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ABSTRACT DevOps is an emerging paradigm that reduces the barriers between developers and operations
teams to offer continuous fast delivery and enable quick responses to changing requirements within the
software life cycle. A significant volume of activity has been carried out in recent years with the aim
of coupling DevOps stages with tools and methods to improve the quality of the produced software and
the underpinning delivery methodology. While the research community has produced a sustained effort by
conducting numerous studies and innovative development tools to support quality analyses within DevOps,
there is still a limited cohesion between the research themes in this domain and a shortage of surveys that
holistically examine quality engineering work within DevOps. In this paper, we address the gap by com-
prehensively surveying existing efforts in this area, categorizing them according to the stage of the DevOps
lifecycle to which they primarily contribute. The survey holistically spans across all the DevOps stages,
identify research efforts to improve architectural design, modeling and infrastructure-as-code, continuous-
integration/continuous-delivery (CI/CD), testing and verification, and runtime management. Our analysis
also outlines possible directions for future work in quality-aware DevOps, looking in particular at AI for
DevOps and DevOps for AI software.

INDEX TERMS DevOps, CI/CD, infrastructure as code, testing, artificial intelligence, verification.

I. INTRODUCTION
The rapid evolution of cloud and virtualization technologies
over the last 15 years has brought to software vendors the
ability to easily and programmatically control a broad set
of computing resources in the execution environment of a
software system. This development has then paved the way
to increased levels of automation in the way software appli-
cations are delivered to production, for example by enabling
continuous integration of new version of the application
code. The resulting delivery paradigm, which places more
attention towards continuous re-release, unified tooling and
organizational processes, is often referred to as DevOps.
Common DevOps advances include for example continuous-
integration/continuous-delivery (CI/CD) pipelines, and
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highly-automated orchestration and configuration solutions
for the runtime environment [1], [2].

DevOps tools and methods have also reduced the cultural
and methodological divide between developers and opera-
tors [3], leading to the formation of many new organizational
structures within software vendors, such as virtual teams
composed of both developers and operators, and the establish-
ment of new professional figures often referred to as DevOps
engineers, who center their activity on tooling and automation
across the whole application lifecycle.

Amethodology that releases application versions at a faster
pace than traditional methods is effective only if coupled with
testing tools that can reduce the likelihood of failures in pro-
duction. For this reason, quality assurance in DevOps is often
a synonym of continuous functional testing methods to check
the correctness of application prior to deployment. How-
ever, to accelerate the pace of delivery, quite often DevOps
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FIGURE 1. Stages of the DevOps Cycle. The citations indicate works that
mainly perform research in the context of that stage. Relevant sections of
this paper are also indicated.

testing methods lead to restrict the depth of scrutiny of the
software system, leaving rooms for significant defects and
bugs to still emerge in production. Several defects are related
to properties other than correctness, such as performance,
reliability, or cost. This problem has raised the attention
of many research groups, leading to several research works
that attempt to couple DevOps methods with novel forms of
rapid and automated quality assurance, centered on a broader
range of quality characteristics (e.g., performance, reliability,
availability, scalability, . . . ).

While the research community has sustained this effort by
publishing numerous studies and innovative tools and meth-
ods to support quality analyses within DevOps, there is still a
limited cohesion between the research themes in this domain
and a shortage of surveys that holistically examine quality
engineering work within DevOps. In this work, we address
this gap by offering a survey of recent efforts in the area
of quality-aware DevOps. Our work focuses on research
efforts that aim at coupling the rapid delivery of DevOps
with techniques to ensure that software artifacts also meet
quality expectations on non-functional properties. Our anal-
ysis covers several tens of papers, categorizing the different
contributions according to the software engineering area they
mainly contribute to including architectural design, model-
ing, continuous integration and delivery, infrastructure, test-
ing, verification, CI/CD and infrastructure-as-code, runtime
management. We look also at the positioning of these works
within the DevOps lifecycle stages. The paper, in particular,
reveals that a highly-diverse body of work has been published
on the subject, which yet leaves ample margins to carry out
further investigations in areas that are systematically under-
investigated from a quality angle, e.g., CI/CD & IaC and
architectural design. We further look at the state-of-the-art

on two emerging trends: AI for DevOps and DevOps for
AI software, as these are expected to dominate the DevOps
landscape in the years to come, and survey early works in
these areas.

