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ABSTRACT This paper is concerned with the stochastic stabilization problem for nonlinear systems by
G-Brownian motion with feedback control based on discrete-time state observations with a time delay.
By constructing an auxiliary system, which is a continuous-time stochastic system driven by G-Brownian
motion, we establish a sufficient criterion in terms of the observation gap τ and the time delay τ0 to ensure
the quasi-surely exponential stability of the stochastic controlled system. Moreover, implementation of the
control strategy is provided. Finally, an example is given to demonstrate the theoretical result.

INDEX TERMS Discrete-time state observations, G-Brownian motion, quasi-surely exponential stability,
time delay.

I. INTRODUCTION
It has been known that noise can be used to stabilize a given
unstable system or make a stable system even more stable.
On this topic of stochastic stabilization, the pioneering work
is due to Khasminskii [1] who stabilized a linear system by
using twowhite noise sources. Then the theorywas developed
to deal with stochastic stabilization and destabilization of
nonlinear systems [2], [3], a class of functional systems [4]
and hybrid systems [5], [6]. It is noted that the stochastic feed-
back controls in these papers depend on continuous-time state
observations, which are expensive and impractical. To tackle
this drawback, Mao proposed a new feedback control based
on discrete-time state observations in 2013 [7] and later
studied the almost sure exponential stabilization for linear
and nonlinear systems by discrete-time stochastic feedback
control [8]. However, delays often occur due in particular to
the measurement and transport phenomena in many control
applications. That is, there always exists a time lag between
the timewhen the state observation ismade and the timewhen
the feedback control reaches the system. It is therefore more
realistic to consider the effect of time delay when designing
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the discrete-time feedback control. So far, there only exist
a small number of literatures on this problem, see [9], [10]
for moment exponential stabilization of hybrid stochastic
differential equations and [11] for almost surely exponential
stabilization of nonlinear stochastic differential equations.
But all of the results are derived in the classical framework,
that is, the expectation is linear.

On the other hand, due to the powerful applications inmany
real world problems, such as the model uncertainty, risk mea-
sures and the superhedging in finance, the G-expectation and
G-Brownian motion theory has made a significant progress
since Peng initiated it in 2007 [12]. Under the G-framework,
Peng [13] introduced the stochastic differential equations
driven byG-Brownianmotion (G-SDEs, in short). Since then,
some interesting works on the properties of the G-SDEs have
been reported; for more details, one can see e.g. [14]–[23]
and the references therein. In particular, an emphasis has
been placed on the stability analysis and stabilization. Zhang
and Chen [15] proved when a quasi-surely exponentially
stable linear system was disturbed by G-Brownian motion,
the stochastic perturbed system preserved this nice property.
In [17], the authors considered the moment exponential sta-
bility and quasi-sure stability ofG-SDEs with Lyapunov-type
conditions. Ren et al. [22] designed feedback control based
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on discrete-time state observations in the drift part to sta-
bilize a class of stochastic differential equations driven by
G-Brownian motion. G-Brownian motion with discrete-time
stochastic feedback control was presented to stabilize a given
unstable system quasi-sure exponentially in [23]. However,
to our best knowledge, there is little literature on stochastic
stabilization of nonlinear systems via discrete-time feedback
control with a time delay under theG-expectation framework.
In this study, we aim to explore the stochastic stabilization

for an unstable nonlinear system via discrete-time feedback
control with a time delay induced by G-Brownian motion.
It should be mentioned that our work is not a simple gener-
alization of the existing results (see, e.g., [9], [10]). Firstly,
the discrete-time feedback controls with a time delay were
designed in the drift part of hybrid stochastic systems and
the moment exponential stability criteria were established
in [9], [10]. While here the discrete-time feedback control
with a time delay induced byG-Brownian motion can be con-
sidered as the diffusion part of the controlled system and the
quasi-surely exponential stability will be discussed. More-
over, due to the nonlinearity of the G-expectation, we have
to employ a new approach. Besides, under the G-expectation
framework, several new G-analysis techniques have to be
employed to developed our theory. It should also be pointed
out that the analysis in this paper becomes much more com-
plicated because of the difficulties arisen from dealing with
the observation duration τ and the time delay τ0 compared
with [23].

All of the points made above show the motivation and
innovations of our study. The rest of this paper is organized
as follows. In Section 2, we give some notations, defini-
tions, useful propositions and the G-Itô formula for later use.
In Section 3, after stating the problem, the main results are
established. Section 4 covers the method for designing the
control function and an illustrate example. Finally, this article
is concluded in Section 5.

II. PRELIMINARIES
In this section, we first recall some facts in the framework
of G-expectation, the readers can refer to Peng [24] for more
details.

