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ABSTRACT This paper addresses an augmented nonlinear lateral vehicle and lane keeping dynamics in
the presence of some unknown disturbances. In a geometric basin, considering unobservable spaces, their
orthogonal complements, and using control invariant properties, a disturbance decoupling mechanism is
designed for the mentioned dynamics. Afterward, a nonlinear tracking controller is designed to steer the
vehicle on a reference path. The obtained disturbance decoupling and tracking controllers are implemented
on a typical passenger car in a simulation environment to demonstrate the effectiveness and performance
of the proposed method. It is shown that the controller decouples both the uniformly distributed and
exponentially attenuated disturbances from the output.

INDEX TERMS Control invariant, disturbance decoupling, exponential stability, nonlinear lateral vehicle
dynamics, tracking control.

I. INTRODUCTION
Autonomous vehicle as a progressing technology has now
attracted many attentions from various different disciplines
and as a result, most giant auto manufacturers like BMW
and Toyota are investing billions of dollars for develop-
ing this technology. Thanks to advances in electronics and
telecommunication systems, the technology of such vehicles
has a great growth. However, many challenges still remain
in this ongoing area [1]. Some of these challenges can be
classified in the following categories: lane change control [2],
model recognition [3], stability control [4], and tracking
control [5], [6].

The appearance of the control system can be seen in dif-
ferent levels of dynamics of vehicle. Vehicle yaw, lateral
and longitudinal dynamics control are discussed in litera-
tures with various control methods like sliding mode [7]–[9],
output feedback [10], [11], fuzzy methods [12], [13], model
predictive control [13], [14], gain scheduling [15], [16], linear
quadratic regulator [17] and neural networks [18]. Among
these diverse control systems, disturbance decoupling is one
of the most important topics in which, in the presence of some
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unwanted conditions, the vehicle has to be comforted for its
passenger or track a desired trajectory.

For confronting with disturbances, several methods are
developed in control systems where a popular one is a
robust control technique [19]–[21]. In this method, differ-
ent approaches like gain scheduling [22] and fuzzy tech-
nique [23] are employed. There is anothermethod to deal with
disturbances which decouples them from desired outputs,
called disturbance decoupling technique. Although distur-
bance decoupling is widely used in engineering applications
like [24]–[30], there is a few research about applications
of this technique in autonomous vehicles [31]. A powerful
approach for disturbance decoupling is a geometric one,
which in spite of its advantages, like giving sense to control
designers, is not considered in the researches of autonomous
vehicles yet.

In this paper, at the first step, a general nonlinear lateral
dynamics of an autonomous vehicle is derived. Afterward,
using some simplifying assumptions, the nonlinearity of the
obtained model is reduced and hence the model is augmented
with the lane keeping dynamics. Then, the error dynamics
are calculated by subtracting the reference dynamics from
the overall ones. All classes of disturbances that are decou-
plable from lateral deviation are investigated via a geometric
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FIGURE 1. Vehicle’s parameters and tire side slip angles.

approach. Using control invariant property, a disturbance
decoupling controller is designed and then, a tracking con-
troller is proffered which makes the states exponentially track
their references in the absence of the disturbances. In the
presence of the disturbances, the error dynamics remain sta-
ble and just the lateral deviation, which is decoupled from
the disturbances, exponentially converges to zero. Finally,
The disturbance decoupling and tracking controller, and the
obtained results are summarized in a theorem. To show the
effectiveness of the proposed controller, we implement the
technique on a typical vehicle in the presence of two kinds
of disturbances: exponentially attenuated disturbances and
uniformly distributed ones. Our main contributions can be
summarized as follows:

1) Using a geometric approach for disturbance decoupling
purpose in the autonomous vehicles for the first time.

2) Utilizing nonlinear dynamics of the lateral vehi-
cle’s motion which reduces the errors arise from
linearization.

3) Validating the robustness of the proposed algorithm
with respect to vehicle parameter uncertainties.

The organization of the paper is as follows: Section II
discusses the lateral vehicle dynamics augmented with lane
keeping ones and states what the problem is. The distur-
bance decoupling and tracking controllers are investigated
in Section III. Some illustrative examples are employed to
verify the importance of the achieved results which brought
in Section IV. Finally, some concluding remarks are presented
in Section V.

