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ABSTRACT Sparse code division multiple access (SCDMA) is a promising non-orthogonal multiple access
technique for future wireless communications. In SCDMA, transmitted symbols from multiple users are
coded by their own sparse signature sequences, and a base station attempts to detect those symbols using the
signature sequences. In this paper, we present a new deep-unfolded multiuser detector called a complex
sparse trainable projected gradient (C-STPG) detector for SCDMA systems. Deep unfolding is a deep
learning method that tunes trainable parameters in iterative algorithms using supervised data and deep
learning techniques. The proposed detector provides a much superior detection performance over that of
the LMMSE detector. Other advantages of the proposed detector include a low computational complexity in
execution and a low training cost owing to the small number of trainable parameters. In addition, we propose
anovel joint learning strategy called gradual sparsification for designing sparse signature sequences based on
deep unfolding. This method is computationally efficient in optimizing a set of sparse signature sequences.
Numerical results show that the gradual sparsification successfully yields sparse signature sequences with a

smaller symbol error rate than those of randomly designed sparse signature sequences.

INDEX TERMS SCDMA, deep learning, deep unfolding, multiuser detector, signature design.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is one of the key
components of the fifth generation (5G) and beyond in wire-
less communications. NOMA systems can improve the band-
width efficiency by eliminating orthogonality in conventional
orthogonal multiple access (OMA) systems. In addition to
the bandwidth efficiency, highly reliable communications in
overloaded systems have also been a crucial issue for increas-
ing the areal capacity. Some NOMA techniques such as
sparse code multiple access (SCMA) [1] have been proposed
to deal with overloaded systems in which the number of users
is larger than the number of communication resources.

Code division multiple access (CDMA) [2] is a
well-known OMA technique in which multiple users with
signature sequences communicate with a base station (BS)
simultaneously. Although the orthogonality of signature
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sequences provides a reasonable multiuser detection perfor-
mance, the computational complexity of a multiuser detector
is relatively high; for example, an MMSE detector needs to
compute the inverse of a dense matrix composed of signature
sequences. Besides conventional optimization-based meth-
ods, some machine learning-based multiuser detectors have
been proposed for practical channel models [3]-[5].

By contrast, sparsely spread CDMA (SCDMA) [6] is a
variant of NOMA based on sparse signature sequences With
SCDMA, each user has a sparse signature sequence that
modulates a transmitted signal. Unlike CDMA, SCDMA
uses sparse signature sequences with a small number of
non-zero elements, which enables us to use a computation-
ally efficient detection algorithm such as belief propaga-
tion (BP) [7]. Theoretical analyses show that the multiuser
detection performance of SCDMA is comparable to that of
CDMA even if a signature sequence contains only a con-
stant number of non-zero elements [6], [8]. However, as dis-
cussed later, the computational cost of a BP detector depends
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exponentially on the signature sparsity, which implies that
reducing the computational complexity of a detector remains
an important issue.

Signature design, that is, a proper choice of signature
sequence, is another crucial issue in SCDMA owing to
its sparsity and nonorthogonality. Previous studies have
mainly focused on an optimization-based signature design
for SCDMA and related systems. For example, Razavi et al.
proposed a signature design for low-density signature orthog-
onal frequency-division multiplexing (OFDM) using a BP
detector and an extrinsic information transfer chart analy-
sis [9]. Xiao et al. presented an optimization of the signature
sequences for multicarrier-low-density spreading multiple
access using an interior-point algorithm [10]. Song et al. pro-
posed a signature design for SCDMA systems by maximizing
the code distance [11]. Although these methods exhibit a rea-
sonable performance improvement compared with a random
signature design, they are applicable to relatively small sys-
tems. Developing a sparse signature design method especially
for large systems with hundreds of thousands of users is thus
an open and critical problem for realizing a massive SCDMA
system accommodating a large number of terminals.

In recent years, deep-learning techniques have been
applied to various fields of wireless communication, such
as massive MIMO detection [12] and multiuser detection
in orthogonal frequency-division multiple access systems
[13], [14]. The deep unfolding proposed by Gregor and
LeCun [15] has recently been recognized as a promising
deep-learning technique for signal processing [16]. Deep
unfolding is applied to existing iterative algorithms to
improve its convergence performance by unfolding the recur-
sive structures and embedding some trainable parameters.
These parameters can be learned using standard deep learning
methods such as back propagation and stochastic gradient
descent (SGD). One of the notable advantages of deep unfold-
ing is that the number of trainable parameters is smaller than
those of conventional deep neural networks, which results
in a fast and stable training process. Deep unfolding has
been applied to various algorithms in signal processing and
wireless communications: sparse signal recovery [15], [17],
[18], massive MIMO detection [19]-[21], signal detection
for clipped OFDM systems [22], and a trainable decoder for
LDPC codes [23].

Inspired by the notion of deep unfolding, the authors [24]
proposed a trainable multiuser detector for SCDMA systems
with binary phase shift keying (BPSK) modulation. The pro-
posed sparse trainable projected gradient (STPG) detector
requires less computational complexity than a standard BP
detector, whereas it achieves almost the same detection per-
formance as the BP detector. However, the STPG detector
cannot directly deal with practical SCDMA systems with
higher-order modulations such as 8PSK. This is because the
STPG detector is designed only for real-valued channels.