A. THE DevOps CYCLE
The reference stages of the DevOps lifecycle we consider
are illustrated in Figure 1. The figure lists the bibliographic
references that we classify as doing research in the context of
that stage. Note that a paper may touch upon multiple stages,
in which case it is listed on all relevant stages. The stage
definitions we adopt are as follows:

• Plan: This stage aims at defining the objectives and
requirements of the software production, along with the
initial plan for updates and release across iterations.

• Develop: Based on the plan, developers focus on devel-
opment and reviewing of software code and/or IaC. Typ-
ically, in this phase the code undergoes frequent commits
on code repositories as well as integration and unit tests
based on build automation tools.

• Verify: Verification is the process to evaluate the correct-
ness of software artifacts in terms of the requirements.

• Test: In this phase, automation testing will be performed
continuously to ensure the quality of the software arti-
fact. Contrary to traditional tests, this phase can include
the release of trial versions to part of the end user base,
by means of canary testing.

• Deploy: This stage focuses on continuously
re-deployment of the software in the production environ-
ment. This phase entails the problem of configuration
management of the target platforms and resources.

• Operate: Operation in DevOps cycles deals with con-
figuration and management of the software application
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after deployment, e.g., resource provisioning and auto-
scaling. Orchestrators and other runtimemethods can be
used to automatically instantiate and adapt at run-time
the application topology and components.

• Monitor: Monitor the performance of deployed appli-
cations by collecting and analyzing usage data, which
can help to detect and identify exceptions and provide
feedback to iteratively improve the software. Contin-
uous tracing and diagnostics of production problems is
important to guide the evolution of the application across
release cycles.

The above phases are qualitatively similar to those carried out
in traditional software engineering methodologies, with the
main difference being that the process of releasing the soft-
ware artifact is continuous and highly-automated. We point
the reader to books such as [4] for additional details on the
above methodological phases.

B. METHODOLOGY
Our reviewmethodology is as follows.We examine computer
science peer-reviewed journals and conference papers written
in English between 2015 and 2020. Papers are obtained with
systematic searches using Google scholar for search strings
always including ‘‘DevOps’’, one quality term between
‘‘performance’’, ‘‘scalability’’, ‘‘quality’’, ‘‘quality-aware’’,
‘‘reliability’’, ‘‘availability’’, or ‘‘survivability’’; and a third
term matching the title of the sections of this paper (e.g.,
‘‘verification’’, ‘‘CI/CD’’, etc). Books, presentations, thesis,
technical reports, white papers, and patents are excluded from
this study. After collecting the pool of paper, due to space
limitations we have narrowed down the list to around 10 in
each section. This has been done with manual screening of
each paper, trying to identify a subset of papers that was
representative of the whole category, as our goal is to illus-
trate different research challenges and approaches, rather than
exhaustively list every individual contribution.

We have aligned these collected pool of papers with
different stages of the DevOps lifecycle and presented in
Figure 1. We also present a mapping of these papers with
the considered quality attributes in Table 1. The table also
classifies the papers based on their methodology. We con-
sidered the following methodologies:‘‘Model-based’’ - if the
authors emphasize modeling abstractions, ‘‘Empirical’’ - if
the authors designed amodel-free approach and their decision
process is based on the collected static or runtime data, and
‘‘Hybrid/Other’’ - if the authors used a combination ofmodel-
based and empirical approach or other methods.

C. CONTRIBUTIONS AND ORGANIZATION
Summarizing the core contributions of this paper are as
follow:

• We survey recent works in the area of quality-aware
DevOps, outlining the main contributions and compar-
atively position them to other DevOps works within the
same field.