II. MODEL DESCRIPTION AND PROBLEM STATEMENT
As a general description of our problem, at the first step,
consider Fig. 1a, in which the essential parameters are intro-
duced. Using Newton’s Second Law for motion along the
lateral axis, one can obtain

may(t) = Ff (t)+ Fr (t) (1)

in which

ay(t) = v̇y(t)+ vxψ̇(t)

Ff (t) = fy1 (t) = fy2 (t)

Fr (t) = fy3 (t) = fy4 (t)

and ay, vy, vx ,m, ψ̇ , Ff and Fr are the lateral acceleration and
velocity, longitudinal velocity, vehicle mass, yaw rate, the lat-
eral tire forces of front and rear wheels, respectively. It is
assumed that the longitudinal velocity is constant. In addition

Izψ̈(t) = lf Ff (t)− lrFr (t) (2)

where Iz, lf and lr are the yawmoment of inertia, and distance
from the front and rear axle to the center of gravity as depicted
in Fig. 1a.

Among different existing tire models (see for
instance [32], [33] the model presented in [33], i. e. the
Pacejka model, is chosen because it is more fitted with
experimental data. According to Fig. 1b, the lateral tire forces
can be written as (3) and (4), as shown at the bottom of the
next page, and the side-slip angles are defined as:

αi(t)

= −tan−1
(
vy(t)−(nt cos δ(t))δ̇(t)−(nt cos δ(t)−lf )ψ̇(t)

vx−(nt sin δ(t))δ̇(t)−(nt sin δ(t)+(−1)i
sb
2 )ψ̇(t)

)
+δ(t) (5)

for i = 1, 2, and

αi(t) = − tan−1
( vy(t)− lr ψ̇(t)

vx + (−1)i( sb2 )ψ̇(t)

)
(6)

for i = 3, 4. In (5)-(6), nt and sb are tire-road length contact
and tire-base, respectively, and bi, ci, di, and ei are constants
related to the tire characteristics, road, and vehicle operational
condition. Moreover, it should be mentioned that the only
control input in this problem is δ(t) which is the steering
angle.

Since the derived model is so complex that its handling
is intricate, some simplifications are introduced and thus,
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the following results can be obtained [34]:

Ff (t) = 2Cf (δ(t)− θf (t)) (7)

Fr (t) = −2Crθr (t) (8)

θf (t) = tan−1
(vy(t)+ lf ψ̇(t)

vx

)
(9)

θr (t) = tan−1
(vy(t)− lr ψ̇(t)

vx

)
(10)

where θf , θr , Cf and Cr are the angles between the velocity
vector and the longitudinal speed direction of front and rear
tire, and the front and rear tire cornering stiffness, respec-
tively. Using the obtained simplified formulas (7)-(10), vehi-
cle lateral dynamics is reduced to

v̇y(t) = −vxψ̇(t)−
2Cf
m

tan−1
(vy(t)+ lf ψ̇(t)

vx

)
−
2Cr
m

tan−1
(vy(t)− lr ψ̇(t)

vx

)
+

2Cf
m
δ(t)

ψ̈(t) = −
2Cf lf
Iz

tan−1
(vy(t)+ lf ψ̇(t)

vx

)
+

2Cf lf
Iz

δ(t)

+
2Cr lr
Iz

tan−1
(vy(t)− lr ψ̇(t)

vx

)
For the lane keeping purpose, two additional differential

equations describing lateral deviation, yL and tangent angle
(heading error), εL are needed, which can be represented
by [35]

ẏL(t) = vy(t)+ Tpvxψ̇(t)+ vxεL(t) (11)

ε̇L(t) = ψ̇(t)− vxρ(t) (12)

in which, ρ is the road curvature.

