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ABSTRACT In this paper, the flight principle and accurate dynamics of three-rotor unmanned aerial vehicle
(UAV) are detailedly analyzed and a nonlinear robust tracking control strategy is proposed considering
unknown time-varying external disturbances. Aiming at the tracking control of the typical underactuated
system, the dynamic model of the three-rotor UAV is divided into outer-loop position subsystem and
inner-loop attitude subsystem. The feedback linearization algorithm is employed to design the outer-loop
controller for the trajectory tracking of the UAV. For the inner-loop control of the UAV, the robust integral
of the signum of the error (RISE) method is utilized to formulate the robust attitude controller to deal
with the external disturbances. The stability of the closed loop system and the asymptotical tracking of the
desired trajectory are proved via Lyapunov based stability analysis. Real-time experiments are implemented
to validate the performance of the proposed control strategy.

INDEX TERMS Three-rotor UAV, feedback linearization, RISE, robust tracking control.

I. INTRODUCTION
Over the past few years, the multi-rotor UAVs have shown
great advantages in both military and civil applications
[1]–[3], including surveillance, fire fighting and so on
[4], [5]. Comparing with other common multi-rotor UAVs,
such as quadrotor UAV and hexarotor UAV, the three-rotor
UAV is a new configuration consisting of two fixed motors
and one tilt motor that is equipped with a rear servo, which
makes it possess some unique properties such as simpler
structure, lower cost, lower energy consumption and higher
maneuverability [6], shown as FIGURE 1.

As a new configuration of the multi-rotor UAV, the three-
rotor UAV has attracted increasing attentions from different
research institutes. In [7], the 6 degree-of-freedom (DOF)
dynamic model for a three-rotor UAV is first obtained via
the Newton-Euler approach, and then the saturating func-
tion based sequential control strategy is employed to achieve
stabilization of its attitude and position, which is verified
through real-time experiments on the self-build simulink-
based platform. In [8], an accurate dynamic model is derived
for a three-rotor UAV and the classical PID control law
is developed for its stabilization control, which are finally
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FIGURE 1. Structural framework of the three-rotor UAV.

verified via numerical simulations. In [9], the control scheme
consisting of a PID based attitude control and a linear
quadratic translational control for a three-rotor UAV is pre-
sented, and the numerical simulation results demonstrate the
efficiency of both attitude and position control schemes.
An adaptive hybrid control strategy based on fuzzy regu-
lation, pole-placement and the tracking control algorithm
demonstrated in [10] is utilized to design the attitude and
altitude control law for a three-rotor UAV. The numerical
simulation results show that the proposed controller has better
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transient response with low overshoot and undershoot to
achieve the desired attitude.

From the literatures mentioned above, it can be concluded
that the current research interests of the three-rotor UAV are
mainly focused on the dynamic modeling and flight control.
Actually, the three-rotor UAV has 6 DOF with only four
control inputs, which is known as the underactuated property
[11]–[13], thus the tracking control [14], [15] design for a
three-rotor UAV is a complex task. To deal with the under-
actuated property, the existing tracking control strategies for
multi-rotor UAV can be mainly classified into backstep-
ping based controllers [16] and inner-and-outer-loop based
controllers [17]. The backstepping scheme has its standard
structure and stability analysis, but the tuning of the control
gains is not a easy task. The inner-and-outer-loop control
strategy produces continuous input signals, while the stability
analysis is more complicated. However, the existing FTC
methodologies proposed for other UAVs, such as sliding
mode control [18], adaptive control [19], [20], model predic-
tive control [21] and so on, are very difficult to be applied on
the three-rotor UAV directly.