• We organize the surveyed papers into different cat-
egories, both globally across the survey and locally
within each research area, offering a better qualitative
understanding of the areas of main interest and current
research gaps.

• For each category, we identify open research chal-
lenges, offering several ideas for further exploration by
researchers in upcoming years.

• We outline open research directions and ongoing work
in emerging DevOps trends related to the use of AI
technology, which we expect to foster novel solutions
in the quality engineering space in the near future.

The rest of the papers is organized as follows. Sections
2-8 survey recent research work across the considered areas,
namely: architecture design (§2), model-based DevOps (§3),
CI/CD (§4), testing (§5), verification (§6), and runtime
management (§7). Each section outlines context, summariz-
ing research papers, and giving guidance for future work.
Section 8 discusses ongoing work in DevOps for AI and in
AI for DevOps. Section 9 draws conclusions.

II. ARCHITECTURE DESIGN
Context: The architecture design of today’s software systems,
particularly cloud applications, allows for a rapid extension
of features and functions with minor modifications to exist-
ing implementations. This requires increased communication
and collaboration between development and operation teams
to achieve a strong integration of coding, building, testing,
packaging, releasing, configuring and monitoring activities.
Therefore, designing the software architecture has profound
implications not just on the software, but also on the overall
DevOps delivery process. Recent research on architecture
design in the context of DevOps centers around the following
challenges:

AD1 Refactoring monolithic applications into microser-
vices;

AD2 Modeling the architectures of cloud-native applica-
tions;

AD3 Deciding architecture design variants through test-
ing or experimentation;

AD4 Adopting new architectural styles with best prac-
tices and tactics.

Quality-Aware DevOps Research: By migrating a mobile-
app backend to microservices, Balalaie et al. [5] show how
the microservices architecture could be beneficial, especially
in shipping new features and providing built-in scalability.
They also report on architectural patterns observed in migra-
tion projects, which can help practitioners and consultants to
address AD1 with a DevOps methodology.
Two papers are found to target AD2. Di Nitto et al. [48]

introduce SQUID, a framework that provides DevOps-ready
software architecture descriptions through model-based doc-
umentation of software architectures and their quality prop-
erties in DevOps scenarios. Meanwhile, Heinrich et al. [49]
propose iObserve, an approach to enriching and updating
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TABLE 1. Mapping of the reviewed paper with the quality attributes. The corresponding section of the papers are also provided.

the architectural development models of cloud-based soft-
ware applications with operational observations so that the
resulting architectural runtime models are usable during the
operation phase.

In order to tackle AD3, Avritzer et al. [19] introduce
an approach to automatically assessing the scalability of
configuration alternatives for the microservices architecture
through load testing. This approach provides a domain-
based metric that can be used to make informed decisions
about which configuration alternative to select. By contrast,
Jiménez et al. [50] proposes a framework for quality-driven
adaptive continuous experimentation. This framework dedi-
cates three feedback loops to control the satisfaction of high-
level quality goals through experiment design and conduct
experimental trials for infrastructure configuration and archi-
tecture design variants.

Reference [6], [20], [51] and [7] provide solutions to
AD4 for the microservices architectural style by practic-
ing DevOps in industrial use cases. Using OpenStack as
case study, the authors of [20] compares the efficiency of
DevOps in container-based and VM-based deployments and
explores the scalability of stateless and stateful containerized
components. Reference [51] discusses DevOps practices and
architecting tactics for developing large-scale systems, like
a Neo-Metropolis BDaaS platform. The authors of [6] show
how the properties of the microservices architecture facilitate
the scalability, agility and reliability of e-commerce applica-
tions. Differently, [7] advocates the use of microservices for
software development in connected car business and proposes
a suitable team setup for establishing a DevOps culture.
Analysis of Open Challenges: DevOps architectural work

has focused on microservices, but novel research opportuni-
ties arise to extend this research, for example by including
in architecture design also Function as a service (FaaS) ele-
ments. FaaS refers to a novel serverless computing paradigm
that may radically evolve the landscape of software architec-
tures. It enables software engineers to virtualize the business
logic of an application as individual functions registered in
the cloud. Because of advantages brought by the serverless
FaaS paradigm, software vendors tend to migrate their exist-
ing products onto FaaS platforms, e.g., AWS Lambda and