For higher-order modulations, the computational complex-
ity of a conventional BP detector is prohibitive because the
time complexity of a node operation is exponential to the
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size of the signal constellation. Therefore, a simple detector
such as a linear minimum mean squared error (LMMSE)
detector is preferable in terms of the computational efficiency,
although it exhibits a rather poor detection performance,
particularly in overloaded cases. These facts suggest a strong
need for an efficient and powerful multiuser detector for
SCDMA systems with higher-order modulations.

The goal of this study is to pursue improved massive
SCDMA systems with hundreds of thousands of users
based on the deep unfolding approach. We first propose a
deep-unfolded multiuser detector suitable for SCDMA sys-
tems with higher-order modulations such as 8PSK. The pro-
posed detector, called a complex sparse trainable projected
gradient (C-STPG) detector, is a non-trivial extension of
an STPG detector [24] to the complex field. The use of a
complex MMSE function matched to the signal constellation
plays a crucial role in this extension. The dominant part of
the iterative computation processes of the C-STPG detector
consists of sparse matrix-vector products. This leads to a
notable advantage in computational complexity compared
with a conventional BP detector.

The second half of this paper is devoted to describ-
ing a sparse signature design through a deep unfolding.
Another contribution of [24] is to clarify the potential of
the deep-unfolding approach for a sparse signature design.
In a nutshell, the idea is as follows. A signature sequence
matrix is treated as trainable parameters, and an unfolded
graph including the signature matrix is used for training these
trainable parameters. It is experimentally shown that such a
joint learning strategy for sparse signature sequences and the
STPG detector is effective [24]. However, the training process
shown in [24] exploits a projection onto a sparse binary
matrix, that is, a support matrix to sparsify the signature
matrix. The detection performance depends heavily on the
support matrix, and an appropriate support matrix cannot be
easily obtained, which is an unsolved drawback of the joint
learning strategy in [24].

In this paper, we propose a new joint learning strategy for
complex-valued signature sequences. A novel training strat-
egy called gradual sparsification is introduced to circumvent
the problem in [24]. In the field of structure learning for deep
neural networks, sparsification of the network has recently
attracted significant interest because a sparse neural network
directly leads to power efficiency in a hardware implemen-
tation. The idea of gradual sparsification was inspired from
studies such as [25]. For each training iteration, several ele-
ments in a trainable signature matrix convert small absolute
values into zeros, allowing the signature matrix to gradually
become a sparse matrix. In gradual sparsification, no binary
support matrix is required for projection.

The outline of this paper is as follows. Section II describes
the system model and Sec. III briefly introduces existing
SCDMA detectors. In Section IV, we briefly review the
STPG detector [24] for BPSK-based SCDMA systems. In
Section V, we propose a C-STPG detector and compare its
detection performance with that of the LMMSE detector in a

VOLUME 9, 2021



S. Takabe et al.: Deep-Unfolded SCDMA: Multiuser Detector and Sparse Signature Design

IEEE Access

large-scale system. In Section VI, we propose a method for
learning the signature matrix using a C-STPG detector and
evaluate its performance. Section VII summarizes this paper.

Il. MODEL SETTING

The SCDMA system discussed herein is defined as follows.
Assume that N users try to send their own symbol x; € X (i =
1,...,N) in the signal constellation X C C to a BS. Each
user has a signature sequence @; = (aj j, - .., aM,i)T e CM
used for encoding the transmitted symbol. Here, we assume
that M < N holds. In particular, the system is overloaded
when M < N. Equivalently, the system is overloaded if the
overloaded factor § := N /M is larger than 1. In addition,
we assume that the signature matrix A := (ay,...,ay) €
CM*N gatisfies the following conditions: (i) A is k-row
sparse, that is, each row contains exactly k non-zero elements,
and (ii) A is normalized such as ||A||% = kM, where || -
||F denotes the Frobenius norm. Under these assumptions,
the received signaly = (yq, ... ,yM)T is given by

N
SNR
y=y " Danitw, (1

i=1
where SNR represents the signal-to-noise ratio (SNR) of the
system and w € CM is an additive white Gaussian noise

vector with zero mean and unit variance [7]. Equivalently,
using the signature matrix A, the system can be concisely

represented by
[SNR
y= TAx +w. 2

Note that we used the implicit assumption that power and
phase control for each active user is perfect to derive the
model (2), that is, for simplicity, we will not deal with the
near-far problem in this paper. In addition, we assume that
complete frame synchronization is available among users. In
the case of the real-valued system discussed in [24], all vari-
ables including the signal constellation, signature sequences,
and noises take real values, and each element of the noise
vector w independently follows the normal distribution. By
contrast, this study deals with the complex-valued system.
Signature sequences take complex values, and w is a complex
Gaussian random vector with zero mean and unit variance. In
the remaining parts of the paper, we mainly focus on QPSK
X = {4k = 0,1,2,3) and 8PSK X = {e¥7/8; k =
0,1,...,7} modulations, where j := +/—1, although the
argument is not limited to QPSK and 8PSK.

Ill. CONVENTIONAL SCDMA DETECTOR

This section describes well-known detectors for SCDMA
systems. These detectors are used for the baselines in the
experimental performance, as discussed later.