In our previous work [22], a nonlinear robust fault tolerant
position tracking control strategy is proposed for a three-rotor
UAV to deal with the rear servo’s stuck fault together with
parametric uncertainties and unknown external disturbances.
For the attitude control, an adaptive sliding mode observer
is designed to estimate the unknown rear servo’s stuck fault,
and then the RISE [23] method is employed to compensate
the estimation errors and exogenous disturbances. For the
position control, the I&I methodology is utilized to com-
pensate the parametric uncertainties. Finally, the real-time
flight experiments validate the effectiveness of the proposed
strategy.

Therefore, to address the aforementioned problems,
the inner-and-outer-loop based control strategy is also applied
in this paper for a three-rotor UAV, which is affected by
unknown external time-varying disturbances. The feedback
linearization method is employed to design the controller
for the outer-loop (position loop) of the UAV, and the RISE
method is utilized to formulate the robust controller for the
inner-loop (attitude loop). Then a composite Lyapunov the-
ory is employed to prove the stability of the closed-loop
system and the asymptotic tracking of the desired position
trajectory for the UAV. Finally, the proposed FTC strategy is
verified through real-time flight experiments performed on
the self-build HILS three-rotor UAV testbed.

The main contributions of this paper can be summarized
as follows. Firstly, the detailed dynamics of the three-rotor
UAV are taken into consideration, where the anti-torque
produced by the rotors together exogenous disturbances are
included, while most other existing works do not. Secondly,
for the position loop control, the feedback linearization
method is applied, and for the attitude loop, RISE based
controller is developed to compensate the unknown exoge-
nous time-varying disturbances to improve the robustness
of the closed loop system and achieve a continuous control

input. Finally, the proposed FTC strategy is verified through
real-time flight experiments. To our best knowledge, few
previous works from other research institutes have devel-
oped complete tracking control and stability analysis for the
three-rotor UAV.

The rest of paper is organized as follows. The flight prin-
ciple and dynamics of the three-rotor UAV with unknown
time-varying disturbances are described in Section II.
In Section III, the design of the tracing control scheme
and composite stability analysis are presented. The real-time
experimental results are shown in Section IV. Finally, some
conclusion remarks are included in Section V.

II. DYNAMIC ANALYSIS OF THE THREE-ROTOR UAV
A. FLIGHT PRINCIPLE OF THE THREE-ROTOR UAV
As a new configuration of multi-rotor UAV, the three-rotor
UAV’s flight principle is quite distinctive, as illustrated in
FIGURE 2. The roll motion is realized only by changing the
speeds of motor 1 and motor 2. The pitch motion is realized
by changing the speeds of all the three motors together with
the deflection of the rear servo.Meanwhile, the yawmotion is
also changed by the anti-torque produced by the three motors
and the deflection of the rear servo.

FIGURE 2. Flight principle of three-rotor UAV.

B. MATHEMATICAL MODEL OF THE THREE-ROTOR UAV
In order to describe the dynamics and kinematics of the
three-rotor UAV, two right-hand coordinate systems are uti-
lized. The inertial reference frame is denoted by {I}, and the
body-fixed reference frame is denoted by {B}, as illustrated
in FIGURE 3.

The origin of the orthogonal right-hand coordinate system
{I} is attached on the ground, which can be represented by
I = {xI , yI , zI} with zI being the vertical direction upward
into the sky, yI being the west direction and xI being deter-
mined by the right-hand rule. The frame B = {xB, yB, zB}
represents an orthogonal right-hand coordinate system which
is centered at the centroid of the three-rotor. The body axis
zB is the normal axis of the principal plane of three-rotor
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FIGURE 3. Schematic of the three-rotor UAV.

directed from bottom to top, the body axis xB is alongwith the
forward flying direction of the three-rotor, and the direction
of the body axis yB is determined by the right-hand rule. The
dynamic model of the three-rotor UAV of mass m ∈ R+
and inertial J ∈ R3×3 can be illustrated via the following
differential equation, expressed in the body-fixed reference
frame {B}: {

J�̇ = −S(�)J�+ τ + τd
mξ̈ = −FRe3 + mge3,

(1)

where �(t) =
[
ω1(t) ω2(t) ω3(t)

