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ABSTRACT The burden charging operation in blast furnace is one of the most important operations
during iron-making process. In this paper, we focus on the study of precise burden charging operation,
which involves two aspects: How to obtain and form the optimal burden surface shape. For the first
problem, we construct a mapping model between the burden surface characteristic parameters and the
comprehensive operational performance indicators of the blast furnace, and transform the search of optimal
burden surface shape into the target optimization problem. The second problem refers to establishing a
suitable burden charging strategy based on the basic burden surface and the optimal burden surface. In our
work, by adaptively adjusting the opening degree of the throttle valve, it is possible to control accurate burden
volume during the rotation of the charging chute, which can make sure to spill the appropriate burden volume
on the suitable charging units. In the simulation of experiments, we collected the real industrial data during
iron-making process and demonstrated the efficiency of the proposed model.

INDEX TERMS Bell-less top blast furnace, burden optimal model, precise charging strategy, multi-objective
optimization.

I. INTRODUCTION
The iron and steel industry is a pillar industry of the national
economy in China, of which the ironmaking process in blast
furnace is the most important component. Blast furnace (BF)
contains a lot of complex physical and chemical reactions
during ironmaking process [1] Fig. 1 presents a simple
schematic diagram for the production of hot metal in BF.
There are two kinds ofmaterial movements inside the BF. The
solid raw materials including the ore and coke are charged
based on the bell-less top feeding system form the top of BF,
while the hot air, sometimes with some auxiliary fuels like the
oxygen and pulverized coal is equipped through the bottom
tuyeres and up to the hearth [2]–[4] The thermochemical
reduction of iron oxide ore by carbon monoxide is the main
principle inside the BF. The continuous and stable thermal
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environment is the prerequisite for the production of molten
iron [5], [6] The operating mechanism of ironmaking process
often has the characteristic of nonlinearity, large time delay,
serious noise and distributed parameters, resulting the control
methods, especially for the burden charging operation, are
mainly based on the experience. The automatic control of
BF ironmaking process is a hot topic in the academic and
industrial research [7], [8].

The burden charging operation is very important during
iron-making process in BF [9], [10] The most commonly
used charging way is the bell-less charging operation. After
being feeded into the parallel or serial hoppers, the ore and
coke would be sown layer by layer through the rotating
chute [11], [12] The burden surface shape can directly affect
the gas flow distribution during iron-making process [13].
In general, theV -type burden surfacewith suitable platform is
beneficial and can satisfy the criterion of the development of
gas flow: making the center gas flow active and the marginal
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FIGURE 1. Blast furnace.

gas flow suppressive [14] However, the research of optimal
burden surface shape is seldom. The burden surface shape and
the operating status of BF are closely related. It is reasonable
to transform the search of optimal burden surface shape into
the multi-objective optimization problem of comprehensive
operational performance indicators in BF production.

The multi-objective optimization problem of iron-making
process in BF has drawn attention of the research in industry
and academia. Liu made the constructal design of the BF and
regarded it as a multi-objective optimization problem [15]
The optimization function is integrated with hot metal yield
and useful energy. The optimization variables are some pro-
duction parameters, like the oxygen enrichment and opera-
tion temperature et al. Helle designed the top gas recycling
strategy in order to reduce the carbon dioxide content in
the atmosphere [16] Considering the conflicting goals of
reducing both production costs and emissions, the strategy
can be formulated as a multi-objective optimization problem.
Hua et al. established the optimization model for the ingredi-
ent during BF production based on NSGA-II algorithm [17]
The goal is to reduce the production cost and CO2 emissions.
The research about the optimal burden surface shape and
charging strategy is seldom. Watakabe et al. proposed a high
ratio coke mixed charging technique in the JFE technical
report [18] Zhou et al. introduced an intelligent charging
system, which makes real-time adjustment for the throttle
opening degree after calculating the error between the real
and ideal burden surfaces [19] However, they have not pro-
posed the method to determine the shape of optimal burden
surface, while the operability of the strategy is not strong.

In this paper, we focus on two contributions refer to the
charging operation during iron-making process. The first is
the multi-objective optimization model for the burden surface
shape, where three premises are put forward: (1) The pur-
suit of stability is the main element during BF production.
The optimal burden surface cannot destroy the production
balance in BF. (2) There exists great differences for the vol-
ume, production time, operating habit et al. in different BFs.