A. LMMSE DETECTOR
The LMMSE detector is a linear detector for multiple access
channels. The detector for the model in (2) is given by the
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following:

_ [SNR SNR -1
&= TAH <1N + TAAH> y. 3)

Although this detector works well in OMA systems, its
detection performance significantly degrades when the sys-
tem is overloaded. Whereas the computational complexity
is O(N?3) due to a matrix inversion, the inverse matrix can
be pre-computed and used for fast computation within the
coherence time.

B. BP DETECTOR

BP is a message-passing algorithm known as an effective
detector for SCDMA systems [7]. The update rule of the BP
is based on a factor graph whose nodes are variables x and y,
and whose edges are set according to non-zero elements of A.
Under the case of BPSK modulation, the message Uj_;(x)
(x € {+1, —1}) represents a message from a function node y;
to a variable node x;, and V;_, j(x) is a message from a variable
node x; to a function node y;. The update rule is then given by
the following:

Vi—)j(x)
:Zi__)lj 1_[ Ui i(x), @
1€di\j
U/_”(X)
= Zj;ll l_[ Vi j(xk)
Xj\i \kedj\i
2
1 SNR
XexXpy =5 [Ty T |G T Z aj kX ,
keaj\i
Q)

where Z;_,; and Z;_,; are normalization constants, and 9i :=
fefl,...,M}|aj;# 0} and 9j := {i € {1, ..., N}|a;;# 0}
are neighboring node sets on the factor graph. After a given
number of iterations, the probability that the ith transmitted
signal is equal to x is estimated by the following:

Vi) =27 [ ] Ujito), 6)

jeoi

where Z; is a normalization constant. Finally, the ith trans-
mitted signal is detected as X; = 1 if V;(1) > V;(—1), and
Xi = —1 otherwise.

The BP detector exhibits a reasonable detection perfor-
mance theoretically and practically [7]. In addition, it is
computationally efficient in terms of N because an iteration
step runs in O(N) when the number of non-zero elements
in A is O(1). However, a detailed analysis shows that the
computational cost for a BPSK-based system is O(k225~1N)
per iteration because (5) contains a sum over all possible
combinations of k — 1 transmitted signals x3;\;. This suggests
that the cost increases rapidly if the sparsity k increases.
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TABLE 1. Number of operations in STPG and BP detectors per iteration, and values for various k when N = M = 1200 (8 = 1).

[ [ Number of operations k=2 [ k=4 [ k=6 ] Big-Onotation |
STPG additions @2~k +B T+ 1)N 7.20 x 103 | 1.20 x 10% | 1.68 x 10% O(kN)
BP additions (k2% 4 2)B~ kN 2.40 x 10* | 3.16 x 10° | 2.77 x 106 O(k?2FN)
STPG multiplications (B lk+B1+2)N+1 6.00 x 103 | 8.40 x 103 | 1.08 x 10* O(kN)
BP multiplications {(2k +3)2% + 287 1k}B~TkN | 7.68 x 10* | 8.83 x 10° | 6.99 x 10% | O(k?2*~1N)

The issue of computational complexity of the BP detec-
tor becomes more serious for higher-order modulations. For
the PSK modulations, the number of message types is pro-
portional to the constellation size |X|, the computational
complexity of an iteration step becomes O(k?|X[*~IN).
Similarly, for the QAM modulations, the computational com-
plexity of an iteration step is Ok x|k=D/2N) because real
and complex part of signals can be divided. These indi-
cate that the time complexity is exponential to the size of
the signal constellation. For example, the execution time
for k = 12 is 256 times longer than that for k = 6.
Practically, the BP decoder with 30 iterations executes in
about 2 seconds on a PC with Intel Core i9-10850K CPU
for (N, M, k) = (1200, 1200, 6) with the BPSK modulation
(J]X| = 2) indicating that the execution time for (N, M, k) =
(1200, 1200, 12) is over 8 minutes. Similarly, the execution
time for (N, M, k) = (1200, 1200, 6) with the 8PSK modu-
lation and 16QAM modulation is respectively expected to be
about 30 and 1 minute(s). These mean that the BP becomes
a less attractive solution when we consider a higher-order
modulation format owing to its huge time complexity.

IV. STPG DETECTOR

Before presenting the C-STPG detector, we briefly review the
STPG detector [24] for BPSK-based SCDMA systems in this
section.

A. STRUCTURE OF STPG DETECTOR

The STPG detector is based on an optimization algorithm
called the projected gradient descent. The recursive relations
of the projected gradient descent (PG) is given as follows:

SNR SNR
rr=s+y TA y - TASI ) @)

S¢+1 = tanh(ar;), (¢ =0,1,...,7T) ®)

where tanh(-) operates in a component-wise manner. In the
first step (7) of PG, the estimate is updated by a gradient
descent with a step size parameter y > 0. In the second
step (8), the estimate is mapped to a point close to a BPSK
signal X = {1, —1} according to a soft projection function
tanh(-). We call the process (8) a soft projection, which is
similar to a proximal operation in proximal methods. The
parameter « is called a softness parameter that tunes the
strength of the soft projection. It is expected that the detection
performance depends on two parameters, y and «. How-
ever, the heuristic tuning of these parameters is costly and
impractical.
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The STPG detector realizes the data-driven tuning of the
parameters in the PG using deep-learning techniques. Based
on the notion of deep unfolding, we can expand the recursive
structure of the PG and embed trainable parameters instead
of y and «. The update rule of an STPG detector is given as

follows:
/SNR /SNR
re=s+ sz TAT (y - TAst> ®

St+1 = tanh(ary), (10)

where {y,}tT=1 and o are trainable parameters. Note that the
step size paramter ytz is squared because the value should
be positive. These parameters are learned by using randomly
generated supervised data and standard deep-learning tech-
niques such as back propagation and SGD (see IV-C1 for
details). The number of trainable parameters is 7 + 1 in T
iterations, which results in a fast and stable training process.