A. FORMAL STATEMENT OF PROBLEM
By defining x = [x1(t) x2(t) x3(t) x4(t)]T =

[vy(t) ψ̇(t) εL(t) yL(t)]T , consider the following dynamics
of the vehicle

ẋ1(t) = −vxx2(t)−
2Cf
m

tan−1
(x1(t)+ lf x2(t)

vx

)
−
2Cr
m

tan−1
(x1(t)− lrx2(t)

vx

)
+

2Cf
m

u(t)

+

k∑
i=1

pi1 (x)ωi(t) (13)

ẋ2(t) = −
2Cf lf
Iz

tan−1
(x1(t)+ lf x2(t)

vx

)

+
2Cr lr
Iz

tan−1
(x1(t)− lf x2(t)

vx

)
+
2Cf lf
Iz

u(t)+
k∑
i=1

pi2 (x)ωi(t) (14)

ẋ3(t) = x1(t)+ Tpvxx2(t)+ vxx4(t) (15)

ẋ4(t) = x2(t)− vxρ(t)+
k∑
i=1

pi4 (x)ωi(t) (16)

y(t) = hx(x(t)) = x3(t) (17)

in which u(t) = δ(t) and ωi’s are disturbances that origi-
nate from different sources, like uncertainty and variations in
vehicle parameters, simplifications, and external disturbances
like road bank angle and crosswinds. In the presence of these
disturbances, ωi’s, the goal is to

1) Specify the maximum number of different classes of
disturbances that can be decoupled from the lateral
deviation as the output.

2) Design a disturbance decoupler to dissociate these dis-
turbances from the output.

3) Design a tracking control law to track a reference path.

III. CONTROL DESIGN
In solving the aforementioned problem, we take two succes-
sive stages. The first step is designing a disturbance decou-
pler and after capturing this goal, we move to design the
tracking mechanism. Prior to these two steps, the reference
dynamics should be specified, so the following definition is
presented.
Definition 1: The reference road curvature ρ(t) is accessi-

ble if and only if there exists functions x1r (t), x2r (t), x3r (t),
x4r (t) and δr (t) such that

ẋ1r (t) = −vxx2r (t)−
2Cf
m

tan−1
(x1r (t)+ lf x2r (t)

vx

)
−
2Cr
m

tan−1
(x1r (t)− lrx2r (t)

vx

)
+

2Cf
m
δr (t)

ẋ2r (t) = −
2Cf lf
Iz

tan−1
(x1r (t)+ lf x2r (t)

vx

)
+
2Cr lr
Iz

tan−1
(x1r (t)− lrx2r (t)

vx

)
+

2Cf lf
Iz

δr (t)

ẋ3r (t) = x1r (t)+ Lx2r (t)+ vxx4r (t)

ẋ4r (t) = x2r (t)− vxρ(t)

yr (t) = x3r (t) (18)

Ff (t) =
2∑
i=1

di sin
(
ci tan−1

(
bi(1− ei)αi(t)+ ei tan−1(biαi(t))

))
(3)

Fr (t) =
4∑
i=3

di sin
(
ci tan−1

(
bi(1− ei)αi(t)+ ei tan−1(biαi(t))

))
(4)
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Introducing new functions

9−(z1,w1, z2,w2) = 1+ (
z1 − lrw1

vx
)(
z2 − lrw2

vx
)

+(
z2 − lrw2

vx
)2

9+(z1,w1, z2,w2) = 1+ (
z1 + lf w1

vx
)(
z2 + lf w2

vx
)

+(
z2 + lf w2

vx
)2

and utilizing the overall and reference dynamics (13)-(16)
and (18), the error dynamics becomes

ẋ1e (t) = −
2Cf
m

tan−1
( x1e (t)+lf x2e (t)

vx

9+(x1e , x2e , x1r , x2r )

)

−
2Cr
m

tan−1
( x1e (t)−lrx2e (t)

vx

9−(x1e , x2e , x1r , x2r )

)
−vxx2e (t)+

2Cf
m
δe(t)+

k∑
i=1

pi1 (x)ωi(t)

ẋ2e (t) = −
2Cf lf
Iz

tan−1
( x1e (t)+lf x2e (t)

vx

9+(x1e , x2e , x1r , x2r )

)

+
2Cr lr
Iz

tan−1
( x1e (t)−lr x2e (t)

vx

9−(x1e , x2e , x1r , x2r )

)
+
2Cf lf
Iz

δe(t)+
k∑
i=1

pi2 (x)ωi(t)

ẋ3e (t) = x1e (t)+ Lx2e (t)+ vxx4e (t)

ẋ4e (t) = x2e (t)+
k∑
i=1

pi4 (x)ωi(t) (19)