Thus the optimal burden surface shape is not unique.
(3) There are various operating statuses during iron-making
process in BF. It should set different optimal burden shapes
for different production statuses. Thus the optimal burden
surface shape is dynamic and variable. The second contri-
bution is the design of precise charging strategy based on
the online adjustment of the throttle opening degree. The
throttle opening degree can affect the burden volume per
unit time. During the process of rotating charing operation,
the adjustment of throttle opening degree can make sure to
spill the appropriate volume of the burden on the suitable area.
It should be mentioned that the complexity and opacity of BF
production indicate that the shape of the burden surface is not
the only factor affecting the production status of BF. Ourwork
opens up a new idea for the smart production of iron-making
process in BF. More details about these two innovations are
as follows.

(1) In this paper, Extreme Learning Machine(ELM) algo-
rithm [20] is applied to establish the prediction model for
the operating performance indexes. The model inputs are the
features of burden surface, while the performance index is
a comprehensive indicator, which contains various variables
that react to the production status of BF. Then the Differen-
tial Evolution (DE) algorithm [21] optimizes the prediction
model and searches the optimal burden surface shape.

(2) During the charging process, the rotating chute evenly
spread the solid raw materials on the basic surface. With the
change of the inclination angle of the chute, the burden can
cover the entire surface. According to the charging mathe-
matical model, we can calculate the falling points of burden.
The concept of ’charging unit’ is proposed based on the
ring partition for the basic burden surface. Then the required
volume on different charging units can be calculated, while
the corresponding throttle opening degrees can be obtained.

It is necessary to explain why the ELM algorithm is used
for establishing the prediction model. ELM algorithm is a
general neural network framework for regression and classi-
fication problems. Thanks to the random selection of hidden
node weights, its most prominent advantage is fast training
and inference speed, which is very suitable for iron-making
production in BFs that emphasizes timeliness. In addition,
there have been many references [20] showing that ELM
is superior to other traditional algorithms, such as SVM,
BP, etc. in term of generalization ability. Last but not least,
it is inappropriate or unreasonable to employ more powerful
machine learning algorithm, such as deep learning framework
like CNN or RNN. Based on the 2D definition model for the
burden surface, we abstract the burden shape into 7 features,
and ELM algorithm can well deal with low-dimensional fea-
ture data.

The paper is organized as follows: Section II presents the
optimal model for burden surface, including the introduc-
tion of ELM algorithm and the DE optimization method.
Section III introduces the charging strategy, including the
array radar detection technology and the throttle opening
model. Simulation results are presented in Section IV, while
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Section V gives the conclusion and future work of our
paper.

II. MODELING OF OPTIMAL BURDEN SURFACE
In this section, we establish the optimal model for the shape
of burden surface. ELM algorithm is applied to establish the
relationship model between the burden surface and the pro-
duction indexes. Then DE optimization algorithm searches
for the optimal shape of burden surface based on the improve-
ment of production indexes.

A. EXTREME LEARNING MACHINE
The ELM algorithm was originally proposed by Huang sub-
ject to a general single hidden layer network. ELM gets
rid of human tuning with random initialization of learning
parameters. Then the output weights can be determined by
the theory of least square method [20], and [22]

Given a training set consisting of N arbitrary distinct sam-
ples S = {(xi, ti) |xi ∈ Rn, ti ∈ Rm, i = 1, 2, · · ·,N }, the
network function with Ñ hidden nodes can be formulated as

fÑ =
Ñ∑
j=1

βjG
(
aj, bj, xi

)
= ti, i = 1, 2, · · ·,N (1)

where aj and bj are the learning parameters which will
be determined randomly. βj is the output weight matrix
connecting the jth hidden and the output nodes. xi and
ti are the feature and output of the ith observation respec-
tively. G

(
aj, bj, xi

)
is a nonlinear piecewise continuous func-

tion which satisfies ELM universal approximation capability
theorems [23]

The above Ñ equations can be written in the matrix form
as

Hβ = T (2)

where H =

 G (a1, b1, x1) · · · G
(
aÑ , bÑ , x1

)
...

. . .
...

G (a1, b1, xN ) · · · G
(
aÑ , bÑ , xN

)

N×Ñ

is

called output hidden layer matrix.
After the fixed nonlinear transformation with no adjustable

learning parameters, the hidden layer of ELM network maps
the input space onto a new linear space, named ELM feature
space [23] The ELM model with a single-output node can be
formulated as the following optimization problem:

minimize JELM =
1
2
‖β‖2 + C

1
2

N∑
i=1

‖ei‖2

subject to : h(xi)β = ti − ei (3)

where ei represents the training error of the ith observa-
tion. h(xi) is the ith row of output hidden layer matrix.
C is a use-specified parameter and it can provide a trade-
off between the training error and the norm of the output
weights.

