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ABSTRACT NASA’s Deep Space Network (DSN) is a globally-spanning communications network respon-
sible for supporting the interplanetary spacecraft missions of NASA and other international users. The DSN
is a highly utilized asset, and the large demand for its’ services makes the assignment of DSN resources a
daunting computational problem. In this paper we study the DSN scheduling problem, which is the problem
of assigning the DSN’s limited resources to its users within a given time horizon. The DSN scheduling
problem is oversubscribed, meaning that only a subset of the activities can be scheduled, and network
operators must decide which activities to exclude from the schedule. We first formulate this challenging
scheduling task as a Mixed-Integer Linear Programming (MILP) optimization problem. Next, we develop a
sequential algorithm which solves the resulting MILP formulation to produce valid schedules for large-scale
instances of the DSN scheduling problem. We use real world DSN data from week 44 of 2016 in order
to evaluate our algorithm’s performance. We find that given a fixed run time, our algorithm outperforms a
simple implementation of our MILP model, generating a feasible schedule in which 17% more activities are
scheduled by the algorithm than by the simple implementation. We design a non-MILP based heuristic to
further validate our results. We find that our algorithm also outperforms this heuristic, scheduling 8% more
activities and 20% more tracking time than the best results achieved by the non-MILP implementation.

INDEX TERMS Optimization, optimization methods, scheduling.

I. INTRODUCTION
NASA’s Deep Space Network (DSN) is a globally-spanning
communications network responsible for supporting the
interplanetary spacecraft missions of NASA and other inter-
national users [1]. NASA’s DSN is one of the largest and
most sensitive telecommunications systems in the world,
consisting of three large antenna facilities spaced approxi-
mately 120 degrees apart, allowing for constant communica-
tion between the DSN’s ground stations and the spacecraft
they service [1], [2]. Located in Goldstone, CA, Madrid,
Spain, and Canberra, Australia, each DSN complex con-
tains one massive 70-meter antenna and up to four 34-meter
antennas [1]–[3]. The DSN supports a multitude of users
across a wide variety of scientific missions, including lunar,
earth orbiting, ground-based, and deep space missions [3].
As of April 2019, the DSN supports 70 unique missions [4],
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offering a broad range of services including telemetry, space-
craft command, tracking, radio astronomy, and more [1]. The
large variety of services provided by the DSN means that
requirements from mission to mission can vary drastically,
making the assignment of DSN resources a difficult logistical
problem.

The DSN is a highly utilized asset, and NASA has esti-
mated that deep space communication capabilities will need
to be expanded by a factor of 10 each decade in order to keep
up with the rising demands [5]. NASA spends a considerable
amount of resources on its DSN, for example in 2014 theDSN
commanded a budget of $210 million [6]. Despite impres-
sive throughput and growing demand, the DSN budget has
dropped by approximately 10 million dollars per year since
2014 [6]. With the increasing demand and a decreasing bud-
get, efficient use of the DSN assets is of utmost importance
as we move forward into the future.

In broad terms, DSN scheduling is the process of allo-
cating DSN resources to the missions that request them.
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The numerous operational constraints and large scale makes
DSN scheduling a challenging logistical task. This paper
considers the process of DSN scheduling over a one week
time horizon. Currently, this process begins with missions
submitting communication requests to the DSN. The DSN
then uses automated tools to generate an initial suboptimal
schedule, which generally contains conflicts. This schedule
is then manually modified by a DSN expert who removes
as many of these conflicts as possible. Next, the schedule
is released back to the missions, who engage in a peer-
to-peer negotiation process to eliminate the remaining con-
flicts. Once the negotiations end, the schedule is finalized and
published. The large demand placed on the network makes
resource allocation nontrivial, and has led to the investiga-
tion of automatic methods to help DSN operators construct
optimal schedules.

The motivation for this work is twofold: First, the DSN
scheduling process is bottlenecked by the need for extensive
manual conflict removal by DSN operators and users after the
initial schedule is generated. If we can generate a higher qual-
ity schedule initially, much of the overhead spent manually
refining the schedule could be eliminated. Second, the DSN
scheduling process is strikingly similar to several other prob-
lems in the satellite scheduling domain, but comparison is
difficult as DSN scheduling has not been fully described
using a formal mathematical framework. We develop a math-
ematical model of the DSN scheduling process to elucidate
its relationship to other scheduling problems, and also to
illustrate the nuances of DSN scheduling which justify the
construction of our model.