B. COMPUTATIONAL COST

The computational cost of the STPG detector is O(kN)
because the computationally dominant part of the detector is
composed of sparse matrix product operations. Table 1 shows
the number of operations per iteration as a function of n, 3,
and k. In addition, we show the values when N = M = 1200
(B = 1)and k = 2,4,6 for comparison. It is found that
both detectors are linear-time algorithms with respect to N.
In particular, the use of a sparse matrix A’ in a gradient step
helps the STPG detector reduce its complexity.

We also observe that the STPG detector requires fewer
operations than the BP detector in terms of sparsity k. In fact,
the STPG detector has O(kN) additions/multiplications in
each iteration, whereas the BP detector requires O(k22k=1N)
operations for the |X|-PSK modulations, as discussed in
Sec. III-B. In general, the constant k& should be sufficiently
large to ensure a reasonable detection performance, which
results in an exponential increase in the BP computational
cost.

C. NUMERICAL EXPERIMENTS

In this subsection, we present some numerical experiments of
the STPG detector compared with a naive PG detector and a
conventional BP detector.

1) EXPERIMENTAL SETUP

In the numerical simulations, we consider the BPSK-based
SCDMA system with N = 1200 active users. A signature
matrix A is randomly generated by an element-wise product
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A =H O W, where H € {0, 1}M*N is a support matrix and
W e RM*N is a weight matrix. In numerical simulations,
each weight of W is uniformly chosen from {1, —1}. The
support matrix H is also randomly generated by Gallager’s
construction [29] for low-density parity-check matrix such
that its row and column weights are exactly equal to k and
k' = kM /N (e N), respectively.

For the PG and STPG detectors, we set T = 30 as a num-
ber of iterations, which is sufficient for reasonable conver-
gence. The STPG detector is implemented by using PyTorch
1.4 [27]. The training process is executed using incremental
training [18], [21], which avoids a vanishing-gradient prob-
lem and provides reasonable results. In incremental training,
we begin by learning the trainable parameters y1, «, assuming
that 7 = 1. This is called the first generation of training.
After the first generation is finished, we next train parameters
V1, ¥2, o as if T = 2 by using the trained values of y, o as
their initial values. This process is repeated in an incremental
manner until 7 reaches the desired value. In the following
simulations, we use manually tuned parameters y = 0.01
and o = 2 for the PG detector. For the STPG detector, the
initial values of the trainable parameters are set to ytz =0.01
(t=1,...,T),and @ =2. In each generation, we prepare 100
mini batches of size 200 containing a pairing of a transmit
signal X and received signal y, and train parameters using the
Adam optimizer [30] with a learning rate of 5.0 x 107 to
reduce the mean squared error (MSE) loss between X and s,
Finally, the SNR of the system is defined as 10log;q SNR
[dB]. The training process is executed for each SNR. As
another baseline algorithm, we use the BP detector with 30
iterations.

2) ACCELERATION OF CONVERGENCE IN STPG

We first compared the STPG detector to the original PG to
demonstrate the advantages of learning parameters by deep
unfolding. Figure 1 shows the BER performance of the PG,
STPG, and BP detectors with different SNRs. We found that

0246 810121416182022242628
iteration

FIGURE 1. The BER of the PG, STPG, and BP detectors as a function of the
number of iterations T with different SNRs: N = 1000, M = 1200

(B = 1.2), and k = 6. The parameters of the PG are set to y = 0.01 and
oa=2.
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the STPG detector exhibits a better performance than the PG.
For example, when the SNR is 11 dB, the BER of the STPG
detector (T = 30) is approximately 1.0 x 1073, whereas that
of the PG is approximately 5.1 x 1072, In addition, when the
SNR = 14 dB, the STPG detector shows a fast convergence
to a fixed point compared with the PG. These results indicate
that training a constant number of parameters in the PG
leads to better detection performance and fast convergence
to a fixed point. Improvements in the detection performance
and convergence acceleration are crucial advantages of deep
unfolding, as shown in other signal detection problems
[18], [21]. It is also found that the convergent BER perfor-
mance of the STPG detector is fairly close to the that of
the BP detector. Although the BP detector only takes less
than 10 iterations for convergence, the time complexity of the
BP detector per an iteration is much larger than the STPG
detector as discussed in Sec. III-B. This suggests that the
STPG detector can reduce execution time without sacrificing
the BER performance. This is a crucial advantage of the
STPG detector over the BP detector.

3) PERFORMANCE COMPARISON WITH BP DETECTOR
Figure 2 shows the multiuser detection performance with
different overloaded factors 8 when n=1200 and k =6. In the
overloaded case, where 8 =1.2 (M = 1000), the two detectors
exhibit a similar BER performance. Although the overloaded
system suffers from an approximately 1 dB degradation in
performance compared with the § = 1 case, both algo-
rithms successfully detect transmit signals in the high SNR
regime, which is an advantage of the SCDMA as a NOMA.
In overloaded systems, the computational cost of a detector
is still crucial because the signature sparsity k should be as
sufficiently large as in the 8 = 1 case.