Introducing new variables [η1(t), η2(t), η3(t), η4(t)] =
[ x1(t)+lf x2(t)vx

,
x1(t)−lr x2(t)

vx
, x3(t), x4(t)], corresponding ref-

erence and error variables

η1r (t) =
x1r (t)+ lf x2r (t)

vx
, η3r (t) = x3r (t) (20a)

η2r (t) =
x1r (t)− lrx2r (t)

vx
, η4r (t) = x4r (t) (20b)

and

η1e (t) =
x1e (t)+ lf x2e (t)

vx
, η3e (t) = x3e (t) (21a)

η2e (t) =
x1e (t)− lrx2e (t)

vx
, η4e (t) = x4e (t) (21b)

the error dynamics (19) reduces to

η̇1e (t) = k(η1(t)− η2(t))+ γ1 tan−1
(

η2e (t)
1+ η2(t)η2r (t)

)
−β1 tan−1

(
η1e (t)

1+ η1(t)η1r (t)

)
+ β1ue(t)

+

k∑
i=1

qi1 (η)ωi(t)

η̇2e (t) = k(η1(t)− η2(t))+ γ2 tan−1
(

η2e (t)
1+ η2(t)η2r (t)

)
−β2 tan−1

(
η1e (t)

1+ η1(t)η1r (t)

)
+ β2ue(t)

+

k∑
i=1

qi2 (η)ωi(t)

η̇3e (t) = −k(L + lr )η1e (t)+ k(L − lf )η2e (t)+ vxη4e (t)

η̇4e (t) = −kη1e (t)+ kη2e (t)+
k∑
i=1

qi4 (η)ωi(t)

ye(t) = hη(t) = η3e (t) (22)

where

k =
−vx
lf + lr

γ1 =
2Cr lf lr
Izvx

−
2Cr
mvx

β1 =
2Cf l2f
Izvx

+
2Cf
mvx

γ2 =
−2Cr l2r
Izvx

−
2Cr
mvx

β2 =
2Cf
mvx
−

2Cf lf lr
Izvx

Moreover, this dynamics can be compactly rewritten as

η̇e = f(ηe, ηr )+ g(ηe)ue + p(ηe)ω (23)

In the proceeding, the mentioned two successive steps are
applied to the error dynamics (22). In addition, time depen-
dence is dropped for simplicity.

A. DISTURBANCE DECOUPLING
Considering the error dynamics (22), a steering control law
of the following form is sought

ue(ηe, ηr ) = λ(ηe, ηr )+ µ(ηe).ν(ηe) (24)

in which λ(ηe, ηr ) and µ(η) are unknown and have to be
computed. In addition, the auxiliary control ν(ηe) is used for
other purposes like stabilizing. Utilizing (24), the closed-loop
control system (23) can be decomposed to two subsystems as
follows

ζ̇ 1 = fd1 (ζ 1, ζ 2)+ gd1 (ζ 1, ζ 2)ν + qd1 (ζ 1, ζ 2)ω

ζ̇ 2 = fd2 (ζ 2)+ gd2 (ζ 2)ν

y = hζ (ζ2)

where ζ 1 ∈ Xζ1 ⊂ Rn1 , ζ 2 ∈ Xζ2 ⊂ Rn2 in which n2 ≥ 1,
fd1 ∈ Xfd1

⊂ Rn1 , gd1 ∈ Xgd1
⊂ Rn1 , qd1 ∈ Xpd1

⊂

Rn1×κ , ω ∈ Rκ , fd2 ∈ Xfd2
⊂ Rn2 , gd2 ∈ Xgd2

⊂ Rn2

and n1 + n2 = 4. From geometrical point of view, it can
be interpreted that if two initial points x1(t0) and x2(t0) are
chosen on the manifold ζ 2(t0) = C1, after T − t0 seconds
with same control input u(t) , the two outputs, h1(ζ 2) and
h2(ζ 2), will be the same because x4,1(T ) and x4,2(T ) both lie
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on the manifold ζ 2(T ) = C2 whereas their corresponding
trajectories are not necessarily the same, as demonstrated
in Fig. 2. Consequently, manifold Mi, for i ∈ N, is an
unobservable space of the system with respect to disturbance
input and is defined as

Mi(t∗) := {x(t∗) ∈ Rn
|ζ2(t∗) = Ci = constant} (25)

FIGURE 2. Unobservable space with respect to disturbance input.