A. LITERATURE REVIEW
The automation of DSN scheduling has an extensive his-
tory. In 1992 a Lagrangian Relaxation approach, LR-26,
was developed by Bell for supporting automated scheduling
of 26-meter antennas [7]. A generic spacecraft scheduling
framework, ASPEN, was created by NASA in 1997 [8],
and its integration into the DSN scheduling process began
in 2000 [9]. ASPEN utilizes a well-known technique called
iterative repair - an infeasible schedule is first generated,
then conflicts are identified and eliminated one by one, until
the schedule contains no conflicts. In 2006, a genetic algo-
rithm for DSN scheduling was proposed [10], and in 2008 a
generalized differential evolutionary algorithm was investi-
gated to deal with the multi-objective nature of the DSN
scheduling problem [11]. By 2009, DSN scheduling had
moved to a request-driven paradigm, and the DSN scheduling
Engine (DSE) was developed, which is a distributed architec-
ture utilizing multiple instances of ASPEN simultaneously
[12]. More recently, Hackett, Bilen, and Johnston proposed
a novel ’block scheduling’ algorithm, which leverages space-
craft positioning in order to reduce the amount of setup and
teardown time scheduled [13]. The majority of the aforemen-
tioned works focus on operational details of DSN scheduling,
and do not present a unified mathematical model that can be
used as the basis for future studies. The linear programming

models of DSN scheduling [7], [14] that are be found in
the literature are quite dated, and do not take into consid-
eration important features of the DSN scheduling process
such as setup/teardown times and activity splitting. Access
to increased computational power coupled with the develop-
ment of sophisticated commercial solvers over the decades
since these papers were written has made optimization-based
schemes more tractable, and reignited interest in MILP for-
mulations of the DSN scheduling process. We address these
issues by developing a concise model of the DSN scheduling
process, with the goal of connecting DSN scheduling with the
broader scheduling literature. In this work we significantly
extend ideas presented in our previously published confer-
ence paper [15]. The model presented in [15] does not allow
activities to be split into smaller segments, and does not scale
well to real world problem sizes. In this work we introduce
a new MILP formulation which incorporates these features,
and also scales much better than the previous model.

A mixed integer linear program (MILP) is an optimization
problem in which a linear objective is optimized over a set of
affine constraints, with some of the variables restricted to be
integers. Mixed integer linear programming is well-known to
be NP-hard in general [16], making it well suited for mod-
eling difficult optimization problems involving discrete deci-
sion making such as the DSN scheduling problem. Schedul-
ing problems are particularly well-suited for mixed integer
linear programming formulations, and numerous examples of
MILP based scheduling can be found in almost every field of
science and engineering. For instance, real-time scheduling
of precedence-constrained task graphs is discussed in [17],
[18]. In [19] the authors use a MILP model to maximize
revenue by the automated scheduling of an energy hub in a
thermal energy market. In [20], [21] the authors discuss the
flexible job shop and hybrid flow shop scheduling problems
respectively, in the context of optimizing workshop energy
consumption. Pipeline pump scheduling optimization using
MILP formulations is studied in [22], [23].

An important difference between DSN scheduling and
other scheduling problems found in the literature is its over-
subscription. The DSN receives many more requests than it
can accommodate, which makes the completion time based
objective functions commonly found in the scheduling lit-
erature lack meaning. Oversubscribed, overloaded, or over-
constrained scheduling problems arise naturally in many
domains such as airport gate assignment [24], processor task
scheduling [25], [26], and meeting scheduling [27], [28].
Perhaps most similar to the DSN scheduling problem are
problems in the satellite scheduling domain, including satel-
lite range scheduling [29], [30], telescope scheduling [31],
[32], payload scheduling [33], [34], and in particular the satel-
lite observation scheduling problem [35]–[41], which also
includes the time window constraints encountered in DSN
scheduling. Although the DSN scheduling problem is similar
to many of the oversubscribed scheduling problems present
in the literature, it has several unique properties. In partic-
ular, the ability to ’split’ activities into smaller operational
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segments, as well as the interplay between time windows and
required setup/teardown time for each activity motivated our
decision to create an entirely new model rather than expand-
ing upon an existing model from the satellite scheduling
literature.

DSN scheduling is a complicated iterative process, mak-
ing it difficult to describe in a formal manner. In order for
complex real-world processes such as DSN scheduling to be
studied from a theoretical standpoint, it is critical to develop
mathematical models which are amenable to quantitative
research. One of the goals of this paper is to develop a math-
ematical model which incorporates many of the important
constraints encountered in the real world DSN scheduling
process. By studying this model, we can gain insight into the
benefit of pursuing automation.

Another goal of this work is to construct an algorithm
which supports a central DSN operator by quickly producing
an initial conflict free schedule. The main contributions of
this paper can be summarized as follows:
• Formulating the Deep Space Network scheduling prob-
lem as a mixed integer linear program, the solution
of which is a valid schedule that satisfies the many
operational constraints present in the DSN scheduling
problem.