10° T T T

6 8 10 12 14
SNR (dB)

FIGURE 2. The BER performance of the STPG (circles) and BP
detectors (triangles) for SCOMA with overloaded factor g = 1 (dotted line)
and 1.2 (solid line); N = 1200, M = N/, and k = 6.

To summarize, the STPG detector shows a fairy close
detection performance to the BP detector even in an over-
loaded case. From the discussion in Sec. IV-B, we can con-
clude that the STPG detector has an advantage in terms of
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the computational cost for a sufficiently large signature spar-
sity k. The drawback of the STPG detector is that the detector
is inapplicable to systems with higher-order modulations such
as 8PSK modulations. In the next section, we will resolve this
issue by introducing the C-STPG detector.

V. C-STPG DETECTOR

In this section, we propose the C-STPG detector, which is an
extension of the STPG detector. We then conducted numerical
experiments to demonstrate the detection performance of the
STPG detector.

A. STRUCTURE OF C-STPG DETECTOR
As discussed in the previous section, the STPG detector [24]
is defined for BPSK modulation. For higher-order modula-
tions, one should extend the detector to the complex field and
appropriately replace the soft projection step .

The extended version, called the C-STPG detector,
is defined as follows:

[SNR [SNR
re=s+y’ TAH <y— - As,), (11)

Sl = Ny ), (12)

erXxeXp <_%>
—x|2 ’
ZXGX €xp <_%>

where n : C — C is an MMSE function matched to a
signal constellation X" with a trainable parameter o, which is
described in detail later. The soft projection step (12) consists
of an element-wise map of 7. The notation A represents
the Hermitian transpose of A. The C-STPG detector starts
from so = 0 and outputs the estimate s7 after T iterations.
Eq. (11) corresponds to the gradient descent step, as in that
of the STPG detector (9).

Figure 3 shows the block diagram of the C-STPG detector
in the T'th iteration (layer). The trainable parameters are «
and {yt}tT;Ol. Therefore, the number of trainable parameters
in T iterations is T + 1, which is independent of the system
size N, M.

n(ra) = 13)

St—1 St

——>

FIGURE 3. Block diagram of the Tth layer of the C-STPG detector. The
trainable parameters are {y, «}. It takes inputs s;_,y and outputs s;.

The main difference between the C-STPG detector and
previous STPG detector is the use of the complex MMSE
function n defined in (13). A justification of the use of
the complex MMSE function n is given as follows. Let us
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consider a one-dimensional complex additive white Gaussian
noise channel y = x +w € C, where x € X and w is a
Gaussian random vector with zero mean and variance «. In
an iterative process of the C-STPG detector, it is assumed that
an estimation error regarding an element follows an indepen-
dent Gaussian distribution. For this reason, we introduce a
virtual AWGN channel described above. Here, we consider
an estimation problem to estimate x from y. It is known that
the optimal estimate is given by the MMSE estimator. Then,
the complex MMSE function is defined as follows:

n(y; &) == Ex[x]y]

= ) xP(x|y)dx. (14)
xeX
Using the Bayes’ theorem, we have
xP(y|x)P(x)dx
no; @) = Lex . (15)
> vex POIX)P(x)dx

Assuming that P(x) = 1/|X|, we obtain the complex
MMSE function (13) [22]. Figure 4 shows the behavior of
the MMSE function n for 8PSK modulation when o = 0.2
and 0.6. We can see that the map n shows a soft projection
or proximal map-like behavior toward the unit circle. An
estimate signal is attracted more strongly to a signal point by
the MMSE function as o becomes smaller. It should be noted
that the trainable ISTA for sparse signal recovery [18] also
successfully employs the MMSE shrinkage function.

10 05 10

@ a=0.2 (b) a=0.6

Y Ny~
E o3 Eowlem <« > 5> wo
Dk 87BN

Re

FIGURE 4. Behavior of complex MMSE function 5 for 8PSK modulation
(red points) when (a) « = 0.2 and (b) « = 0.6. The start and end points of
each arrow indicate the input and output of the function 7, respectively.

Note that a real MMSE function with Gaussian noise and
BPSK modulation corresponds to the soft projection tanh(-)
in the STPG detector. In this sense, the C-STPG detector is a
natural extension of the STPG detector to a complex field.

B. COMPUTATIONAL COST

In addition to the STPG-detector, the computational cost of
the C-STPG detector is O(|X|N + kN) for any signal con-
stellation &X', whereas the BP and LMMSE detectors respec-
tively take O(k%|X'|*~1N) and O(N3). This indicates that the
C-STPG detector is more computationally efficient than the
BP detector for a high-order modulation format. The C-STPG
detector is thus suitable for SCDMA systems with higher
order-modulations.
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C. NUMERICAL EXPERIMENTS

Here, we demonstrate the SER performances of the C-STPG
detector for SCDMA systems with QPSK and 8PSK mod-
ulations. Since the BP detector requires a computation cost
proportional to | X ¥, we only compare the C-STPG detector
with the LMMSE detector.

