of com-
pressed sensing (CS). The encoding process of ENCRUST is
a simple matrix operation which is extremely beneficial for
resource constrained IoT device. The decoding of ENCRUST
is composed of two /1 minimization processes, the first one
for error recovery, and the second one for sparse signal recov-
ery. The decoding is typically performed at edge server or
cloud in the IoT ecosystem.

ENCRUST does not only simplify the system design and
reduce the system complexity by eliminating the need of addi-
tional compression and ciphering blocks, but also provides
several salient features. For example, in the conventional
approach with separate operations, it is difficult to perform
compressed-domain processing, e.g., rate adaption [12], par-
ticularly under time-variant channel conditions. However,
one single processing module has the potential to provide
maximum flexibility in dealing with rate adaptation, namely,
determining the amount of data for information representa-
tion and the amount of data redundancy for error recovery.
The ENCRUST scheme can flexibly tune its encoding param-
eters, e.g., encoded signal length L, the dimension reduction
ratio M/N, and the error recovery capacity pg, for every
signal block as per the channel condition. In this sense, the
ENCRUST scheme can be categorized as a de facto oppor-
tunistic encryption algorithm. Furthermore, the ENCRUST
scheme provides graceful degradation of the reconstructed
signal when the number of errors exceeding the designed
error recovery capability pg. This is very different from the
behavior of FEC codes. As we know, the conventional FEC
codes usually have drastic data quality drop when they are not
able to correct all the errors in the codeword, especially the
input message of the FEC codes is encrypted data.
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There has been advancement in the feasibility to perform
simultaneous sensing and compression by incorporating CS
in hardware [5]-[7] for time series signals. Therefore, it is
expected that a customized hardware can be designed based
on the ENCRUST scheme to realize sensing, compression,
secrecy and error recovery in one operation. Designing a
hardware of the proposed scheme is beyond the scope of
this paper. Consequently, we work on the Nyquist samples to
conduct the performance evaluation of the proposed scheme.

It has been studied and empirically shown that usages
of conventional data compression methods such as Wavelet
transform coding, discrete cosine transform in resource-
constrained IoT devices decrease energy efficiency as com-
pared to the uncompressed data [10], [11]. These studies also
demonstrate that compressive sensing based compression is
energy efficient in resource-constrained IoT devices. Due
to no efficient implementation of conventional compression
methods for resource-constrained IoT devices in the litera-
ture, it is unclear whether those methods are still suitable for
resource-constrained IoT devices. Therefore, in this paper,
we compare the proposed scheme with the existing solution
that consists of both AES encryption and RS codes. Though
conventional compression method has better compression
ratio than CS, if it is included, then it will worsen the overall
energy performance, which is not appropriate for IoT use
cases.

A. OUR CONTRIBUTION
Our main contributions in this paper are as follows.

« Itis proved that the ENCRUST scheme can be used for
compression as well as error recovery. This is shown
using projection based encoding and decoding.

o Security analysis of the ENCRUST scheme is per-
formed. It is proved that if the sensing matrix is changed
for each encoding then the ENCRUST can provide
asymptotic perfect secrecy for constant energy signals.

o We evaluate the ENCRUST scheme using the exactly
sparse signal as well as the approximately sparse signals
in real life, i.e., electrocardiogram (ECG) dataset [8],
[9] and images. For simulations we use a standard noise
model including additive white Gaussian noise as well
as interference.

o We compare the performance of the ENCRUST scheme
with the existing schemes, e.g., conventional CS, AES
plus Reed-Solomon (RS) codes. The study results show
that ENCRUST achieves not only much better recon-
structed signal quality but also higher transmission effi-
ciency under various inference channel conditions.

B. RELATED WORK

Magli et al. [12] made a first attempt at designing two algo-
rithms for joint source, channel coding and secrecy. The work
was inspired by duality between source and channel coding.
One algorithm used arithmetic codes for error correction and
the computational secrecy was achieved through randomized
arithmetic coders. The second algorithm was based on turbo
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codes. The compression was achieved through puncturing
the parity bits and the computational secrecy was achieved
by hiding the parameters in the encoding process, i.e., the
interleaver, the puncturing pattern, and the scrambling pat-
tern. It was also shown that these schemes are weakly secure
as compared to AES. Our ENCRUST scheme can achieve
asymptotically perfect secrecy which is stronger from crypt-
analysis perspective. In addition, it is feasible to incorporate
sensing process in ENCRUST, while the algorithms in [12]
can only work on Nyquist sampled data.

CS enables sub-Nyquist sampling rate for sparse sig-
nal, thereby achieving simultaneous sensing and dimension
reduction [13], [14]. CS has been explored in various areas
such as wireless communications, image processing, mag-
netic resonance imaging, remote sensing imaging, and infor-
mation secrecy. In wireless communication, inherent sparsity
present in the channel impulse response (CIR) is more suit-
able to CS. The CIR sparsity can be exploited in massive
MIMO systems [15]. CS has also shown potential in wireless
sensor networks for data gathering [16], data aggregation
[17], spectrum sensing [18], and non-orthogonal multiple
access for massive machine type of communications [19].