OpenFaaS. There is however a lack of approaches available in
the literature to automatically decomposing monolithic appli-
cations into architectures containing serverless functions.
Moreover, the choice of a suitable architectural granularity
is an open problem, e.g., when to prefer a serverless function
to a microservice.

III. MODEL-BASED DevOps
Context:Modeling provides a flexible and efficient means to
study the qualitative and quantitative properties of a given
system in an abstract language, thus being widely applied
in support of various development and operation activities.
As aforementioned, it can help with the architecture design of
modern software systems [48], [49]. Models can either take
the form ofmathematical models or code in a domain-specific
language to declare properties. Within this trend, models may
refer to the system or its environment. In the former case, they
provide abstractions for the software inter-dependencies or
dynamic behavior. In the latter case, they provide abstractions
to specify and automate the configuration of a target deploy-
ment environment.

This section focuses on model-based DevOps frameworks
and methods that cope with the following challenges:

MD1 Assessing the quality of systems under develop-
ment;

MD2 Optimizing system configurations in a cloud envi-
ronment;

MD3 Specifying the required underlying infrastructure as
code.

Quality-Aware DevOps Research: As a requisite for qual-
ity assurance, MD1 receives continuous attention from the
research community. Gorbenko et al. [33] provide a time-
probabilistic failure model for distributed systems that fol-
lows the service-oriented paradigm to define interaction with
clients over the Internet and clouds. A three-layer queueing
network is proposed by Barna et al. [12] for developing
autonomic management systems. This model is proven to
be robust and accurate in predicting system performance
under a variety of workloads and topologies. Take a tax fraud
detection system as an example, Perez-Palacin et al. [13]
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TABLE 2. Overview of publications on architecture design.

show the use of Petri nets for the performance analysis of
data-intensive applications. Peuster and Karl [14] present an
automatable and platform-agnostic modeling approach that
can profile the performance of an entire service function
chain at once.

MD2 is a common issue that needs to be addressed in
the deployment and operation phases so as to adapt DevOps
for a cloud environment. Guerriero et al. [10] propose
SPACE4Cloud, an integrated framework for the deployment
optimization and resource allocation of cloud applications
represented as PCM models. A proactive application place-
ment algorithm is introduced by Suk et al. [32]. This algo-
rithm uses failure indexes evaluated by modeling application
turnover and infrastructure failure as stochastic processes.
Sun et al. [11] present a stochastic model and an optimization
method to minimize the completion time, availability degra-
dation, and monetary cost of the rolling upgrade procedure
through appropriate parameterization.

The emergence of Infrastructure-as-Code (IaC) is a
response toMD3. IaC often relies on textual resource models
to configure the application environment. It is especially
useful to increase the repeatability of configuration tasks
in distributed architectures, where many dependencies exist
between software components and virtualized resources.
Comparatively to other areas surveyed in this paper, IaC
quality research is in its infancy and relatively few works
exist. Two representative examples are [8] and [9]. In [8], the
authors discuss a qualitative analysis of over 1700 IaC scripts
to identify code smells in IaC code, i.e., code snippets that
are indicative of some deeper violation of design principles
or best practices. The paper considers in particular security
smells related to cryptography, authentication and hard-coded
secrets, among others. The authors of [9] explore the use
of intent modeling as a way to ensure the correctness of
IaC. This is based on the idea of specifying IaC in terms
of the high-level final state/goal that needs to be reached,
operating at a higher level of abstraction than detailed sub-
activities. The paper focuses on the standardized TOSCA
language, which offers an implementation of this approach.
TOSCA models are also compatible with the execution of
IaC scripts in languages such as Ansible, effectively offering
polyglot IaC. Rahman et al. [52] provides a systematic survey
of quality in IaC, noting its current underdevelopment in the
research literature. They carry out an analysis of 32 publica-
tions. Within this paper, IaC work insists primarily on quality