We denote by 〈x, y〉 = xTy the scalar product and
|x| =

√
xTx the Euclidean norm of the n-dimensional

Euclidean space Rn.
Let � be the space of all R-valued continuous functions ω

with ω0 = 0. B(�) denotes the Borel σ -algebra of �. For
every ω ∈ �, let Bt (ω) := ω(t) be the canonical process. For
t > 0, let �t = {ωt∧· : ω ∈ �}. Define

Lip(�t ) := {ϕ(Bt1∧t , . . . ,Btn∧t ) : n ≥ 1, ϕ ∈ CLip(Rn)}

and

Lip(�) :=
⋃
t>0

Lip(�t ).

Then we can further define the related G-expectation on
Lip(�) by

Ē[ϕ(Bt1 ,Bt2 − Bt1 , . . . ,Btn − Btn−1)]
:= Ē[ψ(Bt1 ,Bt2 , . . . ,Btn−1 )],

where Ēψ(x1, . . . , xn−1) = Ē[ϕ(x1, . . . , xn−1,Btn − Btn−1)].
G(α) = 1

2 (σ̄
2α+ − σ 2α−) is a sublinear and monotonic

function, where α ∈ R and 0 ≤ σ 2
≤ σ̄ 2 < +∞. Under

theG-expectation Ē, the {Bt , t ≥ 0} is said to beG-Brownian
motion. Furthermore, Ē(B21) = σ̄

2,−Ē(−B21) = σ
2.

Definition 1: ( [25]) According to the representation theo-
rem of G-expectation, Ē can be constructed as follows

Ē[X ] = sup
P∈PG

EP[X ], X ∈ L1G(�),

wherePG is a weakly compact family of martingale measures
on (�,B(�)). As to PG, we naturally define the associated
Choquet capacity

C̄(A) := sup
P∈PG

P(A), A ∈ B(�).

Definition 2: ( [25]) A set O ∈ B(�) is said to be polar
if C̄(O) = 0 and a property is said to hold quasi-surely
(q.s., in short) if it holds outside a polar set.
Proposition 1: ( [24]) For any η ∈M2

G(0,T ), we have

Ē
∫ T

0
η(t)dB(t) = 0

and

Ē
[∫ T

0
η(t)dB(t)

]2
= Ē

∫ T

0
η2(t)d〈B〉t ≤ σ̄ 2Ē

∫ T

0
η2(t)dt,

where 〈B〉 is the quadratic variation of B.
Proposition 2: ( [14]) Let η ∈M2

G(0,T ), then

Ē
(

sup
s≤u≤t

∣∣∣∫ u

s
η(u)dBu

∣∣∣2) ≤ 4σ̄ 2Ē
∫ t

s
η2(u)du

and

Ē
(

sup
s≤u≤t

∣∣∣∫ u

s
η(u)d〈B〉u

∣∣∣2) ≤ σ̄ 4(t − s)Ē
∫ t

s
η2(u)du

hold for any 0 ≤ t ≤ T .
Lemma 1: ( [24],G-Itô formula) Let X = (X1, . . . ,Xn) be

an n-dimensional process on [0,T ] with the form

Xνt = Xν0 +
∫ t

0
ανs ds+

∫ t

0
ηνs d〈B〉s +

∫ t

0
βνs dBs,

where αν , ην ∈ M1
G(0,T ) and β

ν
∈ M2

G(0,T ), ν = 1, . . . , n.
Then for each t ∈ [0,T ] and8 ∈ C1,2([0,T ]×Rn), we have

8(t,Xt )−8(0,X0)

=

n∑
ν=1

∫ t

0
∂xν8(s,Xs)βνs dBs

+

∫ t

0
[∂s8(s,Xs)+ ∂xν8(s,Xs)ανs ]ds
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+

∫ t

0
{

n∑
ν=1

∂xν8(s,Xs)ηνs

+
1
2

n∑
µ,ν=1

∂2xµxν8(s,Xs)β
µ
s β

ν
s }d〈B〉s.

Let us proceed to give some extra notations for later
use. For τ > 0, let C([−τ, 0];Rn) the family of con-
tinuous functions ζ : [−τ, 0] → Rn with the norm
‖ζ‖ = sup−τ≤u≤0 |ζ (u)|. Denote by L

2
G(�t ,C([−τ, 0];Rn))

the family of B(�t )-measurable C([−τ, 0];Rn)-valued ran-
dom variables ξ such that Ē‖ξ‖2 < +∞.

III. MAIN RESULTS
Consider the following unstable system

dx(t) = f (x(t))dt, t ≥ 0, (1)

with initial data x(0) = x0 ∈ Rn, where f : Rn
→ Rn.