]T
∈ R3 denotes the

angular velocity of theUAV in the body-fixed reference frame
and ξ (t) =

[
x(t) y(t) z(t)

]T
∈ R3 denotes the position

with respect to the inertial reference frame. In (1), the vector
τ (t) =

[
τφ(t) τθ (t) τψ (t)

]T
∈ R3 denotes the total rotational

torque, the constant F ∈ R+ is the total thrust, the vector
τd (t) ∈ R3 is unknown external disturbances, the matrix
R ∈ R3×3 is the rotation matrix from {B} to {I}, the vector
e3 =

[
0 0 1

]T
∈ R3 and the matrix S(·) represents the skew

matrix which satisfies the following equation:

S(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ,∀a = [ a1 a2 a3 ]T . (2)

In FIGURE 3, motor 1 and motor 2 rotate clockwise and
motor 3 anticlockwise, and the symbols fi(t) and µi(t), (i =
1, 2, 3) represent the thrust and anti-torque produced by
the ith motor respectively. The constant li, (i = 1, 2, 3)
denotes the distance between the ith motor and the origin
OB. Supposing there were a line connecting motor 1 to motor
2 and another connecting motor 1 the origin OB, then an
angle would be formulated between these two lines which is
denoted by α. The signal δ(t) represents the angle that the rear
servo deviates from the plane of XBOBZB, with clockwise
being the positive direction.

Utilizing the thrust fi(t) and the anti-torque µi(t) to repre-
sent the total thrust F(t) and τ (t), then the following equation
can be obtained.

[c]lF = −f1 − f2 − f3 cos δ
τφ = f1l1 cosα − f2l2 cosα
τθ = −(f1l1 + f2l2) sinα + f3 cos δ · l3 − µ3 sin δ
τψ = −µ1 − µ2 + µ3 cos δ + f3 sin δ · l3.

(3)

Remark 1: If the motor speed is defined as ni(t),
i = 1, 2, 3, then the vectors fi(t) and µi(t) can be obtained
as

fi = kfin2i , i = 1, 2, 3, (4)

µi = kµin2i , i = 1, 2, 3, (5)

where kfi and kµi are called lift coefficient and anti-torque
coefficient respectively. Then the following equation can be
concluded as

µi = kifi, i = 1, 2, 3, (6)

where ki =
kµi
kfi
.

Assumption 1: The structure of the three-rotor UAV is
symmetrical with respect to the axis ofOBXB, so the equation
of l1 = l2 = l is established, where l is a constant.
Assumption 2: The three motors and propellers are of

identical characteristics, therefore k1 = k2 = k3 = k , where
k is a constant.
Assumption 3: The terms of sin δ can be neglected, since

the angle δ(t) varies within a quite small range and sin δ �
cos δ. Actually, the normal variation range of the angle δ(t) is
bounded within 0.056rad .

When assumption 1, assumption 2 and assumption 3 are all
satisfied, (3) and be rewritten as follows,

F = −f1 − f2 − f3 cos δ
τφ = (f1 − f2) l cosα
τθ = −(f1 + f2)l sinα + f3 cos δ · l3
τψ = −k(f1 + f2)+ k3f3 cos δ.

(7)

Assumption 4: For control design purposes, the atti-
tude of three-rotor UAV is transformed into the inertial
reference frame {I}, which is represented by η(t) =[
φ(t) θ (t) ψ(t)

]T
∈ R3. The relationship between η(t) and

�(t) can be written as

η̇ = 8(η)�, (8)

where 8(η) is called the Euler matrix and it is given by

8(η) =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 . (9)

To avoid the singularity of the Euler matrix8(η), θ (t) 6= ±π2
and its inverse matrix 9(η) = 8−1(η) is given by

9(η) =

 1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ

 . (10)
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By differentiating (8) with respect to time and substituting
the resulting equation into the first equation (1), we obtain