• In order to improve the scalability of this MILP based
approach, we develop a sequential algorithm which
introduces randomization in order to aid the solver in
exploring more of the search space, as well as break
some of the symmetries in the problem which lead
to many redundant branches by the branch and bound
solver.

• We evaluate our algorithm’s performance over several
experiments on real-world data from the DSN schedul-
ing problem. In addition, we develop a greedy heuristic
to serve as a baseline for comparison to further validate
our algorithm’s efficacy.

The remainder of the paper is organized as follows.
In section II the main characteristics of the DSN scheduling
problem are summarized, and the MILP formulation is given.
In section III we introduce an algorithm to solve the proposed
MILP. In section IV we present experimental results. Finally,
concluding remarks are discussed in section V.

B. NOTATIONS
R,N,Z+ denote the sets of real numbers, natural numbers,
and nonnegative integers respectively. We use Calligraphic
uppercase letters to denote sets, boldface uppercase letters to
denote matrices, and boldface lowercase to denote vectors.
|X | denotes the cardinality of a set X . Given a vector v,
diag{v} denotes a diagonal square matrix whose diagonal
entries are the elements of v. The superscript (·)T denotes
the transpose operator. 0|X |,1|X | denote a |X | dimensional
vector of zeros, ones respectively. 0|X |×|Y |,1|X |×|Y | denote
an |X |× |Y|matrix of zeros, ones respectively. {0,1}|X |×|Y |,
{0,1}|X | denote the set of |X |×|Y|matrices, and |X | dimen-
sional vectors respectively, whose entries are zero or one.

II. PROBLEM DESCRIPTION
A. PROBLEM STATEMENT
In the DSN scheduling process we must schedule a given set
of activities to a given set of resources, over a given time
horizon. Each of these activities is associated with a mission,
and eachmission services a particular active spacecraft whose
location is continuously changing. Activities correspond to
communication requests between these spacecraft and the
DSN resources. As these resources have a fixed location at
one of the DSN’s ground stations they do not have constant
visibility of each spacecraft, and communication can only
occur within specific time windows, which we refer to as
viewperiods. There are often many viewperiods associated
with each activity, and several different resources with valid
viewperiods for each activity.

Each activity has a duration, which is divided into three
components: setup time, tracking time, and teardown time.
This is important because only the tracking time is required
to be scheduled within a valid viewperiod, the setup and tear-
down time are not constrained to occur within a valid view-
period. The setup and teardown times are non-negotiable, but
tracking time may be adjusted if needed. Each DSN resource
is constrained by its bandwidth, and can only communicate
with a limited number of spacecraft at any given time.

In order to fit more activities into the schedule, the DSN
allows activities to be split into smaller segments which do
not have to be scheduled contiguously. For example, an activ-
ity with 6 hours of tracking time may be split into two 3 hour
segments and scheduled separately. Activities cannot be split
in an arbitrary manner, for each activity a minimum segment
duration as well as a minimum downtime required between
each segment. As a concrete example, an activity with 6 hours
of tracking time may require that each segment be at least
2 hours long, with 1 hour of downtime required between each
segment. The caveat to splitting activities in this fashion is
that each segment requires setup and teardown time, making
split activities more costly to schedule.

The decentralized nature of the DSN scheduling process
makes it difficult to represent the objective as a single func-
tion. The missions operate independently of one another, and
each mission would like the DSN to schedule as many of their
own activities as possible. As a result, a valid schedule which
is acceptable from the perspective of one mission may leave
the other missions dissatisfied. On the other hand, the DSN
wishes to use their resources efficiently, and has concerns
such as maximizing the overall resource usage and mini-
mizing resource downtime. Thus, a straightforward objective
which satisfies both the DSN and its users is maximizing
the number of activities scheduled. This is easily extendable
to a weighted objective, such as maximizing the amount of
tracking time scheduled.

1) ASSUMPTIONS
In order to incorporate the operational details described
above into our problem formulation, we build a model of
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the DSN scheduling process based on the following
assumptions:

1) Each resource can only support one activity at any
given time.

2) Each activity can only be scheduled to one viewperiod
at any given time.

3) If an activity is scheduled, its tracking time must occur
within a valid viewperiod.

4) If an activity is scheduled, it must be scheduled for at
least its minimum requested tracking time, and at most
its maximum requested tracking time.

5) An activity requires a certain amount of setup time
before tracking time can occur, and teardown time after.

6) Activities may be ’split’ into segments, i.e. not sched-
uled contiguously.
a) If an activity is split, setup and teardown is

required for each segment.
b) If an activity is split, there is a minimum duration

of a segment.
c) If an activity is split, there is a minimum time

separation between segments.