We aim to use the feedback control based on discrete-time
state observations with a time delay induced by G-Brownian
motion g(x(δt ))d〈B〉t + σ (x(δt ))dBt to stabilize the system,
where δt = [ t

τ
]τ − τ0, of which τ is the duration between

two consecutive state observations and τ0 stands for the lag
time. Therefore, the controlled system becomes

dx(t) = f (x(t))dt + g(x(δt ))d〈B〉t + σ (x(δt ))dBt (2)

with initial date x0 = ξ ∈ L2G(�t ,C([−τ0, 0];Rn)), where
g, σ : Rn

→ Rn. Let us impose the following assumption.
Assumption 1: Assume that the functions f , g and σ

are continuous functions, and there exist three positive
constants K1,K2 and K3 such that

|f (x)− f (y)| ≤ K1|x − y|,

|g(x)− g(y)| ≤ K2|x − y|,

|σ (x)− σ (y)| ≤ K3|x − y|,

for all (x, y) ∈ Rn
×Rn. Moreover, for the purpose of stability

analysis, let f (0) = g(0) = σ (0) = 0.
It is known that under Assumption 1, the equation (2) has a

unique solution x(t) on t ≥ −τ0 and Ē|x(t)|2 <∞ (see [19]).
To achieve the stabilization goal, we need an auxiliary

system{
dy(t) = f (y(t))dt + g(y(t))d〈B〉t + σ (y(t))dBt ,
y(0) = y0 ∈ L2G(�t0 ).

(3)

It has been showed in [17] that equation (3) has a unique
solution and its second moment is finite.

The key technique employed in this paper is to compare
the discrete-time delay feedback controlled system (2) with
the continuous system (3). It will be shown that if system (3)
is quasi-surely exponentially stable, then system (2) is also
quasi-surely exponentially stable if τ and τ0 are small enough.
To ensure the quasi-surely exponential stability of system (3),
we introduce the following notations and impose another
assumption.

Denote by V ∈ C2,1(Rn
×R+,R+) the family of nonneg-

ative functions V (x, t) defined on Rn
× R+ such that they

are continuously twice differentiable in x and once in t . For
V ∈ C2,1(Rn

× R+,R+), we define LV : Rn
× R+→ R by

LV (x, t) := Vt (x, t)+ 〈Vx(x, t), f (x)〉

+G
(
〈Vx(x, t), 2g(x)〉 + 〈Vxx(x, t)σ (x), σ (x)〉

)
,

where

Vt (x, t) =
∂V (x, t)
∂t

, Vx(x, t) =
(∂V (x, t)

∂xi

)
n×1
,

Vxx(x, t) =
(∂2 V (x, t)

∂xi∂xj

)
n×n
.

Assumption 2: Assume that there exist a function V ∈
C2,1(Rn

× R+;R+) and constants q > 0, c̄1 ≥ c1 > 0 and
c2 ∈ R, c3 ≥ 0, c3 > c2, such that

c1|x|q ≤ V (x, t) ≤ c̄1|x|q,

LV (x, t) ≤ c2 V (x, t),

and

G(−|Vx(x, t)σ (x)|2) ≤ −c3V 2(x, t).

Lemma 2: Let Assumptions 1 and 2 hold. Suppose
θ ∈ (0, 1) is sufficiently small such that

p := θq < 1, γ := θ ((1− θ )c3 − c2) > 0.

Then the solution y(t) := y(t; 0, y(0)) of equation (3) satisfies

Ē|y(t)|p ≤ M Ē|y(0)|pe−γ t ,

whereM =
(
c̄1
c1

)θ
.

Proof: Obviously, the result holds for y(0) = 0. Thus,
we only need to consider the case that y0 6= 0, then we have
y(t) 6= 0 quasi-sure for all t ≥ 0 (see [26]). Without loss of
generality, we may as well assume y0 is deterministic. Other-
wise, we can use the property of the conditional expectation.
Let U (y, t) = (V (y, t))θ , then the G-Itô formula implies that
for t ≥ 0,

eγ t ĒU (y(t), t)

= U (y(0), 0)+ Ē
∫ t

0

[
γ eγ sU (y(s), s)+ eγ sLU (y(s), s)

]
ds.