1) EXPERIMENTAL SETUP

In the following experiments, a transmitted signal is gener-
ated using a uniform distribution over X', and the received
signal y is generated according to the system model (2).

A random signature matrix A is generated as described
in Sec. IV-C1. The weight matrix W is a complex Gaussian
random matrix with zero mean and variance Iy .

During the training process of the C-STPG detector,
the number of iterations is set to 7 = 30. The initial values of
the trainable parameters are settoy; = 0.1(t =0, ..., T—1)
and o = 0.5. We employ incremental training such as in the
training process of the STPG detector. Other learning settings
are same as those in Sec. IV-C1. To estimate the symbol error
rate (SER), we apply hard thresholding to the output of a
detector. Namely, each estimated complex-valued signal is
given by the closest signal point in X

2) EXPERIMENTAL RESULTS

We first show the multiuser detection performance under
QPSK modulation. Figure 5 shows the experimental results
for the (N, M, B) = (1200, 1200, 1) case. In this setting,
the C-STPG detector achieves a significantly lower SER than
the LMMSE detector when the signature matrix A is dense,
i.e., k =N = 1200. For the sparse case, k = 12, the C-STPG
detector achieves a much smaller SER compared with the
LMMSE detector as well. Comparing the two cases k = 12
and k = 1200, the performance degradation of the C-STPG
detector with k = 12 is only 1 dB when the SER is 1072 It
should be noted, however, that a sparser case such as k = 6
results in a significant performance degradation. Sparsity k
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FIGURE 5. SER performance of C-STPG and LMMSE detectors under QPSK
modulation with (N, M, g) = (1200, 1200, 1).
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FIGURE 6. Learned (yt]L‘ol of the C-STPG detector for QPSK modulation
when (N, M, g) = (1200, 1200, 1) and SNR= 10 dB.

should be set to a moderately large constant, such as k = 12,
to maintain the SER performance.

Figure 6 shows the learned {Vt}th_ol when SNR= 10 dB.
We found that {yt}tT;()l exhibits a zigzag shape, which is
similar to the learned parameters observed for other gradient
descent-type algorithms such as TISTA [18]. The zigzag
shape of step sizes is theoretically analyzed for a naive gradi-
ent descent algorithm as Chebyshev steps [28], which can be
extended to a part of projection gradient descent algorithms.
However, the theory is inapplicable to the C-STPG detector
because its fixed point is nontrivial. Further theoretical anal-
yses is a possible future work. Note that the learned o takes
0.366, indicating that a moderately strong soft projection is
suitable for detection (see Fig. 4).

Figure 7 shows the results for an overloaded case with
(N, M, B)=(1200, 1000, 1.2). The C-STPG detector shows
a smaller SER than that of the LMMSE detector regardless of
the sparsity. Compared with Fig. 5, the performance degrada-
tion of the LMMSE detector is apparent, whereas that of the
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FIGURE 7. SER performance of C-STPG and LMMSE detectors with QPSK
modulation in the overloaded case and (N, M, 8) = (1200, 1000, 1.2).
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FIGURE 8. SER performance of C-STPG and LMMSE detectors with the
8PSK modulation with (N, M, g) = (1200, 1200, 1).

C-STPG detector is not as large. This result implies that the
C-STPG detector is also effective for SCDMA systems even
under overloaded conditions.

Next, we show the multiuser detection performance of
a SCDMA system with 8PSK modulation. Figure 8 shows
the results for the (N,M,B) = (1200, 1200, 1) case.
The superiority of the C-STPG detector is still apparent.
In this case, the detection performance of the C-STPG
detector decreases by approximately 1 dB because of
the sparse signature sequence when the SER is 1072
Figure 9 shows the results for the overloaded case in which
(N, M, B) = (1200, 1000, 1.2). We found that the C-STPG
detector exhibits a better SER performance than the LMMSE
detector, even in this case.

10° f

10* | C-STPG k=1200 —6—

E  C-STPG k=12 —&—
LMMSE k=1200
LMMSE k=12

107
10 12 14 16 18
SNR[dB]

FIGURE 9. SER performance of C-STPG and LMMSE detectors with 8PSK
modulation in overladed case and (N, M, ) = (1200, 1000, 1.2).

In summary, we confirmed that the proposed C-STPG
detector shows an excellent detection performance even
for overloaded SCDMA systems with QPSK and 8PSK
modulations.
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VI. DEEP-UNFOLDING BASED SIGNATURE DESIGN

In the previous section, we proposed the C-STPG detec-
tor and demonstrated its SER performance. The detector
is highly computationally efficient. and exhibits a superior
detection performance compared with the LMMSE detector.
However, the results also suggest that the detection perfor-
mance for SCDMA systems is degraded compared with a
dense case in which k = N. In a previous study [24],
the possibility of deep unfolding for a signature sequence
design is shown. In this section, we present a new joint
learning strategy called gradual sparsification for a signature
sequence design.

A. GRADUAL SPARSIFICATION

We can modify the training process of the STPG and C-STPG
detector such that not only the trainable parameters of the
detector but also the signature matrix A are updated by an
optimizer.

The main difficulty of the strategy is how to implement the
training process to force matrix A to be sparse, that is, all row
weights of trained A should be equal to a given number k.
In [24], only a weight matrix W is updated, whereas a binary
support matrix H is fixed. Although this ensures the sparsity
condition for A = H ©® W, the resulting detection performance
depends on H, which is chosen heuristically.