According to the Karush-Kuhn-Tucker(KKT) theory [24],
the above ELM model is equivalent to solving the following

dual optimization problem:

LELM =
1
2
‖β‖2 + C

1
2

N∑
i=1

‖ei‖2

−

N∑
i=1

m∑
j=1

τij
(
h(xi)βj − tij + eij

)
(4)

Then one can get

∇ELM = β + CHT (T − Hβ) = 0 (5)

Then the output weights can be estimated as follows:

β̂ =

(
IÑ
C
+ HTH

)−1
HTT (6)

where IÑ is an identity matrix with dimension Ñ .
The biggest advantage of the ELM algorithm is the fast

training speed. Here we present the discuss of cost effec-
tiveness of ELM algorithm. For the basic ELM framework,
it contains the calculation of hidden layer output matrix
and the calculation of output weights. The time complex-
ity of the calculation of hidden layer output matrix H is
O
(
2 ∗ n ∗ m ∗ Ñ

)
; the time complexity of the calculation of

HTH isO
(
Ñ 2
∗ n
)
; the time complexity of the calculation of

output weights is O
(
Ñ 3
)
+O

(
Ñ 2
∗ n2

)
, where n and Ñ are

presented in Section 2.2. So the total time complexity of the
basic ELM algorithm is O

(
2 ∗ n ∗ m ∗ Ñ

)
+ O

(
Ñ 2
∗ n
)
+

O
(
Ñ 3
)
+O

(
Ñ 2
∗ n2

)
. Fast training and reasoning time can

ensure the timeliness of algorithm implementation.

B. DIFFERENTIAL EVOLUTION ALGORITHM
Differential Evolution (DE) algorithm is a parallel direct
search method, which can minimize the function in lin-
ear, non-differential and continuous space [25] Compared
with the traditional genetic algorithm, they have similar-
ities and differences. DE algorithm also depends on the
manipulation and efficiency of three main operators: muta-
tion, crossover and selection. DE algorithm preserves the
population-based global search strategy, which reduces the
complexity of genetic operations by employing real-coded,
differential-based mutation operation and one-to-one com-
petitive survival strategies. DE algorithm has been applied
in many fields, such as artificial neural network, chemical
electrical, mechanical design, bioinformatics et al. 26]

Fig. 2 presents the scheme of DE optimization algorithm.
DE starts with a population of NP candidate solutions which
may be represented as Xi,G, i = 1, 2, · · ·,NP, where i
index denotes the population and G denotes the generation to
which the population belongs. The initial vector population
is chosen randomly, which should cover the entire parameter
space. Then DE selects the differences vector of any two
individuals as a basic individual in the initial population,
while the remaining individuals are selected as the refer-
ence individuals. DE generates the new parameter vectors by
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FIGURE 2. DE algorithm.

adding the difference vector weighted by the certain rules
to a third vector. This operation is called mutation. Then
the trial vector is generated after mixing the mutated vector
with the parameters of another predetermined vector, which
is the main idea in crossover operation. The last operation is
called selection, in which DE chooses the better parameter
vector with lower cost function between the trial vector and
target vector in the following generation [27] DE algorithm
is employed to make optimization for the prediction model of
performance index in BF production. The optimized objects
are the features of burden surface.

C. OPTIMIZATION MODEL FOR BURDEN SURFACE
In this subsection, we establish the optimization model for
the burden surface of BF based on the ELM algorithm and
DE algorithm. In order to better describe the shape of the
burden surface, we establish the feature extraction model for
the 2D burden surface, as shown in Fig. 3. The coordinate
system is set at the position of zero line near the BF throat.
Zero line is the x-axis, while the centerline in BF body is
the y-axis with down direction. Seven features are extracted
to represent the burden line, such that the distance between
the burden line and the zero position h1, the depth of the
hopper h2, the width of the hopper l1, the width of the
platform l2, the slop angle of the hopper α, the central angle of
the hopper β and the slope angle of edge region γ . The seven
features are consistent with the cognition of the operators to
the burden line. They will be employed in the optimization
process of burden surface.

Fig. 4 presents the optimization model for the burden line.
First, the regression model between the features of burden
line and the performance index of iron-making process is
established by ELM algorithm. The radial ratio between the
ore and coke can represent the distribution change of burden,
which is also the input of prediction model. As we all known,

FIGURE 3. 2-D definition for the burden surface.