(4)

It follows from Assumption 2 that

LU (y, t) = θV θ−1(y, t)
(
Vt (y, t)+ 〈Vy(y, t), f (y)〉

)
+G

(
θV θ−1(y, t)

[
〈Vy(y, t), 2g(y)〉

+ 〈Vyy(y, t)σ (y), σ (y)〉
]

− θ (1− θ)V θ−2(y, t)|Vy(y, t)σ (y)|2
)

≤ θV θ−1(x, t)LV (y, t)
+ θ (1− θ )V θ−2(y, t)G(−|Vy(y, t)σ (y)|2)

≤ θ (c2 − (1− θ )c3)V θ (y, t)
= −γU (y, t).
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Substituting this into (4) yields

eγ t ĒU (y(t), t) ≤ U (y(0), 0).

Therefore, we can further derive from Assumption 2 that for
all t ≥ 0,

Ē|y(t)|p ≤
( c̄1
c1

)θ
|y(0)|pe−γ t = M |y(0)|pe−γ t .

We complete the proof.
Lemma 3: Under Assumption 1, let 0 < p < 1 and x(t) :=

x(t; 0, ξ ) be the solution of (2). Then

Ē
(

sup
0≤u≤τ0

|x(t + u)− x(t)|p
)
≤ H1(τ0, p, t)‖ξ‖p (5)

for all t ≥ 0, where

H1(τ0, p, t) =
[
6τ0(K 2

1 τ0 + K
2
2 σ̄

4τ0 + 4K 2
3 σ̄

2)

× e(2K1+2σ̄ 2K2+σ̄
2K2

3 )(t+τ0)
]p/2

.

Proof: According to the method of conditional expecta-
tion, we only need to show the lemma for deterministic initial
data ξ ∈ C([−τ0, 0];Rn). By the G-Itô formula, we have

|x(t)|2 = |x0|2 + 2
∫ t

0
〈x(s), f (x(s)〉ds

+ 2
∫ t

0
〈x(s), σ (x(δs))〉dBs

+

∫ t

0

[
2〈x(s), g(x(δs))〉 + |σ (x(δs))|2

]
d〈B〉s.

We can derive from Assumption 1 that

Ē|x(t)|2 ≤ |x0|2 + 2K1

∫ t

0
Ē|x(s)|2ds

+ (2σ̄ 2K2 + σ̄
2K 2

3 )
∫ t

t0

(
sup

−τ0≤u≤s
Ē|x(u)|2

)
ds.

Observe that

sup
−τ0≤u≤t

Ē|x(u)|2 ≤ ‖ξ‖2 + sup
0≤u≤t

Ē|x(u)|2.

Consequently,

sup
−τ0≤u≤t

Ē|x(u)|2

≤ 2‖ξ‖2 + (2K1 + 2K2σ̄
2
+ K 2

3 σ̄
2)

×

∫ t

0

(
sup

−τ0≤u≤s
Ē|x(u)|2

)
ds.

The Gronwall inequality shows that

sup
−τ0≤u≤t

Ē|x(u)|2 ≤ 2‖ξ‖2e(2K1+2K2σ̄
2
+K2

3 σ̄
2)t . (6)

According to Proposition 2, we also derive that

Ē
(

sup
0≤u≤τ0

|x(t + u)− x(t)|2
)

≤ 3τ0

∫ t+τ0

t
Ē|f (x(s))|2ds+ 3σ̄ 4τ0

∫ t+τ0

t
Ē|g(x(δs))|2ds

+ 12σ̄ 2
∫ t+τ0

t
Ē|σ (x(δs))|2ds

≤ 3(K 2
1 τ0 + K

2
2 σ̄

4τ0 + 4K 2
3 σ̄

2)

×

∫ t+τ0

t

(
sup

−τ0≤u≤s
Ē|x(u)|2

)
ds

≤ 6τ0(K 2
1 τ0 + K

2
2 σ̄

4τ0 + 4K 2
3 σ̄

2)‖ξ‖2

× e(2K1+2σ̄ 2K2+σ̄
2K2

3 )(t+τ0). (7)

Therefore, a simple application of the Hölder inequality
yields

Ē
(

sup
0≤u≤τ0

|x(t + u)− x(t)|p
)

≤

[
6τ0(K 2

1 τ0 + K
2
2 σ̄

4τ0 + 4K 2
3 σ̄

2)

× e(2K1+2σ̄ 2K2+σ̄
2K2

3 )(t+τ0)
]p/2
‖ξ‖p

= H1(τ0, p, t)‖ξ‖p.

The proof is complete.
Theorem 1: Let Assumptions 1 and 2 hold. Then there

exists a domain D ⊂ R2
+, such that for all (τ, τ0) ∈ D, the

solution x(t; 0, ξ ) of equation (2) satisfies

lim sup
t→∞

log(|x(t; 0, ξ )|)
t

< 0, q.s. (8)

for all initial date ξ ∈ L2G(�t ,C([−τ0, 0];Rn)).
Proof: Likewise, we only consider the case of determin-

istic ξ ∈ C([−τ0, 0];Rn). Due to the techniques used in the
proof, we need some extra data xθ = {x(θ ),−2τ0 ≤ θ <

−τ0} for the system (2) and we may as well set x(θ ) = y(0)
for all −2τ0 ≤ θ < −τ0. To make it clearer, we divide the
proof into three steps.