Image compression in visible/near-infrared range using CS
has been studied in [20] for remote sensing. Speech compres-
sion using CS has been explored in [21]. Image compression
using CS has been proposed and compared with JPEG [22].
This scheme performs comparable to JPEG in terms of
decoded image quality versus data rate. Quantization effect
on CS compressed data is studied in [23].

CS can also be used for error correction through matrix and
vector multiplication [24], [25] on the Nyquist sampled data.
The error correction methods using CS with change in sens-
ing matrices and reconstruction algorithms have been studied
in [26]-[28]. Dense error correction for face images using /
minimization has explored in [27]. Error correction based on
Fourier CS and projective geometry has been studied in [29].
General CS based error correction schemes are in the con-
tinuous domain, thereby requiring more bits to represent CS
codewords as compared to their traditional counterparts FEC
codes.

It has been shown that the CS can provide information
secrecy if the entries of the sensing matrix are taken from
Gaussian distribution and updated for every sensing [30]. Itis
proved that CS measurements are perfectly secure using one-
time Gaussian distributed sensing matrix [31] for constant
energy signal. Recently, it has been shown that perfect secrecy
can be achieved using CS encoding for a general class of
signals [32].

In recent studies, CS has been considered to be a
very good candidate for resource-constrained IoT devices
due to the attractive feature of joint compression and
encryption [3], [4], [39]. An energy-efficient CS-based
scheme for compression and secrecy in a body-to-body net-
work has been realized in [33]. Asymmetrical encryption
algorithm is proposed using semitensor CS for wireless
body area networks [34]. Medical image compression and
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encryption using CS has been proposed in [35]. An algorithm
based on CS is proposed which simultaneously compress
and encrypt audio signals [36]. In this scheme the audio
signal is segmented in frames which are then transformed in
encrypted frames using CS. CS has been explored to achieve
joint compression and multi-class encryption in resource-
constrained IoT devices [40], [41].

General symmetric cryptographic algorithms are not capa-
ble to deal with corrupted ciphertext, which results in low
quality of decrypted data [3], [12], [37]. Due to the greater
difficulty in designing error robust encryption compared to
sensitivity encryption [3], few work [37], [38] is available
in the literature. Opportunistic encryption using AES [37] is
suggested to make a tradeoff between security and through-
put. CS-based robust image encryption was developed in [38]
to combat consecutive packet loss in ciphertext.

Our work is beyond the state-of-the-art solutions men-
tioned above, because we manage to incorporate compres-
sion, encryption and error recovery in one unified framework
using compressive sensing.

The paper is organized as follows. In Section II we describe
the theoretical fundamentals of CS. Section III presents
our theory of projection-based encoding and the design of
ENCRUST scheme. In Section IV security analysis of the
ENCRUST scheme is performed. Section V presents the sim-
ulation setup and results as well as discussion on computation
complexity. Finally, Section VI concludes the paper.

Notations: In this paper, all the boldface uppercase, e.g.,
X, and all the boldface lowercase, e.g., X, letters represent
matrices and vectors, respectively. x! is transpose of x and
x/1 is Hermitian transpose of x. Double lined upper case
characters E is used for expectation of a random variable.
The italic letters represent variables. [, norm of a vector x

1
is represented as (va: 1 xilP)r.

Il. THEORETICAL FUNDAMENTALS

An overview of compressive sensing based error correction
and cryptosystem is presented in this section. First, we review
the basics of compressive sensing.

Let x be a signal which is either exactly K-sparse in the
canonical form or approximately sparse in the transform
domain. An exactly K-sparse signal is defined as ||x||op = K
whereas an approximately sparse signal, x = W0, is defined
as ||0|lo = K which means most of signal information
is contained in the K coefficients of the signal x's trans-
formed reprelsentation. We represent /, norm of a vector X as
(T bl

Compression in CS is achieved by taking random linear
measurements using a sensing matrix, ¢ € RM*N CS mea-
surement vector, y, is given as,

y = ®x. (1)

The measured signal, X, can be recovered using convex opti-
mization if the signal satisfies the sparsity constraint, and
the sensing matrix satisfies the restricted isometric property
(RIP) [42].
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If the entries of the sensing matrix are chosen from i.i.d.
Gaussian distribution and the number of measurements, M,
should be in the order of Klog(N /K) [25], then it satisfies the
RIP with probability one. If the sensing matrix satisfies the
RIP then the signal can be recovered using /; minimization
by solving the following optimization problem,

X = arg min ||x||;, s.t.y = ®x, 2)
xeCN

where the signal x is sparse in canonical form [13], [14].
In the case when signal is approximately sparse, then the
optimization problem [43], [44] becomes,

6 = arg min ||0]]1, s.t.y = dWO. 3)
peCN

A. CS FOR ERROR CORRECTION

The basic framework for error correction is described in the
following. Assume a signal x € CY, is encoded to a coded
signal, ¢, using a generator matrix G € CV*U g,

¢ =Gx. “

The coded signal contains redundant information because
V > U. The received coded signal, ¢, is represented as

¢y = Gx +e, (®)]

where e € CY denotes an error vector introduced in the
channel. The parity-check matrix H € C"*V is chosen
such that it spans the null space of the generator matrix, i.e.,
HG = 0. When the corrupted received signal is projected on
the parity-check matrix, we obtain the error syndrome vector,
S, as

s = He. (6)

The error vector, e, can be recovered from Eq. 6 by perform-
ing /1 minimization. Error vector can be estimated perfectly
from Eq. 6, if ||e||o < and W = O(¢ log(%)) [25].