Since the subsystem ζ 2 is not affected by the distur-
bance ω, it should be in a space that is perpendicular to space
spanned by vectors q(η). Because it is desired to decouple
the disturbance with maximum components from the output,
the dimension of the unobservable space of system (23)
should be minimized. A space spanned by the vectors q(η)
with maximum dimension should be sought. It is clear that
the mentioned spanned set is uniquely characterized by its
orthogonal complement. For this purpose, an algorithm has
been introduced [36], [37]:

�0 = dhηe

�k = �k−1 + Lf
(
�k−1 ∩ G⊥

)
+ Lg

(
�k−1 ∩ G⊥

)
(26)

where G = span(g) . It has been shown that there exists σ ∗,
for σ > σ ∗ we have �σ = �σ−1 and we take �∗ = �σ ∗ .
In addition, for every ψ i ∈ �

∗ we have

≺ ψT
i , f(ηe, ηr )+ g(ηe)λ(ηe, ηr ) � = 0 (27)

≺ ψT
i , g(ηe)µ(ηe) � = δi1 (28)

in which

δij =

{
1 if i = j
0 if i 6= j

Recalling dynamics (22) and using algorithm (26), one can
obtain:

�0 = span
{
[0 0 1 0]

}
G = span

{
[β1 β2 0 0]

}
As a result

G⊥ = span
{
[0 0 1 0], [0 0 0 1], [−β2 β1 0 0]

}
�0 ∩ G⊥ = �0 (29)

Moreover

Lf
(
�0 ∩ G⊥

)
= span

{
[0 0 1 1]

∂

∂ηe
ϒ(η)

}
= span

{
vp
}

in which

ϒ(η) =



k(η1 − η2)+ γ1 tan−1
( η2e

1+ η2η2r

)
−β1 tan−1

( η1e

1+ η1η1r

)
k(η1 − η2)+ γ2 tan−1

( η2e

1+ η2η2r

)
−β2 tan−1

( η1e

1+ η1η1r

)
−k(L + lr )η1e + k(L − lf )η2e + vxη4e

−kη1e + kη2e


and

vp = [−k(L + lr ) k(L − lf ) 0 vx] (30)

In a similar manner

Lg
(
�0 ∩ G⊥

)
= ∅ (31)

thus

�1 = �0 + Lf
(
�0 ∩ G⊥

)
+ Lg

(
�0 ∩ G⊥

)
= span

{
[0 0 1 0], vp

}
(32)

According to (29) and (32), if condition

β2

k(L + lr )
6=

β1

k(L − lf )
(33)

satisfies, then �0 = �1 ∩ G⊥ and the following results hold

�2 = �1 + Lf
(
�1 ∩ G⊥

)
+ Lg

(
�1 ∩ G⊥

)
= �1 + Lf

(
�0

)
+ Lg

(
�0

)
= �1

Consequently �1 = �
∗, and

�∗
⊥

= span
{
[L − lf L + lr 0 0]T , [0 − vx 0 k(L − lf )]T

}
(34)

Finally, all classes of decouplable disturbances from the
desired output can be demonstrated as follows

η̇1e = f1(ηe, ηr )+ g1(ηe)ue + (L − lf )ω1

η̇2e = f2(ηe, ηr )+ g2(ηe)ue + (L + lr )ω1 − vxω2

η̇3e = f3(ηe)+ g3(ηe)ue
η̇4e = f4(ηe)+ g4(ηe)ue + k(L − lf )ω2

ye = η3e

To find a decoupling controller, it is assumed that
f(ηe, ηr ) + g(ηe)λ(ηe, ηr ) and g(ηe)µ(ηe) are in a proper
Hilbert space H1 ⊂ R4. Moreover, λ(ηe, ηr ) and µ(ηe) are
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in another proper Hilbert space H2 ⊂ R. If ψ ∈ �∗, using
control invariant property of �∗

⊥

, one can obtain

≺ ψT , f(ηe, ηr )+ g(ηe)λ(ηe, ηr ) �= 0

which directly results in

Conj(λ(ηe, ηr )) = −
≺ ψT , f(ηe, ηr ) �
≺ ψT , g(ηe) �

(35)

in which Conj(λ(ηe, ηr )) is the complex conjugate of
λ(ηe, ηr ).
Remark 2: λ(ηe, ηr ) is well-defined and as a result,

the denominator cannot be zero
Now, according to (27) and (28), we approach to compute
unknown coefficients, λ(ηe, ηr ) and µ(ηe):