FIGURE 4. The optimization model.

the indicator parameters of the lower operations, such as the
air temperature, air volume and oxygen enrichment, can also
affect the operating performances [28] In the optimization
model for the burden line, we should get rid of the impact
of lower adjustment. Thus the lower indicator parameters
are also set as the model inputs. However, they would not
the optimization variables during the optimization process.
DE algorithm is employed to search for the features of burden
line based on the optimal operating performances.

In the optimization model, we select the optimizing
index that can present the operating condition of BF. The
iron-making process of BF is complex andwithmany types of
operating conditions. Here an integrated optimization index is
selected, which constitutes with three individuals such that

(1) Gas utilization ratio. During the iron-making process,
the gas utilization ratio(GUR) refers to the conversion effi-
ciency of iron ore by the blast furnace gas. The improvement
of GUR is the embodiment of the technological progress in
BF operation. The calculation of GUR is as follows:

S =
V (CO2)

V (CO1)+ V (CO2)
(7)
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(2) Coke ratio. The coke ratio refers to the quality of the
coke required for smelting each ton of pig iron. The coke ratio
is one of the most important technical and economic indexes
in BF production. Smaller coke ratio often means the higher
efficiency. The calculation is as follows

R =
ma
m0

(8)

where ma is the quality of the coke, while m0 represents the
quality of pig iron.

(3) Permeability index. The permeability index is defined
as the ratio of air volume(Q) and the total pressure
difference(1P). It is a fast, intuitive and comprehensive
parameter to reflect the status of BF production. The improve-
ment of permeability index can ensure the stable operation of
BF. The calculation is as follows.

T =
Q

P2 − P3
=

Q
1P

(9)

The above indicators can reflect the operating conditions
of BF from different aspects29,30. And the operators often pay
different degrees of importance on the three indicators. Three
indicators affect each other, resulting that the optimization
model of burden surface is a trade-off optimization problem.
For example, a blast furnace with a higher air permeability
index often means a lower gas utilization rate, because the
gas used for the reduction reaction is often easy to slip away.
The degree of coke rate has a more or less impact on the
permeability index. In addition, the scale of three indicators
is different. The normalization is very necessary. Here we
consider the following standardized variables

S̄ =
‖Smax−S‖
Smax

R̄ =
‖R−Rmin‖

Rmin

T̄ =
‖Tmax−T‖

Tmax

(10)

where Smax and Tmax are the max or the expected values of the
gas utilization ratio and the permeability index respectively,
while Rmin is the min or the expected value of coke ratio. Thus
the total optimization index is as follows

P = w1S̄+w2R̄+w3T̄ (11)

where w1, w2 and w3 are the weights on the different
indicators.

The selection of weights is based on the pursuit of
iron-making process in BF, which would be determined in
advance [34]. In general, it should be satisfied that w1+w2+

w3 = 1. Then the optimization model for the optimal burden
surface can be summarized as

min P = F (x1, x2, · · ·, x7, h; l)

s.t.

{
x imin ≤ xi ≤ x

i
max

hmin ≤ h ≤ hmax
(12)

where xi presents the features of burden line, while hi is the
radial ratio between ore and coke.

III. PRECISE CHARGING STRATEGY
In this section, we present the study on precise charging based
on the optimal burden surface. The precise charging operation
aims to achieve the optimal burden surface by the appropriate
charging strategy, regardless of the shape of the basic bur-
den surface. The precise charging is the goal of automation
operation in iron-making process in BF, which can reduce the
charging cost and achieve the purpose of energy-saving and
emission reduction. The traditional charging rules contain
two variables, the chute angle and rotation numbers. The
sown burden volume is same on different locations on one
burden ring. Unscrupulously, it is rough charging way. In the
precise charging strategy, we add another additional variable
into the charging rules, the throttle opening degree. The new
charging rules are defined as follows

T =
{
α n γ

}
(13)

where α and n are the chute angle and rotation numbers
respectively, while γ represents the throttle opening degree.
Fig. 5 presents the precise burden charging scheme, includ-

ing three main operating procedures: burden surface inspec-
tion, required burden volume calculation and precise charging
operation. First, the 3D burden surface reconstruction is car-
ried out based on the phased array radar detection technique,
which can accurately obtain the point cloud data representing
the height information of burden surface. The basic burden
surface can be obtained. Second, based on the pre-set burden
charging parameters, such as the chute angle and the number
of rotations, the space motion model of the burden particles
can be established, which can get the dropping points of
burden particles on different charging stalls. We divide every
burden charging stalls into four units. Combined the optimal
burden surface shape, it is easy to calculate the required bur-
den volume on each charging unit. Finally, the mapping rela-
tionship between throttle valve opening degree and required
burden volume is established. By adaptively adjusting the
opening of the throttle valve, the burden material with appro-
priate volume can be sprinkled in the correct position, and
finally achieving the optimal burden surface.