To eliminate the performance dependence on H, we pro-
pose a new learning strategy called gradual sparsification,
as shown in Fig. 10. Gradual sparsification is closely related
to edge pruning methods for deep neural networks, e.g., [25].

(a) Joint learning of
spreading matrix A and C-STPG

(b) Gradual sparcification
for spreading matrix A

— Slgnal generation
using temporal A

v

Parameter update
of C-STPG & A +

Gradual
sparcification

Elements with smallest absolute
values are pruned for each row.

FIGURE 10. (a) Flowchart of the joint learning strategy for the C-STPG
detector and signature matrix. (b) Schematic diagram of gradual
sparsification to update the signature matrix.

The pseudocode of gradual sparsification is shown in
Alg. 1. First, a support matrix is initialized to an all-one
matrix. In the pseudocode, Lines 4 and 5 represent the
masking and weight normalization of A using a tentative H.
Lines 6-9 describe the standard incremental training for
the C-STPG detector. In Line 10, an optimizer updates the
weights of A in addition to the trainable parameters of the
detector. The remaining part corresponds to gradual spar-
sification for the signature matrix. For every I mini-batch,
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Algorithm 1 Joint Learning With Gradual Sparsification
Input: M,N,T,k,SNR, mini-batch size bs, number of
mini-batches B, sparsification interval /.
Output: Trained params. {y;}, o, A
1: Initialize {y;}, o, and A. Let H be an M x N support
matrix whose elements are 1. Set/ = N.
2: fort =1toT do
3: for b = 1to Bdo
>Masking and normalization of A.

4: A=A0CH

s: A = (VkM/|Allp)A
>Generating training data.

6: Generate x € {1, —1}Vxbs randomly.

7: Generate y by y = (/SNR/k)Ax + w.
>Update of training parameters.

: Calculate an estimate X := s, of STPG.

9: Calculate MSE loss between x and X.

10: Update {y;}, o, and A by an optimizer.
>Gradual Sparsification.

11: if/ > k and b mod I = 0 then

12: fori=1toN do

13: Select index j with smallest |A;;]|

and H;; # 0.

14: Hj; = 0.

15: end for

16: l:=1-1.

17: end if

18: end for

19: end for

the following sparsification process is executed, as shown
in Lines 11-17. For each row of A, we choose the index j
such that H;; =1 and |A;;| takes the smallest absolute values
among all elements in the ith row where i represents the row
index. Then, the value of Hj; is set to zero, which ensures that
A;;=0 after this update. Clearly, the row weights of H and A
decreases by one for every sparsification process. If the row
weights reach a given number k, the sparsification stops.

Gradual sparsification enables us to tune not only the
weights but also the locations of non-zero elements in the
signature sequences. In addition, the column weights of a
learned signature matrix can vary, which may improve the
detection performance. The hyperparameter I representing
the sparsification interval determines the number of updates
of A during sparsification. The value of 7 should be moder-
ately large because the choice in sparsification depends on the
learned weights of A.

B. EXPERIMENTAL RESULTS

In the following experiments, we demonstrate the SER per-
formances of an SCDMA system optimized by a gradual
sparsification. We compare its SER performance to a learned
C-STPG detector with randomly generated sparse signa-
ture matrices. The experimental condition basically follows
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Sec. V-C1. As the number of trainable parameters increases,
we change the number of mini-batches per generation to
1000. In addition, we set the sparsification interval / to 10.
Figure 11 shows a transition of a signature matrix repre-
senting a gradual sparsification process; (a) an initial random
signature matrix of k = 60, (b) a signature matrix of k =
35, and (c) a trained signature matrix of k = 12 when
N = M = 60 and SNR=10 dB. We found that the number
of non-zero elements successfully decreases using gradual

(a) k =60
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FIGURE 11. Absolute values of elements in a signature matrix in a
gradual sparsification process when N = M = 60 and the SNR=10 dB. The
absolute value of each element in the signature matrix is represented
according to the color map at the right side of these figures. (a) k = 60
(initial random signature matrix), (b) k = 35, and (c) k = 12 when the
gradual sparsification is completed.
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FIGURE 12. SER performance of the QPSK-based SCDMA system using a
C-STPG detector with learned signature sequences (A learned) and
random signature sequences (A fixed) when (N, M, 8) = (1200, 1200, 1).
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FIGURE 13. SER performance of QPSK-based overloaded SCDMA system
using a C-STPG detector with learned signature sequences (A learned)
and random signature sequences (A fixed) when

(N, M, g) = (1200, 1000, 1.2).
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FIGURE 14. SER performance of 8PSK-based SCDMA system using a
C-STPG detector with learned signature sequences (A learned) and
random signature sequences (A fixed) when (N, M, 8) = (1200, 1200, 1).

sparsification. The absolute values of the non-zero elements
remain relatively large owing to the normalization.

Figures 12-15 show the SER performance of the C-STPG
detector with learned signature sequences (A learned) and
fixed random signature sequences (A fixed) in various cases.
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SER

SNR[dB]

FIGURE 15. SER performance of 8PSK-based overloaded SCDMA system
using a C-STPG detector with learned signature sequences (A learned)
and random signature sequences (A fixed) when

(N, M, B) = (1200, 1000, 1.2).