Step I. Let h = [ τ0
τ
] + 1. For any t ≥ 0, there exists an

integer n ≥ 0 such that nτ ≤ t < (n + 1)τ . If n ≥ h, then
δt = nτ − τ0 ≥ 0. Therefore, it follows from Assumption 1,
Propositions 1 and 2 that

Ē|x(t)− x(δt )|2

≤ 3Ē
∣∣∣∫ t

nτ−τ0
f (x(s))ds

∣∣∣2 + 3Ē
∣∣∣∫ t

nτ−τ0
g(x(δs))d〈B〉s

∣∣∣2
+ 3Ē

∣∣∣∫ t

nτ−τ0
σ (x(δs))dBs

∣∣∣2
≤ 3K 2

1 (t − nτ + τ0)
∫ t

nτ−τ0
Ē|x(s)|2ds

+ [3K 2
2 σ̄

4(t − nτ + τ0)+ 3K 2
3 σ̄

2]
∫ t

nτ−τ0
Ē|x(δs)|2ds

≤ 6K 2
1 (τ + τ0)

∫ t

nτ−τ0
Ē|x(s)− x(δs)|2ds

+ [6K 2
1 (τ + τ0)+ 3K 2

2 σ̄
4(τ + τ0)+ 3K 2

3 σ̄
2]

×

∫ t

nτ−τ0
Ē|x(δs)|2ds. (9)
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Note that∫ t

nτ−τ0
Ē|x(δs)|2ds ≤

h∑
k=0

∫ (n−k+1)τ

(n−k)τ
Ē|x(δs)|2ds

= τ

h∑
k=0

Ē|x((n− k)τ − τ0)|2. (10)

Substitute (10) into (9) yields

Ē|x(t)− x(δt )|2

≤ 6K 2
1 (τ + τ0)

∫ t

nτ−τ0
Ē|x(s)− x(δs)|2ds

+ τ [6K 2
1 (τ + τ0)+ 3K 2

2 σ̄
4(τ + τ0)

+ 3K 2
3 σ̄

2]
h∑

k=0

Ē|x((n− k)τ − τ0)|2.

It follows from the Gronwall inequality that

Ē|x(t)− x(δt )|2 ≤ H2(τ0, τ )
h∑

k=0

Ē|x((n− k)τ − τ0)|, (11)

where

H2(τ0, τ ) := τ [6K 2
1 (τ + τ0)+ 3K 2

2 σ̄
4(τ + τ0)+ 3K 2

3 σ̄
2]

× e6K
2
1 (τ+τ0)

2
.

On the other hand, if 0 ≤ n ≤ h− 1, we have

Ē|x(t)− x(δt )|2

≤ 3Ē
∣∣∣∫ t

0
f (x(s))ds

∣∣∣2 + 3Ē
∣∣∣∫ t

0
g(x(δs))d〈B〉s

∣∣∣2
+ 3Ē

∣∣∣∫ t

0
σ (x(δs))dBs

∣∣∣2
≤ 3K 2

1 t
∫ t

0
Ē|x(s)|2ds

+ 3[K 2
2 σ̄

4t + K 2
3 σ̄

2]
∫ t

0
Ē|x(δs)|2ds

≤ 6K 2
1 (τ + τ0)

∫ t

nτ−τ0
Ē|x(s)− x(δs)|2ds

+ [6K 2
1 (τ + τ0)+ 3K 2

2 σ̄
4(τ + τ0)+ 3K 2

3 σ̄
2]

×

∫ t

nτ−τ0
Ē|x(δs)|2ds.

We can similarly obtain the estimate (11). Therefore, (11)
holds for any nτ ≤ t < (n+ 1)τ .
Step II. For any t ≥ 0, we can choose n ≥ 0 such that

nτ ≤ t < (n+ 1)τ , then∫ t

0
eβsĒ|x(s)− x(δs)|2ds

=

∫ t

nτ
eβsĒ|x(s)− x(δs)|2ds

+

n−1∑
l=0

∫ (n−l)τ

(n−l−1)τ
eβsĒ|x(s)− x(δs)|2ds

≤ H2(τ0, τ )
∫ t

nτ
eβs

h∑
k=0

Ē|x((n− k)τ − τ0)|ds

+H2(τ0, τ )

×

n−1∑
l=0

∫ (n−l)τ

(n−l−1)τ
eβs

n−l−1∑
k=n−l−1−h

Ē|x(kτ − τ0)|2ds

=: I11 + I12.