B. SECRECY OF CS BASED CRYPTOSYSTEM

A CS-based encryption algorithm is considered to be com-
putationally secure if sensing matrix is used only once and
its entries are Gaussian distributed. It is computationally
infeasible to reconstruct the signal without the knowledge of
the sensing matrix [30].

CS-based encryption algorithm also provides asymptotic
perfect secrecy for Gaussian sensing matrix with constraints
on the input signal. An encryption algorithm is perfectly
secure if the following is true,

P(x;ly)) = P(x;), Vi @)

where P(x;|y;) and P(x;) are a posteriori probability and a
priori probability of plaintext, respectively. Perfect secrecy
for CS-based encryption algorithm is studied in [31], [45].
The authors proved that for constant energy signals CS-based
encryption algorithm satisfies Eq. (7), if the sensing matrix is
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TABLE 1. Symbols for frequently used variables.

N Signal length
K Signal sparsity
M Compressed signal dimension
L Measurement length
0 Error correction capability
nr Interference rate
v Signal to interference noise ratio
1,002 Constants
X Signal
A B, ® Matrices for CS
P Projection matrix
Pl Orthogonal projection matrix
y Measurement vector
Ye Noisy measurement vector
yi* " received measurement vector
yie ith estimated measurement vector
ygec it decoded measurement vector
Y™ Complete received measurement matrix
e Noise vector
ep Projected noise vector
é Estimated Noise vector
3 Recovered signal

Gaussian distributed and used only once. Mutual information
between a pair of plaintext and ciphertext is given as [31],

I(xi; yi) = 1(Ex;; yo),
= I(EX,’ Ey,')v (8)

where Ey; and Ey, are energy of x; and y;, respectively.

Eq. (8) guarantees asymptotic perfect secrecy for constant
energy input signals. CS based secrecy algorithms can be
compared with the symmetric key algorithms for the case
when sensing matrix is changed for each measurement and
sensing matrices are constructed using a pseudorandom num-
ber generator.

Ill. LIGHTWEIGHT SECURE ERROR ROBUST
COMPRESSION SCHEME

In this section, first, we introduce a novel projection-based
encoding for error recovery, then the ENCRUST is designed
using the concept of the projection-based encoding. We have
seen from Eq. 1 that the compression achieved by CS is by
reducing the dimension of the signal, i.e., signal dimension
reduced from N to M. On the contrary, to provide error
correction signal dimension is increased from U to V as in
Eq. 4. The frequently used notations are given in Table 1.

A. PROJECTION-BASED ENCODING FOR ERROR
RECOVERY
In this subsection, we prove that error recovery is possible
without increasing the signal length. First, we prove that
the projection matrix satisfies null space property (NSP),
then show that the projection-based encoding achieves error
correction capability.

NSP is necessary and sufficient condition for perfect recov-
ery of K-sparse signal using basis pursuit [46].

Definition 1: A matrix A € CM*N satisfies null space
property of order K if any vector x € ker(A)\{O} can be
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represented as,

Xzl =< [1xz[l1, &)

where card(I) < K and I is index set. ker(A) and card(I) are
kernel of matrix A and cardinality of set /, respectively.

NSP is used to show that the projection-based encoding is
possible and /; minimization can be used for perfect recovery.
In the theorem below, it is proved that the projection matrix
satisfies NSP of order K.

Theorem 1: Given that matrix A € with rank
M satisfies NSP of order K then its projection matrix
P = A7 (AAH)~1A also satisfies NSP of order K.

Proof 1: For any vector x from ker(A) we have Ax = 0.
Therefore for the matrix P we get,

(CMXN

Px = AP (AAT) TAx = 0. (10)

From Eq. 10 we obtain ker(A) € ker(P). Since the rank of
matrix P is equal to the rank of matrix A, we have ker(A) =
ker(P). This proves that the matrix P satisfies the NSP of
order K.

Some of the important properties of the projection matrix
are: P2 = P, AP = A, and P2 = P [47]. Orthogonal
projection matrix is represented as P = I — P. We prove the
projection-based encoding, which uses the sparsity present in
the signal for symbol error recovery in the theorem below.

Theorem 2: A length N signal, x, of sparsity K is encoded
as,

yp =Px, (11

where P € CV*V is a projection matrix with NSP of order K .
If P satisfies NSP of order pg (po > ||e||o) and PP = 0,
then the signal x can be recovered from the corrupted mea-
surement, y,, as given below,

ye = Px+e, (12)

where e € CN is a noise vector.
Proof 2: To estimate the error vector, e, y, is multiplied
with P+ and then there is
Ply, = P'Px + Ple,
ep = Ple. (13)
Since P satisfies NSP of order 00, error vector, e, in Eq. 13

can be recovered using /; minimization. The optimization
problem can be formulated as,

é =arg min |le||;, s.r.ep =Ple. (14)

ecCN
The estimated error, €, is subtracted from y, and the signal, x,
can be reconstructed by performing /; minimization because

x is K-sparse and P satisfies NSP of order K. To reconstruct
the signal, x, the optimization problem can be formulated as,

X = arg min ||x||;, s.r.y. — €= Px. (15)
xeCN

In a nutshell, to reconstruct the signal, X, /; minimization is
performed twice. First using the orthogonal projection matrix

VOLUME 9, 2021

to recover the error vector from the received measurement
vector, y.. After the estimation of the error vector, e, [
minimization is performed using the projection matrix to
reconstruct the signal, x.