≺ vp , f(ηe, ηr )+ g(ηe)λ(ηe, ηr ) � = 0 (36a)

≺ vp , g(ηe)µ(ηe) � = 1 (36b)

Remark 3: If the inner product in (35) and (36) on the
Hilbert spaceH1 be the Euclidean product, one can conclude

λ(ηe, ηr )

=
k(L + lr )f1(ηe, ηr )− k(L − lf )f2(ηe, ηr )− vx f4(ηe)

−kβ1(L + lr )+ kβ2(L − lf )
(37)

and

µ(ηe) =
1

−kβ1(L + lr )+ kβ2(L − lf )
=

1
d

(38)

Therefore, the control law becomes ue(ηe, ηr ) = λ(ηe, ηr )+
µ(ηe).ν(ηe).
Remark 4: According to condition (33), the denominators

of λ(ηe, ηr ) and µ(ηe) are nonzero.
Using (20) and (21), the control input (24) can be obtained in
terms of xe:

λ(xe, xr )

=
k(L + lr )f́1(xe, xr )− k(L − lf )f́2(xe, xr )− vx f́4(xe)

−kβ1(L + lr )+ kβ2(L − lf )
(39)

and

µ(xe) =
1

−kβ1(L + lr )+ kβ2(L − lf )
=

1
d

(40)

in which

f́1(xe, xr ) = −x2e − β1 tan
−1
( x1e+lf x2e

vx

9+(x1e , x2e , x1r , x2r )

)

+γ1 tan−1
( x1e−lrx2e

vx

9−(x1e , x2e , x1r , x2r )

)

f́2(xe, xr ) = −x2e − β2 tan
−1
( x1e+lf x2e

vx

9+(x1e , x2e , x1r , x2r )

)

+γ2 tan−1
( x1e−lrx2e

vx

9−(x1e , x2e , x1r , x2r )

)
f́4(xe) = −x2e .

B. DESIGNING A STABILIZER
From now on, we take the second step, namely design-
ing the stabilizing mechanism for the error dynamics by
assuming that the disturbances have been decoupled from
the output. The stabilizing control law, ν(ηe), should contain
disturbance-free terms to retain the output decoupled from the
disturbances. For this purpose, it is assumed that ν(ηe) has the
following form

ν(ηe) = c1η3e + c2f3(ηe)

= c1η3e + c2

(
− k(L + lr )η1e

+k(L − lf )η2e + vxη4e

)
(41)

and in terms of xe

ν(xe) = c1x3e + c2

(
x1e + Tpvxx2e + vxx4e

)
(42)

The coefficients c1 and c2 should be determined in such a way
to stabilize the error dynamics (22). Substituting λ(ηe) (37),
µ(ηe) (38) and ν(ηe) (41) in error dynamics (22), it can be
shown that f(ηe, ηr ) in (23) can be written as

η̇e = fcl(ηe, ηr )+ p(ηe)ω (43)

in which

fcl(ηe, ηr ) =
(
A+ φ1(ηe, ηr )+ φ2(ηr )

)
ηe (44)

where A, (45), is introduced at the shown at the bottom of the
next page, and

φ1(ηe, ηr ) =

β́13(η1e , η1r ) −γ́13(η2e , η2r ) 01×2
β́23(η1e , η1r ) −γ́23(η2e , η2r ) 01×2

02×1 02×1 02×2



φ2(ηr ) =


β́1

η21r

1+ η21r
−γ́1

η22r

1+ η22r
01×2

β́2
η21r

1+ η21r
−γ́2

η22r

1+ η22r
01×2

02×1 02×1 02×2

 (46)

such that

3(z,w) =
1

1+ w2 −
tan−1( z

1+(z+w)w )

z

ḱ1 = k + β1k2
L + lr
d
− β1k2

L − lf
d
+ kβ1

vx
d

β́1 = β1 + kβ21
L + lr
d
− kβ1β2

L − lf
d

γ́1 = γ1 + kγ1β1
L + lr
d
− kβ1γ2

L − lf
d

ḱ2 = k + β2k2
L + lr
d
− β2k2

L − lf
d
+ kβ2

vx
d

β́2 = β2 + kβ1β2
L + lr
d
− kβ22

L − lf
d

γ́2 = γ2 + kγ1β2
L + lr
d
− kβ2γ2

L − lf
d
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Since

lim
ηie→0

tan−1( ηie
1+ηiηir

)