FIGURE 5. The precise charging scheme.

In the precise charging strategy, Fig. 6 puts forward the
concept of charging units. Charging units refer to the frag-
mentation of one ring partition for burden surface. Based on
the height of optimal burden surface, the required burden
volume on different charging unit can be calculated.

VOLUME 9, 2021 45659



H. Zhang et al.: Precise Burden Charging Operation During Iron-Making Process in BF

FIGURE 6. The calculation of required volume of burden on the charging
units.

A. PHASED ARRAY RADAR DETECTION TECHNOLOGY
The industrial phased array radar detection system can
accurately obtain the height information of the solid bur-
den surface in the dark, high temperature and dusty harsh
environment31. It is a kind of 3D burden surface detection
device, which can receive the electromagnetic reflection echo
signals of multi-bean spot, resulting to obtain almost the
whole height information to the burden surface [32] The
phased array radar detection system solve the bottleneck
problem of less surface height data. Fig. 7 presents the phased
array radar detection system, where Fig. 7(a) is the phased
array radar device, while Fig. 7(b) present the point cloud data
of burden surface.

FIGURE 7. The phased array radar detection system. (a) The phased array
radar device; (b)3-D burden surface presentation. The color presents the
heights of burden surface, or the strength of the energy.

B. THE CALCULATION OF PARTICLE FALLING POINT
The circular charging strategy is the most commonly used
operation in BF. The chute, driven by themotor, spills the bur-
den uniformly. The burden materials will be charged into the
hoppers by the conveyor belts. During the discharge process,
the burden will flow down through the flow control gate, low
valve chamber, central throat tube to rotating chute. Then the
rotating chute distributes the burden circumferentially onto
the basic surface through the freeboard [33] Fig. 8 presents
the burden movement trajectory model. The burden materials
will pass through the flow control gate under a certain initial
speed v0, which can be calculated as

v0 =
M

πρ
(
2S/

Ls −
d/
2
)2 (14)

where M is the actual mass flow rate through the throttle,
kg
/
s. ρ is the bulk density of burden, kg

/
m3. S represents the

FIGURE 8. The burden movement trajectory model. (a) Cross section of
the throttle; (b) The force analysis for the burden on the chute; (c) The
force analysis for the burden in the free area.

projection area of the throttle outlet, m2. Ls is the edge length
of the throttle, m, while d represents the average diameter of
burden, m.
Here we consider the arc throttle, where the projection

area S and edge length Ls of the throttle can be calculated
as

S =
D2

4
arccos

(
1−

2h
D

)
+

(
h−

D
2

)
√
Dh− h2

Ls = D arccos
(
1−

2h
D

)
+ 2
√
Dh− h2

(15)

where D is the diameter of central throat tube, m.
The effect on the bow height h by the throttle opening

degree is serious, which can be obtained as

h =


r [sin (γ1)− sin (γ1 − γ )] , γ ∈ (0, γ1)
r [sin (γ1)− sin (γ − γ1)] , γ ∈ (γ1, γ2)

D, γ ∈ (γ2, γmax)

(16)

where r is the radius of throttle, m.
Then the burden particles will collide on the surface of

the rotating chute through the central throat tube. The initial
velocity of the particles moving on the rotating chute can be
calculated as

v1 = k
√
v20+2g (ha+hb) (17)
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while k presents the correction factor of particles collision. ha
is the effective height from flow control gate to hanging point
of rotating chute, m, while hb is the effective height from the
hanging point of rotating chute to colliding point of particles
on the surface of the chute, m.
Fig. (b) presents the force analysis of the burden particles

on the chute with a rotating speed of ω. The forces affecting
the burden include the gravity, G; the centrifugal force, Ft =
4π2mlω2 cos (α); the pressure force, FN = mg sin (α) −
4π2mlω2cos2 (α); the friction,Ff = µFN , where l represents
the moving distance of the burden particles on the rotating
chute and µ is the friction coefficient. Then the accelerated
speed of burden particles can be calculated as

a =
dv2
dt
= g (cos (α)− µ sin (α))

+4π2lω2 cos (α) (sin (α)+ µ cos (α)) (18)