B. ENCRUST

In Theorem 2, it is shown that we can achieve error recovery
for exactly sparse and approximately sparse signals without
increasing the dimension of the signal. Nevertheless, the
projection-based encoding does not achieve dimension reduc-
tion of the encoded signal. To incorporate dimension reduc-
tion and information secrecy, we propose the ENCRUST
scheme. It can be observed from theorem 3 that dimension-
ality reduction and error recovery can be incorporated in the
sensing process.

Theorem 3: For Gaussian distributed matrices A € CL*M
and B € CM*V | the encoding of the ENCRUST scheme is
given as,

y = ABx, (16)

for a K-sparse and of length N signal, x, can be recovered
from the corrupted measurement, y,, as given below,

Ye = ABx +e, (17)
where e € CL is an error vector, if M is in the order of
Klog(N/K) and L — M is in the order of pglog(L/pgp) and
lleflo < po.

Proof 3: Construct a matrix P~ such that PTA = 0.
Multiplying y, in Eq. 17 with P+ we get,
ep = PLe, (18)

which is equivalent to the projection-based encoding. The
error vector e can be recovered from ep by performing the
[; minimization, as the rank of the matrix P is L — M which
is in the order of polog(L/pgp) [25]. Similarly, the signal x
can be recovered by first subtracting the estimated error from
Eq. 17 and then performing /; minimization as given below,

% = arg min ||x||;, s.t.A%(y. —&) = APABx. (19)
xeCN

Since matrices A and B are Gaussian distributed, matrix A7 A
is invertible with high probability. The rank of the matrix
A”AB is M and in the order of Klog(N/K). This means
that the encoded signal presented in Eq. 16 is able to correct
maximum g errors.

The block compressed sensing technique was introduced
for images in [48]. Block based compressed decoding meth-
ods were improved in [49] using directional transforms such
as contourlets and complex valued dual tree wavelets. Gen-
erally, block based compressed sensing is applied on images.
Consider an image of size R x R and block size of N x N.
The i signal x; is constructed by vectorizing the i’ block in
the raster scanning. The total number of sensing matrix for
such an image is given as J = (1%)2. If the sensing matrix @
is constructed using matrices A and B as given in Eq. 16, the
encoding process for the i block is given as,

yi = Oix;. (20)
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The corrupted i block at the receiver is given as,
yl-rx = d;x; + e;. 21

Since the i block is encoded using the sensing matrix
®;, the erroneous signal can be reconstructed using the
ENCRUST scheme. The complete received corrupted mea-
surements for an image is given as,

Y™ =1y ys, ¥ (22)

The decoding method for robust recovery for the ENCRUST
scheme is defined in the Algorithm 1. [, is the number
of iterations and P+; is the i orthogonal projection matrix
constructed using matrix A;. In the second step error, @ is
estimated for each image blocks, which is then subtracted
from the receive measurement vector, y{x. This process is
done for all image blocks. In the third step for each image
block first reconstruction matrix, &D,-, is constructed then esti-
mated measurement vector, §7*, is projected on matrix A to
get the decoded measurement vector, yl‘-i“'. In the fourth step
initial image blocks are constructed by projecting the decoded
measurement vector, y?“, on the matrix, &3,-, for all image
blocks. The fifth step is performed to reconstruct the origi-
nal image from the initial image blocks and corresponding
decoding matrix, d. Wiener filtering is applied to remove
noise in the time-domain. Thresholding and projection oper-
ations are performed to exploit the fact the signal is sparse in
some sparsifying domain [48], [49]. We use discrete cosine
transform in our experiments. After the execution of fifth step
the reconstructed image is given as X/max,

Information secrecy can be achieved in the ENCRUST
scheme by using the matrices A and B once. Encryption and
decryption process of ENCRUST encryption algorithm can
be described similarly to the symmetric key algorithm.

Encryption: Let x; € CN be the i block of plaintext.
By applying the CS encoding on, X;, we obtain the i’ mea-
surement vector as:

yi =ABx;, (23)

where y; € CL is called ciphertext and A; € CL*™ and B; €
CM*N are Gaussian distributed matrix.

Decryption: Decryption is performed using Theorem 3.