ηie
=

1

1+ η2ir
it can be concluded that

lim
ηe→0

φ1(ηe, ηr ) = 0

Remark 5: Since φ2(ηr ) is bounded and A is a constant
matrix of coefficients c1 and c2, these parameters can be
chosen such thatA+φ2(ηr ) becomes Hurwitz for every t ≥ 0.
Because ηe = 0 is an equilibrium point for the nonlinear
system η̇e = fcl(ηe, ηr ), and fcl(ηe, ηr ) is differentiable
in a neighborhood of the origin, if c1 and c2 in (41) are
chosen such that the matrix A + φ2(ηr ) becomes Hurwitz,
then the origin becomes exponentially stable for the nonlinear
system η̇e = fcl(ηe, ηr ) [38]. Although in the presence of
the disturbances, the exponential stability of the origin of
the system (43) cannot be guaranteed, using robust methods,
the stability of the origin can be investigated. The schematic
of the controller is demonstrated in Fig. 3.

FIGURE 3. Schematic of the control design.

Finally, the obtained results are summarized in the follow-
ing theorem:
Theorem 6: Consider the augmented lateral vehicle and

lane keeping dynamics (13)-(16) with the lateral deviation
(17) as an output. If the road curvature ρ(t) is accessible,
dynamics (13)-(16) could exponentially track their references
in the absence of the disturbances with the control input

u(x) = ur (xr )+ λ(xe)+ µ(xe).ν(xe) (47)

where λ(xe), µ(xe), and ν(xe) are obtained in (39), (40) and
(42), respectively. If disturbances of the form (34) are applied
to the mentioned dynamics, control input (47) decouples the

lateral deviation of the vehicle from the disturbances and
ensures the stability of the error dynamics (22) by choosing
proper c1 and c2 in (42) which make the matrix A + φ2(ηr )
Hurwitz.

IV. ILLUSTRATIVE EXAMPLES
In this section, the obtained tracking and disturbance decou-
pling controller is implemented on a typical vehicle intro-
duced in [39] with parameters m = 1421 kg, Iz =
2570 kg.m2, lf = 1.195 m, lr = 1.513 m, Cf = 170550 N

rad
and Cr = 137844 N

rad . Two cases with both uniformly dis-
tributed and exponentially attenuated disturbances are con-
sidered. Moreover, the effect of coefficients c1 and c2 in (41)
on the behavior of states is investigated. In all cases, the ref-
erence path is considered to be a tortuous path with ρ(t) =
0.05t and longitudinal velocity, vx is assumed to be constant
and equals to 10m

s . Initial states are [x1, x2, x3, x4] =
[0.1, 0.2, 15, 0.4] and as can be seen, it is assumed that
the vehicle is 15 meters apart from the reference path at the
beginning.

A. UNIFORMLY DISTRIBUTED DISTURBANCES
In this case, ω1 and ω2 are uniformly distributed on the
intervals [0, 0.5] and [0, 1], respectively and c1 = −5 and
c2 = −10. As illustrated in Fig. 4, in the absence of the
mentioned disturbances, the origin of the error dynamics is
exponentially stable and the states track their references.

When the disturbances are applied, none of the states
can track their references, except the third one, the lateral
deviation, which is decoupled from the disturbances. As can
be seen in Fig. 4c, yL’s in the presence and absence of the
disturbances are the same.

The control input in two different situations, with and with-
out disturbances, is shown in Fig. 5. In addition, the eigenval-
ues of the matrix A + φ2(ηr ) are depicted in Fig. 6, which
demonstrates that the real parts of the eigenvalues remain
negative in all the time.