B. MATHEMATICAL FORMULATION
We seek to assign a given set of activities A to a set of
resources R as efficiently as possible, throughout a discrete
planning horizon which is divided into a set of time epochs
T = {1, 2, . . . , |T |}. To this end we need to define the set of
viewperiods V ⊆ A × R. A pair (a, r) belongs to V if and
only if there exists t ∈ T during which the activity a ∈ A
can be assigned to the resource r ∈ R. To streamline the
presentation, we first define a number of binary matrices as
follows:
• Viewperiod-resource incidence matrix
R ∈ {0, 1}|R|×|V |: This matrixmaps viewperiods to their
corresponding resources, i.e., Rr,v = 1 iff v ∈ V is
associated with r ∈ R.

• Viewperiod-activity incidence matrix
A ∈ {0, 1}|A|×|V |: This matrix maps viewperiods to their
corresponding activities, i.e., Aa,v = 1 iff v ∈ V is
associated with a ∈ A.

• Time-viewperiod incidence matrix
V ∈ {0, 1}|V |×|T |: For every v = (a, r) ∈ V and t ∈ T ,
we have Vv,t = 1 iff the activity a can be assigned to the
resource r during the epoch t .

We define the following vectors that impose certain practical
limits on resources:
• Minimum and maximum tracking duration vectors
dmin, dmax ∈ Z|A|+ : These vectors, respectively, encap-
sulate the minimum and maximum time that should be
spent on a scheduled activity. In other words, we say an
activity a ∈ A is scheduled if it has been assigned at
least its minimum tracking duration, dmin, a, and at most
its maximum tracking duration, dmax, a, while no time
should be spent on an unscheduled activity.

• Setup and teardown duration vectors δ↑, δ↓ ∈ Z|V |+ :
These vectors encapsulate the amount of time necessary

to prepare each resource to engage in and disengage
from each activity, respectively.

• Minimum up and down time vectors γ ↑, γ ↓ ∈ N|V |:
These vectors contain the minimum uninterrupted time
that should be spent on each activity, once it is started
and the amount of time that the resource should remain
idle after the activity is interrupted.

• Minimum up and down time vectors γ ↑, γ ↓ ∈ N|V |:
These vectors contain the minimum uninterrupted time
that should be spent on each activity, once it is started
and the amount of time that the resource should remain
idle after the activity is interrupted.

• Viewperiod start and end time vectors s, e ∈ T |V |: These
vectors contain the time epoch in which each viewperiod
starts and ends, respectively. A viewperiod v ∈ V starts
at time sv, and ends at time ev.

Lastly, the main variables of the optimization problem are as
follows:

• X ∈ {0, 1}|V |×|T |: For every viewperiod v = (a, r) ∈ V
and epoch t ∈ T , we have Xv,t = 1, iff the resource r is
allocated to the activity a during epoch t .

• X↑ ∈ {0, 1}|V |×|T |: For every viewperiod v = (a, r) ∈
V and epoch t ∈ T , we have X↑v,t = 1, iff the resource r
starts working on activity a during epoch t , i.e.,

X↑v,t = 1 ⇔ Xv,t−1 = 0 ∧ Xv,t = 1 (1)

• X↓ ∈ {0, 1}|V |×|T |: For every viewperiod v = (a, r) ∈
V and epoch t ∈ T , we have X↓v,t = 1, iff the resource r
stops working on the activity a during epoch t , i.e.,

X↓v,t = 1 ⇔ Xv,t−1 = 1 ∧ Xv,t = 0 (2)

• Y↑ ∈ {0, 1}|V |×|T |: For every viewperiod v = (a, r) ∈
V and epoch t ∈ T , we have Y↑v,t = 1, iff the resource r
is in the process of setting up to start the activity a during
epoch t , i.e.,

Y↑v,t = 1 ⇔ ∃ t < τ ≤ t + δ↑v : X↑v,τ = 1 (3)

• Y↓ ∈ {0, 1}|V |×|T |: For every viewperiod v = (a, r) ∈
V and epoch t ∈ T , we have Y↓v,t = 1, iff the resource r
is in the process of tearing down after disengaging from
the activity a during epoch t , i.e.,

Y↓v,t = 1 ⇔ ∃ t − δ↓v < τ ≤ t : X↓v,τ = 1 (4)

• x ∈ {0, 1}|A|: For every a ∈ A, we have xa = 1 iff the
activity a is completed throughout the planning horizon.

The two objective functionswe aremost interested in, number
of activities scheduled and amount of tracking time scheduled,
respectively, are defined below as:

f0(x) := 1>
|A|x (5)

f1(X) :=
∑
v∈V

∑
t∈T

Xv,t (6)
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For the sake of presentation we contain our optimization
variables in a tuple Z, i.e.