For the term I11, we have

I11 = H2(τ0, τ )
h∑

k=0

eβk
∫ t−kτ

nτ−kτ
eβsĒ|x((n− k)τ − τ0)|ds

= H2(τ0, τ )
h∑

k=0

eβk
∫ t−kτ

nτ−kτ
eβsĒ|x(δs)|2ds. (12)

Similarly,

I12 = H2(τ0, τ )

×

n−1∑
l=0

∫ (n−l)τ

(n−l−1)τ
eβs

n−l−1∑
k=n−l−1−h

Ē|x(kτ − τ0)|2ds

= H2(τ0, τ )
n−1∑
l=0

h∑
k=0

eβkτ

×

∫ (n−l−k)τ

(n−l−1−k)τ
eβsĒ|x((n− l − 1− k)τ − τ0)|2ds

= H2(τ0, τ )
n−1∑
l=0

h∑
k=0

eβkτ
∫ (n−l−k)τ

(n−l−1−k)τ
eβsĒ|x(δs)|2ds.

(13)

Combining (12) with (13), we get∫ t

0
eβsĒ|x(s)− x(δs)|2ds

≤ H2(τ0, τ )
h∑

k=0

eβkτ
∫ t−kτ

−kτ
eβsĒ|x(δs)|2ds

≤ H2(τ0, τ )
h∑

k=0

eβkτ

×

[∫ t

0
eβsĒ|x(δs)|2ds+

∫ 0

−kτ
eβsĒ|x(δs)|2ds

]
≤

(e(h+1)βτ − 1)H2(τ0, τ )
eβτ − 1

×

∫ t

0
eβsĒ|x(δs)|2ds

+
τ

2
(h+ h2)eβhτ‖ξ‖2.

Letting β → 0, we obtain∫ t

0
Ē|x(s)− x(δs)|2ds

≤ H2(τ0, τ )(h+ 1)
[∫ t

0
Ē|x(δs)|2ds+

1
2
(τ + τ0)‖ξ‖2

]
≤ H2(τ0, τ )(h+ 1)

×

[
2‖ξ‖2

∫ t

0
e(2K1+2K2σ̄

2
+K2

3 σ̄
2)sds+

1
2
(τ + τ0)‖ξ‖2

]
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≤

[ 2e(2K1+2K2σ̄
2
+K2

3 σ̄
2)t

2K1 + 2K2σ̄ 2 + K 2
3 σ̄

2
+

1
2
(τ + τ0)

]
×H2(τ0, τ )(h+ 1)‖ξ‖2

:= H3(τ, τ0, t)‖ξ‖2. (14)

By the G-Itô formula, we have

|x(t)− y(t)|2

= 2
∫ t

0
〈x(s)− y(s), f (x(s))− f (y(s))〉ds

+ 2
∫ t

0
〈x(s)− y(s), σ (x(δs)− σ (y(s))〉dBs

+ 2
∫ t

0
〈x(s)− y(s), g(x(δs)− g(y(s), s)〉d〈B〉s

+

∫ t

0
|σ (x(δs)− σ (y(s), s)|2d〈B〉s.

Then it follows from Assumption 1 that

Ē|x(t)− y(t)|2

≤ 2K1

∫ t

0
Ē|x(s)− y(s)|2 ds

+K 2
3 σ̄

2
∫ t

0
Ē|x(δs)− y(s)|2ds

+ 2K2σ̄
2
∫ t

0
Ē|x(s)− y(s)||x(δs)− y(s)|ds

≤ (2K1 + K2σ̄
2)
∫ t

0
Ē|x(s)− y(s)|2 ds

+ (K2σ̄
2
+ K 2

3 σ̄
2)
∫ t

0
Ē|x(δs)− y(s)|2ds

≤ (2K1 + 3K2σ̄
2
+ 2K 2

3 σ̄
2)
∫ t

0
Ē|x(s)− y(s)|2ds

+ 2(K2σ̄
2
+ K 2

3 σ̄
2)
∫ t

0
Ē|x(δs)− x(s)|2ds.