The measurement dimension of L in Eq. 16 is in the
order Klog(N/K) + polog(L/pp) and it can be represented
as L = a1K + appg for positive 1 and op. L is dependent
on signal sparsity and error correction capability. Therefore,
for a K-sparse signal, L can be configured to be smaller than
N providing moderate error recovery capability. L can also
be configured to be greater than N, thereby providing very
high error recovery capability. The dimension reduction is
achieved when L < N and the overall compression ratio (CR)
is defined as 1 — LQ>/NQ1, where Q is the bit width for the
input signal, and Q> is the bit width for the measurements.
It is worth mentioning that the ENCRUST scheme’s coding
rate is %V with the error recovery capability of py = %
The ENCRUST scheme is categorized as an opportunistic
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Algorithm 1 Decoding Procedure

1. Input: Y™, [0y, Ajand B; fori=1to J ;
\* Error estimation and removal x/
fori=1tJ do

2:
& = arg min ||e;||1, s.t.ep; = PLie;.;
eieRN

orX

Yi
end for ;
\* Signal reconstruction x/
3: fori=1tJ do
L &)i = AiTAiBi;

- a
=Yy —€

dec T orx
Y =AY

end for ;
4 X0 = [@]ydee, dTydee, . @Tyde]
5: forr =0¢t0 I,;x — 1do

\* Filtering & projection */
X" = Wiener(X"),
X=X+ (BT (@1B]) (v -
Sixy), ..., BT (D)) (¥ — Pyx);
\* Thresholding & projection */
N = v thresold (WY );
X =N (0] (9 d]) (v -
L ®ixp), ..., BT (D)) (i — DN
end for ;
6: Output: X/mar

encryption algorithm because its parameter L can be tuned
as per channel conditions. The ENCRUST scheme can be
regarded as error robust encryption because it recovers signals
from the corrupted ciphertext.

IV. SECURITY ANALYSIS OF ENCRUST

Security analysis of Eq. 1 has been performed in [31],
[45] for Gaussian one-time sensing (GOTS). GOTS cryp-
tosystem is known to be perfectly secure, as long as each
plaintext has constant energy [31]. Furthermore, for constant
energy signals GOTS cryptosystem system achieves asymp-
totic Indistinguishability [45]. To show that the ENCRUST
scheme also achieves the same level of security we present
Theorem 4 and 5.

Theorem 4: If the matrices A; and B; are used once and
the entries of these matrices are i.i.d. Gaussian distributed
with zero mean and variance oj and aé, then the mutual
information satisfies the following relation,

I(yi; x;) = 1(y;; &x;). (24)

where ¢y, is the energy of x;.

Proof 4: Suppose conditional probability density function
of the i measurement vector is given as f(y;/x;)()V;). Let
z; be a random variable y; given x;, i.e., f(z;)) = f(yi/X))-
The mean of z; is zero, because E(z;) = E(ABix;) =
E(A)E(B;)x; = 0. The variance of z; is given as,

E(ziz!') = E(ABxxIBIAl), (25)
= Mex,03051,, (26)
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where I is the identity matrix of size L x L. The condi-
tional probability density function, f(y;/x;)(};), is Gaussian
distributed with zero mean and variance M sxiqfaélb Now
according to the proof of Proposition 1 in [31], we obtain

I(yi; x;) = 1(y;; &x,)-

Another way to achieve information secrecy is by fixing
the dimension reduction matrix B; and changing Gaussian
distributed matrix A; for every plaintext block, which can be
given as,

Y. = AiBXi. (27)

Theorem 5: If the matrix A; is used once and its entries
are i.i.d. Gaussian distributed with zero mean and variance oj

then the mutual information satisfies the following relation,
I(yi; x;) = 1(y;; eBx;)- (28)

where egy; is the energy of Bx;.
Proof 5: Proof is similar to Theorem 4.

It can be observed that Eq. 27 is also perfectly secure for
constant energy signals because it follows the same structure
as given in Theorem 4. Theorem 4 and 5 prove that for
constant energy signals the joint sensing and error recovery
scheme is perfectly secure considering the ciphertext-only
attack and assuming that the signal energy is known prior.
Because by considering ciphertext-only attack, the adver-
sary can learn the energy of the signal. However, most of
the natural signals are not constant energy. To hide signal
energy [50] uses an energy obfuscation variable which is
multiplied with the sensed measurement vector before trans-
mission, that is represented as, y; = a®;x;, where a is an
energy obfuscating variable and log-normal distributed, ®; is
Gaussian distributed sensing matrix. Nevertheless, the energy
obfuscation scheme does not achieve perfect secrecy. In the
recent study it has been shown that the CS-based encryption
schemes are not secure against ciphertext-only attack when N
is not sufficiently large [51] because real life signals do not
have constant energy. In the following, one possible way to
construct a constant energy signal is presented [32].

Let x € CN~! be an arbitrary signal. The maximum
possible energy of a signal from this signal space is &gy-
A new signal space is defined by adding an energy concealing
variable. The energy concealing transformation 7 is defined
as, Ts,,, : CN~1 — CN. In the vector form this transforma-
tion is visualized by adding an element to each vector such as
it falls on the surface of the sphere in the higher dimension.

A new vector X’ is constructed by adding an energy con-
cealing variable c to the x such that energy of X’ is constantly

equal to &,,,,. Let x be given as,
x =[x, ov-1] (29)

The energy concealing variable, c, is generated as

¢ =/ &max — |IXI3. (30)
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FIGURE 2. Performance evaluation model. x is the sensed signal, n is
channel noise, and y is transmitted signal. y,x and x are received and
reconstructed signal at the cloud, respectively.

Signal x’ is constructed by concatenating ¢ with x as given
in Eq. 29. We get
-]’ (31

/
X = [c,x1,x2, ..