Z := (X, X↑, X↓, Y↑,Y↓, x)

Using the aforementioned notations, the DSN scheduling
problem can be cast in the following form:

maximize
Z

f0(x) (7a)

subject to

X ≤ V (7b)

Xv,t − Xv,t−1 = X↑v,t − X
↓

v,t ∀v ∈ V, ∀t ∈ T (7c)
t∑

τ=t−γ ↑v +1

X↑v,τ ≤ Xv,t ∀v ∈ V, ∀t ∈ T (7d)

t∑
τ=t−γ ↓v +1

X↓v,τ ≤ 1− Xv,t ∀v ∈ V, ∀t ∈ T (7e)

Y↑v,t =
t+δ↑v∑
τ=t+1

X↑v,τ ∀v ∈ V, ∀t ∈ T (7f)

Y↓v,t =
t∑

τ=t+1−δ↓v

X↓v,τ ∀v ∈ V, ∀t ∈ T (7g)

R(Y↓ + X + Y↑) ≤ 1|R|×|T | (7h)

diag{dmin}x ≤ AX1|T | ≤ diag{dmax}x (7i)

where
• (7a) accounts for the total number of activities that are
scheduled.

• (7b) enforces the possibility of assigning activities to
resources based on viewperiods.

• (7c) enforces (1) and (2).
• (7d) and (7e) impose the minimum up and down time
constraints.

• (7f) and (7g) impose the definition ofY↓ andY↑, i.e., (3)
and (4).

• (7h) ensures that each resource is only assigned to one
activity at a time. Moreover, this constraint ensures suf-
ficient room for setup and teardown procedures.

• (7i) imposes the minimum and maximum duration for
scheduled activities.

III. PROPOSED ALGORITHM
We solved (7a) – (7i) using commercial solvers; in our sim-
ulations we observed two problematic behaviors which our
algorithm is designed to alleviate. In a fixed run time simu-
lation on the order of several hours, the solver made most of
its progress in improving the solution quality within the first
few minutes of the simulation. Second, the solver ’plateaus’,
experiencing long periods of time with no improvement to the
objective value.

Algorithm 1 is an iterative algorithm which solves a mod-
ified instance of (7a) – (7i) in each iteration and stores the
resulting solution for use in subsequent iterations. In each

iteration a randomized objective function is generated, and
the optimal solution with respect to this new objective func-
tion is chosen out of the pool previously obtained solutions
and used as an initial point to solve (7a) – (7i) with the new
objective function. We limit the time spent solving the MILP
each iteration using a local time limit. The iterative phase is
terminated by a global time limit, after which (7a) – (7i) is
solved a final time using the original objective f0(x) and the
best possible initial point from the pool of solutions produced
during the iterative phase. We now describe the details of our
objective function randomization method.

A. RANDOMIZATION OF OBJECTIVE FUNCTION
In our original formulation, each activity scheduled is
rewarded equally by the objective function. A traditional
branch and bound algorithm struggles with highly symmet-
rical problems, so by introducing random weights to the
objective function we break some of the problem’s symmetry
and avoid unnecessary branching. Additionally, randomized
weights allow the solver to potentially escape local optima
which it may have otherwise been trapped by. To this end,
we employ a randomized objective function

fc1,c2 (x,X) = c>1 x+ c
>

2 X1|T | (8)

where the elements of the coefficient vectors c1 ∈ R|A| and
c2 ∈ R|V | are uniformly chosen from the intervals [1, 5]
and [0, 0.01], respectively. The coefficient c1 imposes an
artificial priority on the activities, eliminating many cases
where the solver must choose between two activities which
are rewarded identically by the original objective function.
The coefficient c2 allows the solver to also reward tracking
time, in contrast with f0(x), which only rewards the number
of activities scheduled.
We use several new notations when describing Algo-

rithm 1. For the sake of brevity, we slightly abuse notation
by leaving out set inclusion when assigning variables. For
example, the assignment ’Z← 0’ is understood to mean

Z← (0|V |×|T |,0|V |×|T |,0|V |×|T |,0|V |×|T |,0|V |×|T |,0|A|).

global_TIMELIMIT and local_TIMELIMIT are user
imposed parameters which limit Algorithm 1’s total run
time, and the time spent each iteration solving the MILP,
respectively. Additionally, we define Zk , Ž, and Zf as the
solution (Z) obtained at iteration k, the temporary initial point
used, and the solution obtained by using the best initial point
found during the iterative phase, respectively.

IV. NUMERICAL RESULTS
We have performed several experiments to demonstrate
the efficacy of our model. We limit our study to the real
world DSN data set for week 44 of 2016, which consists
of 14 resources, 286 activities, 1430 hours of requested track-
ing time, and 30 different missions. In Table 1 we provide a
summary of the parameters associated with the 286 activities
in this data set. Each row corresponds to a mission, and con-
tains the number of activities, n, associated with this mission,
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Algorithm 1: Randomized MILP
- Z0← 0
- k ← 1
while time < global_TL do

- Select the the elements of c1 ∈ R|A| and c2 ∈ R|V |
uniformly from the intervals [1, 5] and [0, 0.01],
respectively.