M (η)η̈ + C(η, η̇)η̇ = 9T (η)τ +9T (η)τd , (11)

where the matricesM (η) and C(η, η̇) satisfy

M (η) = 9T (η)J9(η), (12)

C(η, η̇) = 9(η)J9̇(η)+9(η)S(9(η)η̇)J9(η). (13)

Recalling the second equation (1) and (11), the dynamics
of the three-rotor UAV can be expressed as follows.{

mξ̈ = −FRe3 + mge3
M (η)η̈ + C(η, η̇)η̇ = 9T (η)τ +9T (η)τd ,

(14)

III. CONTROL DESIGN
Remark 2: Since the attitude dynamics in (14) is fully actu-
ated for θ (t) 6= ±π/2, then it is exact feedback linearizable.
By applying the change of variables{

τ = J9(η)u+8TC(η, η̇)η̇
τd = J9(η)Td ,

(15)

the dynamics of the three-rotor UAV in (14) can be trans-
formed into {

mξ̈ = −FRe3 + mge3
η̈ = u+ Td ,

(16)

where u(t) =
[
uφ(t) uθ (t) uψ (t)

]T
,Td (t) =[

Tdφ(t) Tdθ (t) Tdψ (t)
]T
.

Assumption 5: The unknown time-varying disturbance
Td (t) is continuous differentiable and bounded up to its sec-
ond order time derivative, i.e., Tdi(t) ∈ L2 for i = φ, θ, ψ.
Remark 3: From (16), the system can be divided into

translation and rotation dynamics which are coupled through
the rotation matrix R. In fact, the rotation dynamics do not
depend on translation components but the translation dynam-
ics depend on angles via the rotation matrix R. Since the
overall control objective is to design a controller to ensure
the accurate trajectory tracking for both attitude and position,
the reference trajectories defined as

[
ξd (t) ψd (t)

]T
∈ R4

can fully achieve that. The reference roll and pitch angles
defined as

[
φd (t) θd (t)

]T
∈ R2 will be computed through

the position controller.
Remark 4: It should be mentioned that the control law

is designed for the dynamic model (16), then the control
for dynamic model (1) can be obtained through the first
equation (15).

Let the desired position and attitude defined as
ξd (t) =

[
xd (t) yd (t) zd (t)

]T
∈ R3 and ηd (t) =[

φd (t) θd (t) ψd (t)
]T
∈ R3 respectively. Let the tracking

error be defined as eξ (t) =
[
ex(t) ey(t) ez(t)

]T
∈ R3 and

eη(t) =
[
eφ(t) eθ (t) eψ (t)

]T
∈ R3 which can be calculated

as

eξ = ξ − ξd , (17)

eη = η − ηd . (18)

Define the new error signal Eξ (t) ∈ R6 and Eη(t) ∈ R6 as

Eξ =
[
eξ ėξ

]T
, (19)

Eη =
[
eη ėη

]T
, (20)

and the following expression can be obtained as{
Ėξ = A1Eξ + B1(v− ξ̈d )+ B11(ηd , eη)
Ėη = A2Eη + B2(u+ Td − η̈d ),

(21)

where A1 = A2 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, B1 = B2 =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

.
The vector v(t) =

[
vx(t) vy(t) vz(t)

]T
∈ R3 is a virtual

control input which is defined as

v = −
1
m
F · R(ηd )e3 + ge3, (22)

and the vector 1(ηd , eη) represents the coupled terms
between the UAV’s attitude and position system.

In (22), the components of v(t) are given by
vx = −

1
m
F(cosφd sin θd cosψd + sinφd sinψd )

vy = −
1
m
F(cosφd sin θd sinψd − sinφd cosψd )

vz = −
1
m
F cos θd cosφd + g.