From Eq. 30 and 31, it is clear that the new signal, X/,
has constant energy, i.e. &y,,. From Eq. 28 we know that
the measurements leak only the signal energy. If the maxi-
mum energy of the signal is made public, the adversary does
not learn anything new from the measurements. In a nut-
shell, the ENCRUST scheme provides confidentiality without
additional cost. The only requirement is that sensing matrix
should be changed for each sensing.

A key-based pseudorandom number generator can be
used to construct a sensing matrix in a resource-constrained
IoT device. We have recently proposed an energy-efficient
linear feedback shift register-based random sequence gener-
ator [32]. This generator can be used to construct approx-
imately Gaussian distributed sequence as well as Bernoulli
sequence depending on the security requirements. Encryptor
and decryptor share the secret key, and sensing matrix can
be generated using this key. In the ENCRUST, one of the
matrices can be generated using this key-based random num-
ber generator at the encryptor. The decryptor has the same
key. Hence, it can generate the same sensing matrix and can
reconstruct plaintext by applying /; minimization. This type
of construction is similar to symmetric key encryption.

V. SIMULATION RESULTS

In this section, we aim to compare the ENCRUST scheme
with the other conventional schemes under different channel
conditions. We use the reconstructed signal quality as the
primary performance metric which is calculated between the
original signal and the reconstructed signal, as shown in
Fig. 2.

Since the ENCRUST scheme is designed using CS con-
cepts, we use means square error (MSE) as the performance
metric for K-sparse signals. If the MSE is less than 107°,
then the reconstruction is regarded as successful [24], [52].
To measure the error recovery capability, we use different
channel parameters as discussed in the following subsection.

Image reconstruction quality is measured using average
peak signal-to-noise ratio (APSNR) given as,

APSNR = E(10!/ 255° 32

= E( Og(IMSE))’ (32)
where IMSE is image mean square error. For ECG signals,
the measure of signal quality uses average percentage root-
mean-squared difference (PRD), which measures the distor-
tion between the reconstructed signal and the original signal.
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It is given as,

.12
100. (33)

We use the ECG signal quality classification table from [10],
where reconstructed signals with PRD values below 9 are
considered to be of good quality. Therefore, in order to use
the classification table, we calculate PRD after removing the
DC component from the signals as [10].

In CS, the reconstruction depends on the selection of a
sparsifying basis of the signal. It has been shown that the
reconstruction quality using an over-complete dictionary is
better compared to one orthogonal transform dictionary [53].
Considering the IoT ecosystem, the reconstruction will be
performed either on the edge or core cloud. Therefore we also
use the over-complete dictionary for reconstruction. Empir-
ically, we observed that the combination of discrete cosine
transform, symmlet [54] (sym4, wpsym4), and discrete sine
transform gives a better result for ECG signals. For the image
reconstruction algorithm, we use a single dictionary based on
the discrete cosine transform.

A. CHANNEL MODELS

In this subsection, we consider a channel model consist-
ing of additive white Gaussian noise (AWGN) and sparse
interference to characterize a harsh wireless environment
with sporadic high interference. This channel model is rel-
evant for the IoT because wireless interference is preva-
lent, e.g., Wi-Fi interference in low power ZigBee IoT
systems [1], [55], [56].

Assume signal has constant power Py, in this way we can
use average signal to interference noise ratio (SINR) to char-
acterize the channel with interference. In other words, when
there is no inference in the channel, the channel becomes
an AWGN channel which can be simply characterized by
average signal to noise ratio (SNR), I' = 10log(Py/No).
If the average interference power is Iy and AWGN is No,
then average SINR y = 10logP¢/(No + Ip). The average of
interference power I is determined by the number of interfer-
ence occurrences p during one transmission block, N, i.e., the
transmitted signal length and the amplitude of interference
signals. We define the rate of interference occurrence as n; =
p/N . For a sporadic interference or sparse interference signal
ny, there is ||ny||op = p. When one encoded signal sample is
represented by multiple modulation symbols, we assume each
modulation symbol has equal symbol error probability due to
interference. The duration of each interference occurrence is
then assumed equal to the modulated symbol duration. Due
to strong interference, each interference occurrence causes
not only error but even erasure. The consecutive interference
occurrences lead to burst errors. For the ENCRUST scheme,
it can be observed that the sparse errors and burst errors will
have the same effect as far as the number of symbol errors are
below pg.
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FIGURE 3. Frequency of prefect reconstruction of a sparse random signal,
(N = 1024, K = 100, po = 40, and L = 700).

B. EXACTLY SPARSE SIGNAL

The ENCRUST scheme’s performance is evaluated under
the condition of AWGN noise power Ng = 10~2Py and
SINR changing from —10 dB to 20 dB with the p being
the number of interference occurrences, i.e., the number of
spikes. For this simulation, we chose a random signal with
sparsity K = 100 and length N = 1024. The ENCRUST
scheme is designed for pp = 40 and constants &y = 5 and
ar = 5, which gives us L = 700. In this configuration,
it achieves CR equal to 1 — L/N, i.e, 31.64%. Each element
of the input vector and the encoded measurement vector is
represented in 16-bit. The measurement vector of length L
is divided into four-column vectors each of length L, so that
each element of the new resulted vectors can be represented
in 4-bit and is modulated using 16QAM. The modulation
symbols go through the interference channel described in
Subsection V-A.