B. EXPONENTIALLY ATTENUATED DISTURBANCES
In this case, ω1 = exp(−0.2t) cos(400t), ω2 =

exp(−0.4t) sin(600t), c1 = −5 and c2 = −10. As demon-
strated in Fig. 7, the error states exponentially converge to
zero and when the disturbances diminish to zero, after about
16 seconds, all the states track their references. The distur-
bances have no effect on the third state, lateral deviation,
as can be seen in Fig. 7c. In this figure, the left axes are cor-
responding to both the actual and reference states, while the

A =


ḱ1 − β́1 −

kβ1c2(L + lr )
d

γ́1 − ḱ1 +
kβ1c2(L − lf )

d
β1c1
d

β1c1vx
d

ḱ2 − β́2 −
kβ2c2(L + lr )

d
γ́2 − ḱ2 +

kβ2c2(L − lf )
d

β2c1
d

β2c1vx
d

−k(L + lr ) k(L − lf ) 0 vx
−k k 0 0

 (45)
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FIGURE 4. State variables in the presence and absence of the
disturbances.

FIGURE 5. Control input in the presence and absence of the disturbances.

FIGURE 6. The eigenvalues of the matrix A + φ2(ηr ).

right axes are corresponding to the error states. In addition,
since all the parameters in the previous and current subsection
are the same and just their disturbances are different, the lat-
eral deviation in Fig. 4c, and Fig. 7c, are identical.

C. THE EFFECT OF CHANGING COEFFICIENTS c1 AND c2
In this case, the effect of coefficients c1 and c2 on the lateral
deviation is investigated. At first, it is assumed that c2 = −1
and c1 get different values. As can be seen in Fig. 8, decreas-
ing c1 from −1 to −20, increase the frequency of oscillation
of the lateral deviation around its equilibrium point, but the
settling time remains constant.

FIGURE 7. State variables in the presence and absence of the
disturbances.

FIGURE 8. The effect of changing c1 on the lateral deviation.

As shown in Fig. 9a, when c1 = −5 and c2 varies from−1
to −2, the system behaves like an underdamped system and
the frequency of oscillation of the lateral deviation around its
equilibrium point remains constant, but the speed of dimin-
ishing its envelope to zero increases by decreasing c2. For
the values of c2 smaller than −5, the system behaves like
overdamped and critically damped systems. If c1 is increased
to −1, the settling time of the overdamped and critically
damped responses is increased, as depicted in Fig. 9b.

D. ROBUSTNESS WITH RESPECT TO VEHICLE PARAMETER
UNCERTAINTIES
To show the robustness of the proposed algorithm, it is tested
in the presence of both disturbance and uncertainties. It is
assumed that the nominal values of longitudinal velocity
and cornering stiffness parameters are vx = 20m

s , Cf =
170550 N

rad and Cr = 137844 N
rad , respectively. The distur-

bance decoupler and tracking controllers are designed with
these nominal values, and afterward, random uncertainties
of about 20% and 40% of nominal values of the longi-
tudinal velocity and the cornering stiffness parameters are
considered in the dynamics, respectively. In addition, it is
assumed that disturbances ω1 = exp(−2t) cos(4000t) and
ω2 = exp(−4t) sin(6000t) are also present. The error states
are depicted in Fig. 10. As can be seen, in the presence of both
disturbances and the mentioned uncertainties, the output has
small variations with respect to the original disturbances, and
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FIGURE 9. The effect of changing c2 on the lateral deviation.

FIGURE 10. Robustness of the proposed method in the presence of both
disturbance and uncertainties.

moreover, after attenuation of the disturbances, the tracking
part handles the uncertainties and steers the errors to zero.

V. CONCLUSION
In this paper, the nonlinear lateral dynamics of an autonomous
vehicle augmented by the lane keeping dynamics were con-
sidered. Using a geometric approach, all classes of decou-
plable disturbances from lateral deviation were obtained and
a disturbance decoupling controller was proffered via con-
trol invariant property. Afterward, a tracking controller was
designed for the augmented nonlinear lateral vehicle dynam-
ics and lane keeping ones by using a controller with a pre-
defined structure. The obtained control law was applied to

a typical vehicle in the presence of different disturbances,
uniformly distributed and exponentially attenuated, to show
the performance and effectiveness of the obtained control
law. Moreover, the effect of changing the coefficients of the
tracking controller, and the presence of uncertainty in the
vehicle parameters were explored in the simulations.
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