Then we can get the speed of burden particles at the end of
the chute as

v2 =

 2g (sin (α)−µ cos (α))L
+4π2ω2 cos (α) (cos (α)+µ sin (α))L2

+(v1 sin (α))2


1/2

(19)

where L = L0 − d tan (α), and d is the vertical distance
between the chute hanging point with the chute surface, m,
while L0 is the length of the chute, m. After the movement
on the chute, the burden particles are discharged through
the freeboard. The particle will be affected by many kinds
of forces, mainly including the gravitational force, the drag
force, and the buoyancy force [34] The 3D coordinate system
is established in the freeboard as shown in (c) of Fig. 8, where
the sub-speeds of three directions can be calculated as

vx,2 = v2 cos (α)
vy,2 = πωL cos (α)
vz,2 = v2 sin (α)

(20)

We present the meaning of the main symbols used in the
following deviation. vg,x , vg,y and vg,z represent the gas flow
velocities in the x, y and z coordinates respectively,m/s; ρg is
the gas density, kg/m3; Vp is the particle volume, m3; dp is
the particle diameter, m; µg is the gas viscosity coefficient,
Pa · s; φ is the shape fraction; ax , ay and az are the accel-
erated velocities of the particle in the x, y and z coordinates
respectively, m/s2;
The particles depending in the freeboard are affected by

the buoyancy force, which is represented by Fb, Fb = ρggVp.
The drag force in every coordinate can be calculated asFd,i =
C
(
vi,2 − vg,i

)2
, i = x, y, z. Then one can get the following

three equations to describe the movements of the particle in
the freeboard. 

−max = Fd,x
−may = Fd,y
maz = mg− Fd,z − Fb

(21)

The coefficient of the drag force is given as follows:

C =
1
2

[
1+ b1Reb2 +

b3Re
b4 + Re

]
πr2

8
ρg (22)

where
b1 = exp

(
2.3288− 6.4581φ + 2.4486φ2

)
b2 = 0.0964+ 0.5566φ
b3 = exp

(
4.905− 13.8944φ + 18.4222φ2 − 10.1599φ3

)
b4 = exp

(
1.4681+12.2584φ−20.7322φ2 + 15.8855φ3

)
(23)

and

Re =
ρgdp

∣∣v− vg∣∣
µg

(24)

Based on the interval width division, one can obtain the
height of the burden on every interval. Then one can divide
the interval into four parts. This division is useful for the
following introduction of precise charging strategy.

C. PRECISE CHARGING OPERATION
This subsection designs the precise charging strategy, which
aims to charge the appropriate volume of burden on the
corresponding charging units. The auto-adjustment model of
the opening degree of the throttle is established. The opening
degree of throttle controls the cross sectional area of burden
flowing, and thus control the burden volume per unit time.
It is important to establish the relationship model between the
required volume of burden on the four charging units on one
interval and the opening degree of throttle.

Fig. 9 presents the relationship between the throttle open-
ing degree and the projection area, where one can see the
projection area increases monotonically with the opening
degree of the throttle until the maximum opening degree.
Suppose the chute rotates at the speed of ω, The time passing
the jth charging unit on the ith surface stall can be calculated
as

1ti,j =
2π
4ω

(25)

Within this time period, the burden volume out of the
throttle can be calculated as

Vi,j = ni · v01ti,jS (26)

where ni represents the rotation number of the ith charging
stall.

During the charing process, the adjustment rule of the
throttle opening degrees is based on the required burden
volume, which meets the need of precise charging.

IV. SIMULATION RESULTS
In this section, we present the simulation results based on the
real industrial data of BF with 2500 m3 volume. There are
three main simulations. The first refers to the calculation of
optimal burden surface shape based on the historical phased
array radar detection data. Then we calculate the required

VOLUME 9, 2021 45661



H. Zhang et al.: Precise Burden Charging Operation During Iron-Making Process in BF

FIGURE 9. The relationship between the throttle opening degree and the
projection area.

burden volume on the charging units based on the burden
surface division strategy. In the end, the precise charging
operation results are presented. Many relevant parameters of
the bell-less top charging equipment and the calculation of
interval width are presented in the above section. We list the
main parameters in Table 1. Table. 2 presents the charging
rules, including the chute angle and its rotation numbers for
charging ore and coke. In order to ensure the fairness of
the simulation comparison test, all the simulations have been
conducted in Matlab 7.8.0(2009a) running on a desktop PC
with AMD Athlon(tm) X2 250 processor, 3.00-GHz CPU
and 2G RAM.

TABLE 1. The simulation parameters.

TABLE 2. The charging rules.