The exact reconstruction frequency f of the ENCRUST
scheme is calculated for 100 simulation runs. The frequency
of the exact reconstruction of a K -sparse signal for the chang-
ing values of SINR and p is shown in Fig. 3. It can be observed
from Fig. 3 that the ENCRUST scheme can recovery more
than 10 errors even for SINR equal to —10 dB, i.e., the
exact reconstruction frequency f equal to 1 when p < 10.
Note that the channel with low SINR characterizes a kind
of erasure channel, as the amplitude of interference is so
high that it completely corrupts the modulation symbols.
We designed pg = 40 in this experimental study, but as
explained in the previous paragraph for one measurement
element, four modulation symbols are needed. Therefore, the
actually achieved p is around 10, which is consistent with the
theoretical analysis.

ENCRUST scheme is compared with Reed-Solomon (RS)
codes in terms of error correction capabilities for K-sparse
signals for K = 100. RS (255, 223) code is used, which
can correct 16 errors. To make a fair comparison, the signal
length, N, is chosen such a way that it is divisible by 223.
Therefore, we choose the K-sparse signal of N = 1115.
To show the performance of both high power interference and
low power interference scenarios, ENCRUST is simulated for
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FIGURE 5. MSE comparison for the reconstructed sparse random signal
using ENCRUST, RS codes and uncoded scheme (N = 1115, K = 100).

y = —10 and y = 10, respectively. The ENCRUST is also
designed for L = 1115 with constant @y = 5 to have a
fair comparison with RS codes. It should be noted that for
these settings the code rate for ENCRUST is 1 and RS code
is 0.8745. The input elements and measurements are repre-
sented in 16-bit and modulated using 16QAM, as explained
previously, and the channel’s AWGN noise power Ny =
10~3Py. MSE performance of the uncoded signal, RS coded
signal, and ENCRUST scheme under different interference
channel conditions are shown in Fig. 4. It can be observed
from Fig. 4(a) and (b) that RS codes can completely recover
signals, i.e., MSE equal to zero, when SINR y = —10 dB
and interference rate n; < 2.1% and at y = 10 dB and
interference rate n; < 2.6%. For y = —10dB and y =
10 dB, MSE performance of the ENCRUST scheme is less
than 100 even if the interference rate, nr, is below 8% and
11%, respectively.

Now we study the error recovery capability of ENCRUST
when L is configured less than N. We set SINR y = 10 dB,
and keep the other parameters as described for Fig. 4. It can be
observed from Fig. 5 that for L = 755, the proposed scheme
achieves MSE below 10~° when n; < 2.6%, which is equiva-
lent to RS coded signal. Note that using RS codes (255, 223),
the MSE of the reconstructed signal is zero when 1y < 2.6%,
but the MSE dramatically jumps to 10~ when n; > 2.6%.
In this setting, the proposed scheme simultaneously achieves
compression, at CR = 32.29% and error recovery capability.
It is worth mentioning that the ENCRUST scheme provides
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FIGURE 6. Transmission efficiency of the ENCRUST scheme and RS coded
signal (N = 1115, L = 855).

graceful degradation in MSE when the channel errors exceed
the error recovery capability, whereas this is not possible with
RS codes.

C. APPROXIMATELY SPARSE SIGNALS

In this subsection, we compare the ENCURST scheme with
the conventional schemes using the real-life data, i.e., ECG
dataset and image. To study the ENCRUST scheme’s perfor-
mance on the ECG database, we use physical units, which
are represented in 16-bit. We choose signal length N =
1115, AWGN noise power Ny = 1072Py, y = 10dB
and p following a Binomial distribution with mean p and
probability 0.5. ENCRUST scheme is configured as pg = 51
and L = 855. For these parameters, CR achieved by the
ENCRUST scheme is 23%. The encoded signal is modulated
using 16QAM, as described in Subsection V-B. We evaluate
the transmission efficiency of the ENCRUST scheme and
the RS(255, 223) codes for ECG signals. ECG record 230 is
used for simulation. The signal reconstruction is regarded as
successful if the PRD is below 9, otherwise retransmission
is required. The transmission efficiency of the ENCRUST
scheme for the transmission failure probability, Py, is calcu-
lated as (1 — P¢)N /L. The simulation is run for 1000 times.

Transmission efficiency of the ENCRUST scheme and the
RS codes is shown in Fig. 6. It can be observed that the
transmission efficiency for ENCRUST is more than 100%.
This is because compression is inherent in the ENCRUST
scheme. The transmission efficiency of the RS encoded sig-
nal decreases significantly with increase in the p. When p
reaches 35, the transmission efficiency of the RS coded signal
reaches zero, which means that at this channel condition it
is no longer possible to use the RS codes to achieve reliable
transmission. On the contrary, the transmission efficiency of
the ENCRUST scheme is much higher than that of the RS
coded signal and it is still higher than 100% even when p
reaches 35.