-Ž← argmax
i=0,1,...,k−1

fc1,c2 (xi,X i)

- Solve problem (7a) – (7i) with the revised objective
function fc1,c2 and initial point Ž to obtain Zk ,
the best feasible solution obtained within local_TL.

- k ← k + 1
end
-Ž← argmax

i=0,1,...,k−1
f0(xi)

- Solve problem (7a) – (7i) with the original objective
function f0(x) and initial point Ž and return Zf, the best
feasible solution obtained within local_TL.

aswell as parameter values for these activities.We provide the
averageminimum andmaximum duration, specified in hours,
as well as the average setup and teardown time, specified in
minutes. All MILP formulations are solved using GUROBI
9.0.2 or CPLEX 12.10.0 through MATLAB R2020a on a
laptop computer with Intel Xeon six-core 2.8 GHz CPU, and
32 GB of RAM.

The first experiment is designed with the goal of deciding
which solver will be used to solve our MILP formulations in
the following experiments. We chose two state of the art com-
mercial solvers, GUROBI and CPLEX, for this comparison.
In our simulation, we solve (7a) – (7i) using each solver with
default parameter settings and a fixed run time of 54000 sec-
onds. We found that GUROBI significantly outperformed
CPLEX, achieving higher values for both of our objective
functions of interest, f0(number of activities scheduled) and
f1(number of tracking time scheduled). To be more specific,
GUROBI scheduled 212 out of the 286 activities, and 78.6%
of the requested time. On the other hand, CPLEX scheduled
120 activities and 60.3% of the requested tracking time. The
schedules produced by both CPLEX and GUROBI are shown
in Figures 1 and 2, respectively.

In the next experiment, we examine how the choice of
time discretization affects the solver. Recall that we divide
our planning horizon of one week into discrete time epochs.
In our formulation (7a) – (7i) each viewperiod v has several
variables associated with each time epoch, which means that
the number of variables in the MILP problem is dependent
on the size of the time epoch. On one hand, a smaller
time discretization gives the solver more flexibility while
scheduling, meaning that better schedules may be possible at
smaller time discretizations. On the other hand, decreasing
the time discretization increases the number of variables,
which causes the solver to take more time to generate a high

TABLE 1. Average parameter values organized by mission for the week
44, 2016 DSN data set.

FIGURE 1. Schedule produced using MILP model for week 44 of
2016 with CPLEX solver and default parameter settings. 120 out
of 286 activities scheduled. Colors are representative of distinct sets of
activities, regarded as missions.

quality solution. The choice of time discretization is also
influenced by the dataset. As shown in Table 1, the average
teardown time for the majority of the activities in the data
set is 15 minutes, and in fact the minimum teardown time
is 15 minutes. This limits our choice in time discretization.
For example, if an activity requires 15 minutes of teardown
time, and we divide our planning horizon into 30 minute time
epochs, we will be wasting 15 minutes when scheduling this
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FIGURE 2. Schedule produced using MILP model for week 44 of
2016 with GUROBI solver and default parameter settings. 212 out
of 286 activities scheduled. Colors are representative of distinct sets of
activities, regarded as missions.

TABLE 2. Objective values obtained by the simple MILP implementation
using different time discretizations.

teardown time, as the smallest possible assignment of one
time epoch corresponds to 30 minutes of real time. Thus,
we would like the time discretization to be small enough that
time is not wasted on setup/teardown, but large enough that
the solver is able to find a high quality solution in a reasonable
amount of time. We test three choices of time discretization:

• 5 minute intervals (|T | = 2016),
• 15 minute intervals (|T | = 672), and
• 30 minute intervals (|T | = 336).

The simulation consisted of solving (7a) – (7i) for each of
the 3 time discretizations using GUROBI with a fixed run
time of 54000 seconds. The results have been summarized
in Table 2. As expected, the number of activities scheduled
by GUROBI increased as the time discretization increased,
demonstrating the solver’s difficulty in handling the larger
problem size. The solution produced in the 30 minute case is
surprisingly good considering the earlier discussion of over-
head generated when scheduling the teardown time.We chose
to use a time discretization of 15 minutes for the remaining
experiments, as a 30 minute discretization creates a large
amount of unavoidable overhead, and with a 5 minute dis-
cretization, the solver struggles to produce a high quality
solution in a reasonable amount of time.