According to the Gronwall inequality and inequality 14,
we have

Ē|x(t)− y(t)|2

≤ 2(K2σ̄
2
+ K 2

3 σ̄
2)H3(τ, τ0, t)‖ξ‖2

+ 2(K2σ̄
2
+ K 2

3 σ̄
2)(2K1 + 3K2σ̄

2
+ 3K 2

3 σ̄
2)‖ξ‖2

× e(2K1+3K2σ̄
2
+3K2

3 σ̄
2)t
∫ t

0
H2(τ0, τ )(h+ 1)

×

[ 2e(2K1+2K2σ̄
2
+K2

3 σ̄
2)s

2K1 + 2K2σ̄ 2 + K 2
3 σ̄

2
+
τ + τ0

2

]
× × e(2K1+3K2σ̄

2
+3K2

3 σ̄
2)sds

≤

[
2(K2σ̄

2
+ K 2

3 σ̄
2)H3(τ, τ0, t)

+ 2(K2σ̄
2
+ K 2

3 σ̄
2)(2K1 + 3K2σ̄

2
+ 3K 2

3 σ̄
2)

× e(2K1+3K2σ̄
2
+3K2

3 σ̄
2)t

×

( (τ + τ0)t
2

H2(τ0, τ )(h+ 1)e(2K1+3K2σ̄
2
+3K2

3 σ̄
2)t

+
2tH2(τ0, τ )(h+ 1)

2K1 + 2K2σ̄ 2 + K 2
3 σ̄

2
e(4K1+5K2σ̄

2
+4K2

3 σ̄
2)t
)]
‖ξ‖2

=: H4(τ, h, τ0, t)‖ξ‖2.

Step III. For sufficiently small ε > 0, let

2ε := γ
−1 log(Mε−1),

where γ , M are defined in Lemma 2. Choose k̄ such that

2ε − τ0

τ
≤ k̄ <

2ε − τ0

τ
+ 1.

It follows from Lemma 2 that

Ē|x(k̄τ + τ0)|p

≤ Ē|y(k̄τ + τ0)|p + Ē|x(k̄τ + τ0)− y(k̄τ + τ0)|p

≤

(
Me−γ (k̄τ+τ0) + [H4(τ, h, τ0, k̄τ + τ0)]

p
2

)
‖ξ‖p.

By elementary inequality and Lemma 3, we get

Ē
(

sup
0≤u≤τ0

|x(k̄τ + τ0 + u)|p
)

≤ Ē|x(k̄τ + τ0)|p

+ Ē
(

sup
0≤u≤τ0

|x(k̄τ + τ0 + u)− x(k̄τ + τ0)|p
)

≤

(
Me−γ (k̄τ+τ0) + [H4(τ, p, τ0, k̄τ + τ0)]

p
2

+H1(τ0, k̄τ + τ0)
)
‖ξ‖p

≤

(
ε + [H4(τ, h, τ0,2ε + τ )]

p
2 + H1(τ0,2ε + τ )

)
‖ξ‖p.

(15)

Obviously, there exists a subset D ⊂ R2
+ such that

9(ε, p) := ε + [H4(τ, h, τ0,2ε + τ )]
p
2 + H1(τ0,2ε + τ )

< 1 (16)

for any (τ, τ0) ∈ D. Therefore, we have

Ē‖xk̄τ+2τ0‖
p
= Ē

(
sup

−τ0≤u≤0
|x(k̄τ + 2τ0 + u)|p

)
≤ e−λ1‖ξ‖p,

where1 = k̄τ+2τ0 and λ = 1−1 log(9−1(ε, p)). Similarly,

Ē‖xk1‖p ≤ e−kλ1‖ξ‖p, k = 1, 2, · · · .

Note that

Ē
(

sup
0≤t≤1

|x(t)|2
)

≤ 4‖ξ‖2 + 4Ē
∣∣∣∫ 1

0
f (x(s))ds

∣∣∣2
+ 4Ē

(
sup

0≤t≤1

∣∣∣∫ t

0
g(x(δs))d〈B〉s

∣∣∣2)
+ 4Ē

(
sup

0≤t≤1

∣∣∣∫ t

0
σ (x(δs))dBs

∣∣∣2)
≤ 4‖ξ‖2 + 4K 2

11

∫ 11

0
Ē|x(s)|2ds
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+ (4K 2
2 σ̄

21+ 16K 2
3 σ̄

2)
∫ 1

0
Ē|x(δs)|2ds

≤ 4‖ξ‖2 + 4(K 2
11+ K

2
2 σ̄

21+ 4K 2
3 σ̄

2)

×

∫ 1

0
sup

−τ0≤u≤s
Ē|x(u)|2ds

≤ 4‖ξ‖2 +
8(K 2

11+ K
2
2 σ̄

21+ 4K 2
3 σ̄

2)

2K1 + 2K2σ̄ 2 + K 2
3 σ̄

2

× e(2K1+2K2σ̄
2
+K2

3 σ̄
2)1
‖ξ‖2

=: H5(τ, τ0)‖ξ‖2.