We also compare the PDR performance of ECG signals
using the ENCRUST scheme, the normal CS (the number of
measurements equal to L), RS codes, and uncoded scheme, as
shown in Fig. 7. From the figure, it can be observed that the
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FIGURE 7. Comparison of ECG signal reconstruction quality (PRD)
between ENCRUST and the other encoding schemes.

ENCRUST scheme’s PRD value is well below nine, whereas
the normal CS and uncoded scheme have average PRD more
than 30. Note that the reconstruction quality of an ECG signal
is considered good if the PRD< 9 [10]. For the RS codes,
if the channel errors are below its error correction capability,
then it reconstructs the ECG signal with PRD equal to zero;
otherwise, it fails to reconstruct the ECG signal. As the o
increases, the reconstruction quality for RS decreases dras-
tically, whereas ENCRUST consistently performs well.

Now, application of ENCRUST is shown to achieve error-
robust information secrecy for images. We choose advanced
encryption standard (AES) for information secrecy and RS
(255,223) code for error correction to compare with the
ENCRUST. We use image of size 512 x 512. In the conven-
tional settings first image is encrypted using AES after that
the RS (255,223) coding is applied and then modulated using
16QAM symbols. To emulate noise signal we use the channel
model described in subsection V-A.

For the ENCRUST image is divided into block of size
32 x 32. Each block is vectorized into a vector of length
N = 1024. ENCRUST is designed for M = 307 and
L = 407 and each vectorized image block is encoded using
Eq. 20. For these parameters, CR achieved by the ENCRUST
scheme is 60%. Each element of the encoded measurement
vector is represented in 8-bit and modulated into two 16QAM
symbols. The decoding is performed using the decoding algo-
rithm described in Algorithm 1. The APSNR is used as
the performance metric to evaluate the reconstructed image
quality. The APSNR of Lenna image is shown in Fig. 8 for
the channel condition of AWGN noise power Ny = 1072 Py,
and y = 10 dB. It can be observed from Fig. 8 that once the
errors are more than the number of error correction capability
of the RS codes, the reconstruction quality decreases drasti-
cally. In contrast, ENCRUST’s degradation in reconstruction
quality is graceful.

It can also be observed from Fig. 8 that for the ENCRUST
scheme, APSNR is greater than 30 dB for n; < 4.1%,
whereas the AES+RS solution can achieve APSNR greater
than 30 dB only if ; < 1.9%. Furthermore, we use image
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FIGURE 9. lllustration of robustness of the ENCRUST scheme and AES+RS
on images. Images (a) and (c) are reconstructed using AES+RS, and

(b) and (d) are reconstructed using ENCRUST for 5; = 2.4% and

0 = 4.9%, respectively.

visualization to demonstrate the robustness of the ENCRUST
scheme. Fig. 9 (a) and (b) show the reconstructed images
under n; = 2.4%, while Fig. 9 (c) and (d) show those
reconstructed images under n; = 4.9%. It can be observed
from Fig. 9(a) and (c) that reconstruction quality using
the AES+RS solution deteriorates significantly, whereas
the reconstructed images using the ENCRUST scheme in
Fig. 9(b) and (d) have much better quality. In addition, using
the proposed scheme the reconstruction quality decrease is
very mild even when the channel errors exceed its error
recovery capability.

D. DISCUSSION

The ENCRUST scheme uses the concept of compressive
sensing to achieve compression, secrecy, and error recov-
ery. The ENCRUST scheme requires O(LN) computation
to perform all the functions, whereas the state-of-the-art
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schemes require way more than this. For example, a sim-
ple sparsifying transform will require O(N?) computations
followed by Huffman coding will require O(SlogS) for S
elements in the Huffman dictionary [57]. Forward error cor-
recting encoding will also require slightly less than O(n?),
where n is codeword size [58]. Apart from these, to provide
information secrecy additional cryptographic algorithm is
needed. Traditional ways of achieving compression, infor-
mation secrecy, and error recovery are challenging to be
implemented in resource constrained [oT devices. As in
[10], it is experimentally shown that the life of IoT sensor
decreases using Wavelet+Huffman coding as compared to
the unncoded signal transmission. Besides the low computa-
tion complexity of the ENCRUST scheme, it is feasible to
incorporate the sensing process into the proposed scheme,
which makes it a promising solution for IoT sensor devices.

VI. CONCLUSION

In this paper, we prove that the projection-based encoding
can be used for error recovery exploiting the sparsity present
in the signal without expanding the signal dimension. Using
the projection-based encoding and CS framework, we design
the ENCRUST scheme which is able to realize compres-
sion, encryption and error recovery through simple matrix
multiplications. We evaluate the performances of the pro-
posed scheme under various inference channel conditions in
comparison with the exiting schemes. The proposed scheme
consistently shows its great performance even under era-
sure channel with low SINR. This is desirable for diverse
IoT solutions that are operated in harsh wireless environ-
ment with high interference. Furthermore, it is proved that
ENCRUST achieves asymptotic perfect secrecy for constant
energy signals.

In the future, we plan to implement ENCRUST in resource-
constrained [oT devices such as TelosB mote and carry out
energy measurements to quantitatively analyze energy gain
of ENCRUST. The ENCRUST scheme’s performance will
also be evaluated using a universal software radio periph-
eral (USRP) development kit.
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