A signature matrix of “A learned” is learned using grad-
ual sparsification (Alg. 1) with k = 12. For comparison,
we show two SER curves of “A fixed” in the case of sparsity
k = 12 and k = N. We can see that gradual sparsification
successfully improves the detection performance of SCDMA
systems in all cases. The detection performance of the joint
learning is fairly close to that of dense CDMA systems with
k = N in a high SNR region. Moreover, the SER perfor-
mance of the learned signature matrix outperforms that of
(S)YCDMA with random signature matrices in a low SNR
regime. We also find that gradual sparsification is effective
even for overloaded systems (see Figs. 13 and 15). These
results indicate that gradual sparsification reduces the compu-
tational complexity of the CDMA multiuser detector without
sacrificing its detection performance. Remarkably, gradual
sparsification can provide superior SER performance in the
low SNR regime compared with dense randomly generated
signature matrices.

Next, we compare gradual sparsification with existing
optimal signature design. Although gradual sparsification is
effective for large systems as shown above, existing optimal
signature design methods mainly focus on small sytems. In
such small sytems, we can use a maximum likelihood (ML)
detector for mutiuser detection in terms of execution time.
We thus compare gradual sparsification with existing optimal
signature design in small systems using C-STPG and ML
detectors.

Figure 16 shows the SER performance of the C-STPG and
ML detector with learned signature sequences and optimal
signature sequences in [11] when (N, M, k) 6,4, 3).
The optimal signature sequence is constructed to maximize
the minimum distance among coded transmit signals [11],
whereas the learned signature sequence is jointly learned
with the C-STPG detector as described above. Although the
SER performance of the C-STPG detector is degraded for
small systems, gradual sparsification can improve the SER
performance. Moreover, by applying the optimal ML detec-
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TABLE 2. Example of mutual coherence of signature matrix before and after joint learning.

| (1200,1200,12) [ (1200,1000,12) | (1200,1200,1200) [ (1200,1000,1200) |

(N7 M7 k)
Before learning (random) 0.4491
After learning (QPSK modulation) 0.3774
After learning (8PSK modulation) 0.3775

0.5756 0.1133 0.1135
0.4575 0.1018 0.0980
0.4647 0.0991 0.0976

10° ! ! ! !
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C-STPG + gradual sparsification
ML + Song et al.,

ML.+ gradual sparlsification :
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FIGURE 16. SER performance of QPSK-based overloaded SCDMA system
using a C-STPG detector and ML detector with learned signature
sequences and optimal signature sequences reported by Song et al. [11]
when (N, M, k) = (6, 4, 3).
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FIGURE 17. Frequency distribution of the number of non-zero elements
in each column of a learned signature matrix under QPSK modulation
with (N, M, g) = (1200, 1200, 1) and SNR=10 dB.

tor, SER performance of both signature sequences improves.
It is emphasized that the learned signature sequences using
gradual sparsification outperforms existing optimal signature
sequence. Note that the maximization of the minimum dis-
tance among coded transmit signals is computationally hard
in general for large systems. These indicate the effectiveness
of gradual sparsification for signature design.

It is conjectured that there are two possible reasons for the
performance improvement. The first is the irregular structure
of the learned signature matrix A. In particular, the column
weights & of the learned A fluctuate around its average,
as shown in Fig. 17. This differs from random signature
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matrices used in the experiments. This may improve the
resulting detection performance, such as error-correcting per-
formance of irregular low-density parity-check codes [31].
The second is the improvement of correlations called mutual
coherence. For A = (aq, ...,ay), the mutual coherence is
given as maxix; |a;™ a;|. It is known that a smaller mutual
coherence leads to a higher signal recovery performance in
compressed sensing [32]. Table 2 shows the mutual coherence
of A before/after joint learning during the experiments. We
found that gradual sparsification reduces the mutual coher-
ence in all cases. This suggests that signature sequences with
smaller mutual coherence improve the detection performance
in SCDMA systems such as compressed sensing. The theo-
retical justification of these conjectures is an important future
problem.

VIl. CONCLUDING REMARKS

In this paper, a deep-unfolding approach for improving
the SER performance of SCDMA systems is investigated.
A trainable SCDMA detector called the C-STPG detector is
proposed for higher-order modulations. The detector contains
only T + 1 trainable parameters in 7 iterations, which is
constant based on the system size. In addition, the computa-
tional cost O(|X|N + kN) per iteration is much smaller than
the conventional LMMSE and BP detectors in most cases.
In the case of hardware implementation, we can also expect
massive parallelism of the C-STPG detector, which may be
competitive to known algorithms. Numerical results show
that the C-STPG detector exhibits a remarkable multiuser
detection performance even for overloaded systems.

In addition, a joint learning strategy for signature
sequences based on gradual sparsification is proposed. Grad-
ual sparsification enables us to tune not only weights of a
signature matrix but also the location of its non-zero ele-
ments. Numerical experiments show that gradual sparsifica-
tion successfully improves the detection performance, and
the resulting improved performance is comparable to dense
CDMA systems.

The results obtained in this paper provide insight into the
detector design and signature design for SCDMA systems
through deep unfolding. The framework shown in this paper
may be applicable for improving sparse code multiple access
systems, but this remains an open topic for future studies.
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