In the next experiment, we compare the results obtained
by simply solving the MILP formulation (7a)-(7i) using
GUROBI with a time limit of 54000 seconds to the results
obtained using Algorithm 1 with the same time limit. We use
a time limit of 300 seconds to control the amount of time
spent solving the MILP on each iteration of Algorithm 1.
By using Algorithm 1 we are able to schedule signifi-
cantly more activities than the simple MILP implementation.

FIGURE 3. Schedule produced using Algorithm 1, with random objective
weights for week 44 of 2016. 250 out of 286 activities scheduled. Colors
are representative of distinct sets of activities, regarded as missions.

FIGURE 4. Solver progress vs Time. Notice that the randomized algorithm
has a higher objective value at all times, and continues to make progress
while the unweighted MILP plateaus.

Algorithm 1 schedules 250 out of the 286 activities, while
the simple MILP implementation schedules 212 activities
within the same amount of time. The objective value f0 is
not monotonically increasing while using Algorithm 1, as can
be seen in Figure 4. Nevertheless, Algorithm 1 achieves
and maintains a greater value for the objective f0 than the
simple MILP implementation throughout the entire simula-
tion. As the objective f1 is not explicitly incorporated into
our formulation, the simple MILP implementation remains
competitive with respect to the amount of tracking time
scheduled. Nevertheless, Algorithm 1 schedules 1126 hours
of tracking time, slightly outperforming the simple MILP
implementation which scheduled 1124.25 hours of tracking
time. The schedule generated using Algorithm 1 can be seen
in Figure 3, whereas the schedule generated by the simple
MILP implementation is shown in Figure 2.

A. ALTERNATIVE METRICS
The decentralized nature of DSN scheduling makes user
satisfaction an important consideration when evaluating the
efficacy of our algorithm. For each user, u ∈ U , we define

User Satisfaction =
tschedu

trequ
(9)
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FIGURE 5. User Satisfaction achieved using the simple MILP
implementation.

FIGURE 6. User Satisfaction achieved using Algorithm 1.

where tschedu and trequ are the number of time epochs assigned
to user u and the number of time epochs requested by user
u, respectively. User satisfaction for a simple implementation
of our MILP as well as by using Algorithm 1 can be seen
in Figures 5 and 6, respectively. Another metric which can be
used to judge the strength of our output schedules is the root
mean square unsatisfied time fraction, which we define as

URMS =

√√√√ 1
|U |

∑
u∈U

(
trequ − tschedu

trequ
)2 (10)

Ideally, every user is scheduled their requested time and
URMS = 0. On the other hand, the worst case scenario
occurs when no requested time is scheduled, in which case
URMS = 1. In reality, URMS is somewhere between zero and
one, as we can schedule some but not all of the activities.
Using Algorithm 1 we obtain a URMS of.28, whereas a value
of.4 is obtained by the simpleMILP implementation, showing
that an average DSN user is more satisfied by the schedule
obtained using Algorithm 1 than the schedule produced by a
simple MILP implementation.

B. BASELINE HEURISTICS
In the previous experiments we show that Algorithm 1 outper-
formed the simple MILP implementation with respect to the

main objectives f0 and f1, and furthermore, Algorithm 1 pro-
duced higher quality solutions with respect to the alterna-
tive metrics introduced in the previous section. However,
both schemes incorporated (7a) – (7i), meaning additional
evidence is needed to justify the MILP model. To further
evaluateAlgorithm 1 aswell as ourMILPmodel, we designed
a heuristic scheme for DSN scheduling that does not involve
the MILP formulation. Our heuristic combines two common
strategies in greedy scheduling heuristics: scheduling in order
of duration and scheduling in order of start time. We test
three schemes: scheduling shortest duration activity first,
scheduling longest duration activity first, and scheduling the
activities in a random order. In order to incorporate activity
splitting into the heuristic, we construct the schedule in two
distinct phases. As splitting activities into segments costs
additional setup and teardown time, it makes sense to limit
the amount of splitting done when generating the schedule.
To accomplish this we first assign all activities that do not
require splitting. In other words, we first fill the schedule with
as many full duration activities as possible. Next, we are left
with a set of unscheduled activities which cannot fit into a
single viewperiod and must be split into segments. To avoid
unnecessary setup and teardown time, we schedule the seg-
ments to the longest duration viewperiods first. This is in
contrast to phase 1, where we selected the earliest viewperiod
first. The heuristic scheme used in this paper is detailed as
follows.

Step 1: Sort the activities according to choice of heuristic.
We investigate three different sorting paradigms in this paper:
Sorting in ascending order of activity length(shortest activity
first), Sorting in descending order of activity length(longest
activity first), and sorting randomly(random activity first).