A. 3D BURDEN SURFACE RECONSTRUCTION AND
OPTIMAL BURDEN SURFACE MODEL
Here we present the simulation of 3D burden reconstruction
and the optimal burden surface model based on the real
phased array radar detection data. The operating environment
of iron-making process is complex, resulting that burden
surface detection data is often contaminated by noise. It is
important and necessary to make denoising to the raw data.
Fig. 10 presents 3D dot graph of blast furnace surface data,

FIGURE 10. Phased array radar data.

where the blue real points are the raw detection data, while
the red circles represent the remained data after denoising
process. The detected points can cover the whole burden
surface, and present the rough shape of burden surface.

In the burden surface optimization model, we make the
regression model between the surface shape and the compre-
hensive performance index based on ELM algorithm. Here
two indicator variables are employed, gas utilization ratio
and permeability index, which are mutually exclusive in a
sense. In general, higher gas utilization ratio means the gas
has been fully reacted, which corresponds to worse perme-
ability index. When the gas is easy to erupt, gas utilization
ratio means is relatively lower, corresponding to better per-
meability index. In the simulation experiment, in order to
avoid the weighted bias caused by different data dimensions,
the data was standardized in the data preprocessing stage.
We employ the random sampling method to divide the data
into training set and testing set at a ratio of 4:1. In order to
verify the effectiveness of the ELM algorithm in processing
blast furnace data, SVMandBP algorithms are also employed
to conduct the simulation experiments. In order to make the
comparison results more convincing, we adopt the k-fold
cross-validation method (k = 10) and carry out simulation
experiments 50 times, and take the average values as the final
simulation results.

According to the ELM algorithm theory, the fitting effect
of the ELM algorithm will gradually become better as the
number of hidden nodes increases. The corresponding train-
ing timewill also increase, while facing the risk of overfitting.
Fig. 11 and 12 present the simulation results of training error,
testing error and training time with the increase of number
of hidden nodes using partial simulation data, which provide
good support for choosing the number of hidden nodes. From
the simulation results we can see, that as the number of
hidden nodes increases, the training accuracy and testing
accuracy are improved, and at the same time, the training time
also gradually increases. When the number of hidden nodes
increased to about 1500, the testing error reaches the mini-
mum, and increases later, which shows that this is the critical
point of overfitting. In this way, the appropriate number of
hidden nodes can be selected accurately.

Fig. 13 and Fig. 14 present the simulation results for the
regression of gas utilization ratio and permeability index
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FIGURE 11. Simulation accuracy and training time with the increase of
number of hidden nodes (gas utilization ratio).

FIGURE 12. Simulation accuracy and training time with the increase of
number of hidden nodes (permeability index).

based on ELM, SVR and BP algorithms. For ELM and BP
algorithms, we select the same number of hidden nodes based
on simulation results of Fig. 11 and 12. The number of
hidden nodes is set to 1500 for gas utilization ratio regres-
sion, while 1000 for permeability index regression. And
for SVM, the popular Gaussian kernel function K (u, v) =
exp

(
−γ ‖u− v‖2

)
is used. It is known that the performance

of SVM is sensitive to the combination of (C, γ ). We apply
50 different values ofC and 50 different values of γ , resulting
in a total of 2500 pairs of (C, γ ), and the best parameter
pair is selected. In order to make the simulation results look
clearer, we zoomed in on the local area. From the simula-
tion results we can see that, compared with the SVR and
BP algorithms, the ELM algorithm performs better when
fitting blast furnace production data. In addition, the blast
furnace production furnace conditions are changeable, and
the data changes seriously over time. The ELM algorithm
can capture data changes and achieve high-precision data
fitting.

In addition to carrying out qualitative simulations, we also
calculate the quantitative results of the regression experi-
ments. Table 3 and Table 4 present the simulation results,

TABLE 3. The simulation results for gas utilization ratio regression.

TABLE 4. The simulation results for permeability index regression.

where the columns named ‘‘Parameters’’ show the optimal
hyperparameter selection for different algorithms. Taking
Table 3 as an example, (3, 1500) in the BP algorithm means
that the network structure has three layers and the number
of hidden nodes is 1500;

(
210, 24

)
is the optimal value for

the parameter pair of (C, γ ) in SVR algorithm; 1500 in ELM
algorithm represents the number of hidden nodes. From the
simulation results we can see that, relatively speaking, ELM
algorithm achieves the best trade-off between training time
and simulation accuracy, which can meet the real needs of
iron-making production in BF.