(23)

Then from (23), the desired thrust and attitude are solved as
F = m

√
v2x + v2y + (g+ vz)2

φd = arcsin(
m
F
(v1 sinψd − v2 cosψd ))

θd = arctan(
1

v3 + g
(v1 cosψd + v2 sinψd )).

(24)

After taking (18) into (16), (16) can be rewritten as

ξ̈ = v+ δ(ηd , eη), (25)

where the vector δ(ηd , eη) is defined as

δ(ηd , eη) = −
1
m
F · Re3 + ge3 − v. (26)

Now, the cascaded system (21) is obtained by computing
the time derivative of both position and attitude tracking
errors (Eξ (t),Eη(t)) and recalling (25). To synthesize the
control laws v = f1(Eξ , ξ̈d ) and u = f2(Eη, η̈d ) for connected
system (21), we will use the following theorem expressed
by [26].
Theorem 1: If there is a feedback v = f1(Eξ , ξ̈d ) such that

Eξ = 0 is an asymptotically stable equilibrium of the system
Ėξ = A1Eξ + B1(v − ξ̈d ), then any partial state feedback
control u = f2(Eη, η̈d ), which renders the Eη-subsystem
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equilibrium Eη = 0 asymptotically stable, also achieves
asymptotic stability of (Eξ ,Eη) = (0, 0).

According to theorem 1, it states that partial-state feedback
design can be applied to control system (21) by synthesiz-
ing two independent controllers v = f1(Eξ , ξ̈d ) and u =
f2(Eη, η̈d ), and the interconnection term B11(ηd , eη) acts as
a disturbance on the Eξ -subsystem, which must be driven to
zero. Thus, the outer-loop subsystem can be chosen as

Ėξ = A1Eξ + B1(v− ξ̈d ), (27)

in which the coupling term B11(ηd , eη) is temporarily not
considered. The inner-loop subsystem can be chosen as

Ėη = A2Eη + B2(u+ Td − η̈d ). (28)

Then the control objective is thus to design the control laws
v = f1(Eξ , ξ̈d ) and u = f2(Eη, η̈d ) such that the tracking
errors Eξ (t) and Eη(t) converge to zero asymptotically.

A. OUTER-LOOP CONTROL DESIGN
The objective of the outer-loop control is to design the control
input v(t) to ensure that the tracking error Eξ (t) converges to
zero asymptotically. Consider system (27), we can use simple
linear controllers which can be designed as

v = −KξEξ + ξ̈d ,Kξ ∈ R3×6, (29)

where the parameter Kξ satisfies that Aξ = A1 − B1Kξ is
Hurwitz.

B. INNER-LOOP CONTROL DESIGN
The objective of the inner-loop control is to design a proper
control scheme u(t), whichwill ensure the asymptotic conver-
gence of the tracking error Eη(t) in (28). For convenience of
the following control design, the filtered error signals sη(t) =[
sφ(t) sθ (t) sψ (t)

]T
∈ R3, rη(t) =

[
rφ(t) rθ (t) rψ (t)

]T
∈

R3 are defined as follows:

sη = ėη + αηeη, (30)

rη = ṡη + βηsη, (31)

where αη = diag
{[
αφ αθ αψ

]T}
∈ R3×3, βη =

diag
{[
βφ βθ βψ

]T}
∈ R3×3, and all the signals are some

positive constant gains.
Take the roll channel as an example in the following anal-

ysis, it can be concluded that

sφ = ėφ + αφeφ, (32)

rφ = ṡφ + βφsφ, (33)

After taking the time derivative of rφ(t) and substituting (18),
(32) into the resulting equation, the following equation is
obtained

ṙφ = u̇φ + Ṫdφ −
...
φd + αφ ëφ + βφ ṡφ . (34)

Let the auxiliary functions denoted by Nφ(φ(i), t) ∈ R,
Ndφ(t) ∈ R and Ñφ(t) ∈ R be defined as follows:

Nφ(φ(i), t) = −
...
φd + Ṫdφ + αφ ëφ + βφ ṡφ + sφ, (35)