Step 2: Select the first activity i from the sorted list L.
Select the earliest viewperiod j associated with this activity.
Search the interval [sj − δ

↑

j , ej − δ
↓

j ] for an available time

window of length δ↑j + dmin,i + δ
↓

j . If such a time window is
found, add activity i to the schedule, remove activity i fromL,
and mark this time window unavailable. Otherwise, select the
next earliest viewperiod associated with activity i, and repeat
this process. Once all viewperiods associated with activity i
have been checked, repeat this step for the next activity in L.

Step 3: The remaining activities in L were unable to be
scheduled into one contiguous time window, which means
they must be ’split’ into smaller segments and scheduled
using multiple viewperiods. Select the first activity i from
L. Select the longest duration viewperiod j associated with
activity i. Within this viewperiod, mark all available time
windows with length greater than δ↑j + δ

↓

j as tentatively
unavailable. Repeat this process for each viewperiod. Let nsi
be the number of timewindowswe have tentatively scheduled
for activity i. If dmin,i + nsi(δ

↑

j + δ
↓

j ) has been tentatively
scheduled, add activity i to the schedule, remove i fromL, and
mark the tentatively scheduled time windows as unavailable,
otherwise mark these time windows as available. Repeat this
step for the next activity in L.
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TABLE 3. Objective values obtained using heuristic schemes. For each
objective, the most optimal value has been highlighted in bold.

We have designed this heuristic scheme such that it pro-
duces viable schedules which do not violate any of the con-
straints present in the DSN scheduling problem, thus we will
be left with a feasible but not necessarily optimal schedule
upon completion. To summarize, we sort our activities in step
1. In step 2 we schedule as many activities contiguously as
possible, and in step 3 we fill in the gaps in the schedule
by allowing the remaining unscheduled activities to be split
into smaller segments. Note that in step 2 we search the
viewperiods in order of start time, but in step 3 we search the
viewperiods in order of duration. We do this because a split
activity requires setup and teardown time for each segment,
so by scheduling longer segments we reduce the number
of segments needed, thus reducing the amount of setup and
teardown time required.

In the final experiment we evaluate the schedules generated
using the above heuristic scheme for each of the three activ-
ity sorting paradigms described above. In contrast with our
MILP implementations, this heuristic procedure takes less
than a second, making a run time based stopping criterion
unnecessary. We perform 1000 simulations for each activity
sorting paradigm. The results of this experiment are summa-
rized in Table 3. For each of the three heuristics we report
the minimum, maximum, average, and standard deviation
obtained for each objective function over 1000 trials. The
objective values for f1, the amount of tracking time scheduled,
are reported in hours. We name the heuristics based on the
activity sorting method used in Step 1, and use the labels
’Shortest’, ’Longest’, and ’Random’ to refer to the shortest
activity first, longest activity first, and random activity first
sorting methods, respectively. For all three activity sorting
paradigms, the heuristic generates competitive results with
respect to f0, but performs poorly with respect to f1. Out
of the three non-MILP heuristics, the shortest activity first
heuristic performs the best with respect to f0, scheduling
232 activities. This is higher than the f0 value of 212 achieved
by the simple MILP implementation, but lower than the value
achieved by Algorithm 1, which schedules 250 activities.
The standard deviation of f0 is relatively low for all three
non-MILP heuristics, making it unlikely that a significantly

improved value of f0 can be achieved using these heuristics.
The difference in schedule quality between the MILP and
non-MILP heuristics is much more evident when interpret-
ing the amount of tracking time scheduled, f1. Out of the
non-MILP heuristics, the random activity first sorting scheme
achieves the highest value of f1, scheduling 936 hours of
tracking time. Both the simple MILP implementation and
Algorithm 1 achieve significantly better results, scheduling
1124.25 hours and 1126 hours of tracking time, respectively.
Interestingly, the best URMS of.3321 obtained by the random
activity first heuristic is lower than the value of.4 obtained by
the simple MILP implementation, indicating that the random
activity first heuristic is capable of generating schedules with
the tracking distributed more fairly between the missions.
Nevertheless, Algorithm 1 produces a lower URMS of.28,
outperforming all three non-MILP heuristics.

V. CONCLUSION
In this workwe designed a newMILP formulation of the DSN
scheduling problem. We then describe an algorithm which
utilizes randomization in order to outperform a simple imple-
mentation of our MILP formulation. The proposed algorithm
is applied to the real-world problem for week 44 of 2016.
We show experimentally that, from the DSN’s perspective,
our algorithm outperforms a simple MILP implementation
both in terms of the number of activities scheduled as well as
the amount of tracking time scheduled. Moreover, the algo-
rithm also performs well from the perspective of the DSN
users’, achieving a lower root mean square unsatisfied time
fraction than the rudimentary implementation. To further val-
idate our algorithm we designed a non-MILP based heuristic
which our algorithm outperforms with respect to the number
of activities scheduled, the amount of tracking time sched-
uled, and the root mean square unsatisfied time fraction.
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