We select the production data of the BF in a certain charg-
ing period, and employ the DE algorithm to find the optimal
material surface. Fig. 15 presents the simulation result of DE
algorithm for the search to the optimal burden surface. With
the increase of iterative generations, the performance index
reduces gradually, and tends to be stable. Table 5 presents
the optimal features of burden surface and the radial ratio
between the ore and coke. In iron-making production of BF,
it is difficult to determine the benefits of an operation in time.
The determination of the optimal burden surface follows the
same rule. The best way to determine whether the burden
surface shape is appropriate is to rely on expert experience.
We feed back the shape of the burden surfaces under differ-
ent operating conditions obtained by the proposed model to
experts with rich operating experience, and they are profes-
sionally recognized.

B. THE REQUIRED BURDEN VOLUME CALCULATION ON
CHARGING UNITS
The calculation of the required burden volume on charging
units is the important element of precise charging process. In
this paper, we obtain the width of ring partition on burden
surface through the determination of falling points of the
burden particles on different charging stalls. Fig. 16 presents
the results of falling points, where the width of ring partition
can be calculated based on the spacing between the red and
blue lines. From the drop points of the burden material on
different stalls, we can see that, the falling points are not
on concentric circles, which is due to the asymmetry of the
charging device.
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FIGURE 13. ELM regression result for gas utilization ratio.

FIGURE 14. ELM regression result for permeability index.

TABLE 5. The optimal burden surface results.

It is very easy to calculate the required burden material
volume after obtaining the optimal burden surface shape and
the dropping points distribution. Table 6 presents the required
burden volume on different charging units subject to the coke
and ore. Fig. 19 shows the information of the basic burden
material surface and required burden material for 9 stalls.

The required burden material volume among different stalls
reflects a significant difference. In the charging process, it
is wrong to treat charging operations at different positions
equally. The charging parameters about the auto-adjustment
of the throttle opening degree and the chute rotation speed
would be determined based on the results of Table 5.
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FIGURE 15. The regression results of DE algorithm.

FIGURE 16. The falling points of the burden particles.

C. THE PRECISE CHARGING OPERATION
Based on the required burden volume results from Table 6,
one can obtain the auto-adjustment model of the throttle

FIGURE 17. The falling points of the burden particles.

FIGURE 18. The falling points of the burden particles.

opening degrees. It is worth mentioning that there is no
analytical solution for the relationship between the required
burden volume and the throttle opening degrees. However,
there is a one-to-one correspondence between them, obtained
from Fig. 9. Through computer simulation and interpolation
operation, we can easily obtain the throttle opening degrees
corresponding to different burden material volumes.

FIGURE 19. The precise charging operation simulation. The red bar represents the original burden surface; the blue bar
represents the required burden volume; the yellow curve represents the center points of the required burden volume;
the black curve represents the throttle opening degrees.
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TABLE 6. The required burden volume.

Fig. 17 and Fig. 18 present the changing results of the
throttle opening degrees for the ore and coke respectively. The
charging operation in BF is a continuous operation process.
The rules of opening values of the throttle would be set in
advance, which can make sure to spill the appropriate volume
of burden to the correct areas.

Fig. 19 presents the precise charging operation simulation
results. We have validated the proposed precise charging
model on a real blast furnace. Based on the radar detection
technology, we obtain the real burden surface shape, which is
in line with the optimal burden surface.

V. CONCLUSION
The iron-making production in BF is an extremely complex
industrial process, in which the charging operation plays an
important role in high-quality development. A general precise
burden charging strategy is proposed. It can realize the opti-
mal burden surface shape by adaptively adjusting the opening
degree of the throttle valve on the basic burden surface,
where the optimal burden surface can be obtained through
the index optimizing strategy. Simulation experiments using
real production data in blast furnaces verify the effectiveness
of the precise burden charging model. Here we present two
hot open problems for future research.

(1) For the ELM algorithm applied in the regression model
of iron-making production index, how to determine the num-
ber of hidden nodes appropriately is a topic worth studying.

The number of hidden nodes affects the fitting performance
of the ELM algorithm. Although there are many methods to
study how to determine the number of hidden nodes in the
ELM algorithm, there is still no unified specification. In most
cases, we can only use experimental simulation to determine
the appropriate number of nodes.

(2) The iron-making in BF is an online production process.
It is necessary to build an online, real-time updated regression
model.

Iron-making production in blast furnace is a continuous
process. Production status changes over time. Therefore,
it is necessary to establish an online regression model for
the production index during iron-making process. OS-ELM
algorithm is the basic framework of online ELM algorithm.

However, after our verification, the OS-ELM algorithm does
not work well. The reason is that, expect for the time-series
characteristics, there is also the large delay during blast fur-
nace production data. So, how to process the production data
online based on ELM framework is an open problem.
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