Ndφ(t) = −
...
φd + Ṫdφ, (36)

Ñφ(t) = Nφ − Ndφ = αφ φ̈e + βφ ṡφ + sφ . (37)

Substituting (35)-(37) into (34), the open-loop error dynamics
of the roll channel is obtained as

ṙφ = −sφ + u̇φ + Ndφ + Ñφ . (38)

Based on (38), the controller uφ(t) is designed as

u̇φ = −(gφ + 1)rφ − hφsign(sφ). (39)

where gφ ∈ R and hφ ∈ R are some positive gains.
Substituting (39) into (38), the closed-loop error dynamics

of the roll channel is obtained as

ṙφ = −sφ − (gφ + 1)rφ − hφsign(sφ)+ Ndφ + Ñφ . (40)

Remark 5: Since Ñφ(sφ, rφ) is continuously differentiable,
it satisfies the following inequality [27]∥∥∥Ñφ(sφ, rφ)∥∥∥ ≤ ρφ(ηφ) ∥∥ηφ∥∥ , (41)

where

ηφ =
[
sφ rφ

]T (42)

and the function ρφ(·) : R+ → R+ is an invertible non-
decreasing function.

C. STABILITY ANALYSIS
For the outer-loop control, it can be easily concluded that if
Aξ = A1 − B1Kξ is Hurwitz, then it can be obtained as

lim
t→∞

Eξ (t) = 0. (43)

i.e., Eξ (t) is asymptotically stable.
For the inner-loop control, the following theorem can be

obtained.
Theorem 2: Considering the system (38), if the control

gains hφ is selected to satisfy the following condition

hφ >
∥∥Ndφ∥∥∞ + 1

βφ

∥∥Ṅdφ∥∥∞ , (44)

then the control laws in (39) ensure the closed-loop system
(40) to be semi-globally asymptotically stable.

Proof: Let the auxiliary function Auφ(t) ∈ R be defined
as

Auφ = A0φ −
∫ t

0
rφ(τ )(Ndφ(τ )− hφsign(sφ(τ )))dτ, (45)

where

A0φ = hφ
∣∣sφ(0)∣∣− sφ(0)Ndφ(0). (46)

Based on the analysis in [27], it is not difficult to check that
Auφ(t) ≥ 0. Let the Lyapunov function candidate denoted by
Vφ(ζφ, t) ∈ R be defined as

Vφ =
1
2
s2φ +

1
2
r2φ + Auφ, (47)
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where

ζφ =
[
ηTφ

√
Auφ

]T
. (48)

It is not difficult to check that Vφ(ζφ, t) is bounded by the
following inequalities,

1
2

∥∥ζφ∥∥2 ≤ Vφ ≤ ∥∥ζφ∥∥2 . (49)

After taking the time derivative of (47), and substituting (32),
(40) together with (45) into the resulting equation, the follow-
ing inequality can be obtained

V̇φ ≤ −kf φ
∥∥ηφ∥∥2 , (50)

where

kmφ = min{βφ, 1} kf φ = kmφ −
ρ2φ(ηφ)

4gφ
. (51)

If the control gain kmφ satisfies the following inequality

kmφ >
ρ2φ(ηφ)

4gφ
, (52)

it can be concluded that kf φ(t) > 0 and V̇φ(t) ≤ 0. Following
the Lemma 2 in [27], let the auxiliary functions W1φ(ζφ),
W2φ(ζφ) and Wφ(ζφ) be defined as

W1φ(ζφ) =
1
2

∥∥ζφ∥∥2
W2φ(ζφ) =

∥∥ζφ∥∥2
Wφ(ζφ) = −kf φ

∥∥ηφ∥∥2 ,
(53)

and the region Dφ be defined as

Dφ = {ζφ ∈ R3|
∥∥ζφ∥∥ < ρ−1φ (2

√
gφkmφ)}. (54)