By using Hölder inequality, we get

Ē
(

sup
0≤t≤1

|x(t)|p
)
≤ H

p
2
5 (τ, τ0)‖ξ‖

p.

Repeating the above procedure, we have

Ē
(

sup
k1≤t≤(k+1)1

|x(t)|p
)

≤ H
p
2
5 (τ, τ0)Ē‖xk1‖

p

≤ H
p
2
5 (τ, τ0)e

−kλ1Ē‖ξ‖p, k = 1, 2, · · · .

An application of the Markov’s inequality (see [17]) yields

C̄
(

sup
k1≤t≤(k+1)1

|x(t)|p ≥ e−
1
2 kλ1

)
≤ H

p
2
5 (τ, τ0)e

−
1
2 kλ1Ē‖ξ‖p

for k = 0, 1, · · · . Consequently, we get

∞∑
k=1

C̄
(

sup
k1≤t≤(k+1)1

|x(t)|p ≥ e−
1
2 kλ1

)
< +∞.

Therefore, it follows from the Borel-Cantelli lemma under
sublinear expectation (see [27]) that

lim sup
t→∞

log(|x(t)|)
t

≤ −
λ

2p
, q.s.

The desired result is obtained.

IV. AN EXAMPLE
Before giving a specific example to demonstrate the effec-
tiveness of our theory, let us first clear and summary the
implementation as the following two steps:
• Under Assumptions 1 and 2, choose a constant θ ∈ (0, 1)
and define p, γ,M as in Lemma 2.

• Choose another constant ε ∈ (0, 1) and compute 2ε.
If we fix the time lag τ0, then we can get the upper bound
τ∗ for the observation duration τ by solving the equation

ε + [H4(τ, h, τ0,2ε + τ )]
p
2 + H1(τ0,2ε + τ ) = 1.

(17)

Then the controlled G-SDE (2) is exponentially stable
quasi-surely as long as the states are observed frequently
enough in the sense that τ < τ∗.

Example 1: For an unstable system

dx(t) = 0.05x(t)dt

with initial date x(0) = 1. We aim to design the linear
discrete-time feedback control with a time delay induced by
G-Brownian motion −x(δt )d〈B〉t + 0.6x(δt )dBt to make the
stochastic controlled system

dx(t) = 0.05x(t)dt − x(δt )d〈B〉t + 0.6x(δt )dBt (18)

quasi-surely exponentially stable, whereBt is one-dimensional
G-Brownian motion and B1 ∼ N (0, [ 12 , 1]). Obviously,
Assumption 1 is satisfied with

K1 = 0.05, K2 = 1, K3 = 0.6.

We take the Lyapunov function V (x, t) = x2 and hence
Assumption 2 holds with

c1 = c̄1 = 1, q = 2, c2 = −0.27, c3 = 0.36.

We choose θ = 0.49, then p = 0.98 and γ = 0.44.We further
choose ε = 0.95 and it is easy to compute 2ε = 0.1158.
Equation (17) becomes

[H4(τ, h, τ0, 0.1158+ τ )]
p
2 + H1(τ0, 0.1158+ τ ) = 0.05,

which has the unique positive root τ∗ = 1.84 × 10−4 if the
time delay τ0 = 1 × 10−5. Therefore, for the feedback time
delay τ0 = 1× 10−5, the stochastic controlled system (18) is
exponentially stable quasi-surely as long as τ < 1.84×10−4.

By the Euler-Maruyama method, the numerical simulation
of the upper expectation Ē|X (t)| and the lower expectation
E |X (t)| of the solution to stochastic system (18) with τ0 =
10−5 and τ = 10−6 is plotted in Figure 1, where we use
the algorithm from [28] to approximate the G-expectation.
We observe from Figure 1 that Ē|X (t)| is stable, then the solu-
tion to (18) is quasi surely stable. The computer simulation
supports our theoretical results clearly.

FIGURE 1. The computer simulation of the upper expectation
a(t) = Ē|X (t)| and the lower expectation b(t) = E|X (t)| of the solution to
the G-SDDE (18) with τ0 = 10−5 and τ = 10−6 using the Euler-Maruyama
method.
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V. CONCLUSION
In this paper, we have proved that an unstable nonlinear sys-
tem can be stabilized by G-Brownian motion with feedback
control based on discrete-time state observations with a time
delay. Sufficient conditions in terms of the observation gap τ
and the time delay τ0 have been developed to guarantee the
quasi-surely exponential stability of the stochastic controlled
system. An example has been given to show the implementa-
tion and illustrate the theoretical results.
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