From (47) and (50), it can be concluded that V (ζφ) ∈ L∞,
thus sφ(t) ∈ L∞ and rφ(t) ∈ L∞. Then from (32), it is
not difficult to know that ṡφ(t) ∈ L∞ and ėφ(t) ∈ L∞.
Furthermore, the boundedness of u̇φ(t) ∈ L∞ and ṙφ(t) ∈
L∞ can be concluded from (34) and (39). From the definition
ofWφ(ζφ), it can be concluded that Ẇφ(ζφ) ∈ L∞, soW (ζφ)
is uniformly continuous. Let the convergence region denoted
by Sφ be defined as

Sφ : {ζφ ∈ Dφ,W2(ζφ) <
1
2
(ρ−1φ (2

√
gφkmφ))2}. (55)

Therefore, it can conclude that

lim
t→∞

ηφ(t) = 0. (56)

Then from (42), it can be obtained that

lim
t→∞

sφ(t) = 0, lim
t→∞

rφ(t) = 0. (57)

Finally, from the linear filters in (32), it can be concluded that

lim
t→∞

eφ(t) = 0. (58)

In the same way, it can also be concluded that

lim
t→∞

eθ (t) = 0, lim
t→∞

eψ (t) = 0. (59)

From (43), (58) and (59), it can be concluded that all the
conditions proposed in Theorem 1 are satisfied, then it can be
concluded that

lim
t→∞

(Eξ (t),Eη(t)) = (0, 0). (60)

IV. EXPERIMENTAL RESULTS
To validate the performance of the proposed control scheme,
real-time experiments are implemented on a HILS three-rotor
UAV testbed as illustrated in [28]. The parameters of the
three-rotor UAV are listed as J =

{[
2.0 8.3 8.2

]T}
·10−3kg·

m2, m = 0.5kg, l = 0.16m, l3 = 0.25m and α = 26
◦

. The
desired tracking position is selected as xd = 2 cos(π/100 · t),
yd = 2 sin(π/100 · t), zd = 2m, ψd = 0. The real-time
experimental results of the FTC control scheme proposed in
this paper are shown in FIGURE 4-FIGURE 6.

FIGURE 4. UAV’s attitude control errors.

FIGURE 5. UAV’s trajectory tracking errors.

FIGURE 4 and FIGURE 5 show the UAV’s attitude
control errors and trajectory tracking errors respectively.
In FIGURE 4, it’s shown that the attitude tracking
errors converge to 0 from the initial state within 5 sec-
onds, and the control errors are bounded with ±1

◦

. In
FIGURE 5, the trajectory tracking errors are obtained by
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substracting the desired position and the current position.
Since the three-rotor UAV is fixed on a ball joint, the current
position is obtained from the acceleration integral and the
trajectory tracking control is validated through numerical
simulations, while the attitude angles are measured via the
UAV’s onboard sensors.

The control inputs including the thrust produced by each
motor and the rear servo’s deflection angle are illustrated in
FIGURE 6. The thrust is kept about 3N and the variation
range of the rear servo’s deflection angle is from −20◦~20◦

to maintain the torque balance.

FIGURE 6. UAV’s control inputs.

V. CONCLUSION
In this paper, a nonlinear robust tracking control scheme is
developed to ensure the three-rotor UAV’s trajectory track-
ing control under unknown time-varying disturbances. For
the inner-loop (attitude loop) control, the RISE method
is employed to compensate for the exogenous distur-
bances without the need of additional observer module. For
the outer-loop (position) control, the feedback lineariza-
tion methodology is utilized. The composite stability of
the close-loop system is proved through Lyapunov-based
methodology. Real-time experiments are performed on the
self-build HILS testbed to show the effectiveness of the pro-
posed control strategy. Future work will focus on the tracking
control design of the three-rotor UAV considering output
constraints and the full degree-of-freedom experimental ver-
ification.
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