TABLE 3. Summary of publications on model-based DevOps.

dimensions such as the reliability, repair, testing, idempo-
tency of IaC scripts.
Analysis of Open Challenges: Although the serverless

FaaS paradigm simplifies user involvement in resource allo-
cation at runtime and saves operating costs by billing execu-
tions at the function level. It is often difficult to decide the
optimal configuration of serverless functions comprising an
application, which minimizes the operating costs while satis-
fying the performance requirements. This raises the needs for
models that can accurately predict the performance of FaaS-
based applications as well as approaches that can effectively
optimize their deployment. In the literature, no work seems
to have been carried out for either.

Our survey also reveals that IaC research is still at an early
stage, and thus many outlets for research exist in develop-
ing tools to increase the quality of IaC artifacts. Because
IaC scripts can be specified using model-based declarative
languages (e.g., TOSCA) or be written with specialized lan-
guages (e.g., Ansible), a research question is how to develop
holistic and polyglot defect prediction and debugging envi-
ronments for IaC. Another potential aspect to consider in IaC
involves the quantification of costs associated to maintenance
and configuration operations. At present such costs can only
be indirectly estimated from execution logs, but there is prac-
tical business value in estimating these figures from code or
software artifacts. Lastly, the relative merits of different IaC
technical approaches used in industry are currently not well
understood in the literature. More systematic investigations
on these matters may be relevant to researchers.

IV. CONTINUOUS INTEGRATION AND DELIVERY (CI/CD)
Context: CI/CD pipelines provide the technical means to
automate recurring tasks related to deployment, testing, and
orchestration of cloud native applications. Market solutions
such as Jenkins, CircleCI, Trevis, and several others can be
used to coordinate delivery and quality checks on the appli-
cation source code and associated software artifacts, prior to
their production use. Several books and papers overview the
general properties of CI/CD, e.g., [1] discusses the broader
applicability and benefits of CI/CD in industrial context.
More recently, [2] provides a large-scale empirical study on
the impact of continuous integration on software development
practice. Strategies to concretely adopt CI/CD in organiza-
tions are exemplified in [53].
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TABLE 4. Comparing publications on CI/CD.

Quality-Aware DevOps Research: It is well known that
CI/CD finds immediate application to quality assurance via
unit testing of functional properties. For example, the practi-
tioner interviews in [54] reveal that deployability via CI/CD
and architectural design to improve test quality are relevant
dimensions in DevOps. We point the reader to a broader
overview of related testing research in Section V. We instead
here focus on innovative uses of CI/CD in the context of
quality assurance, which offer novel outlets for research.
Research in quality-aware CI/CD has centered on the follow-
ing challenges:

CC1 Performance-aware CI/CD
CC2 Data-aware CI/CD
CC3 Secure CI/CD

An example of work that addresses CC1 is [15], which
uses CI/CI to ease updates while releasing new versions
of microservices. The authors propose an architecture-based
CI/CD approach, rather than using scripts, to update the
microservices while in production. They define templates for
different architectural models based on which an application
can be updated to a target architecture using simple com-
mands. In addition, they incorporate common update strate-
gies, such CleanRedeploy, BlueGreen, Canary, etc., from
which an appropriate strategy can be selected to satisfy spe-
cific SLA requirements. They demonstrate the effectiveness
of the approach updating an application in production.

Another example of work in the context of CC1 is [46],
where the authors propose a roadmap to apply CI/CD to
incrementally maintain and parameterize application perfor-
mance models. The approach entails to react to changes in
the application source code and then apply targeted moni-
toring and statistical estimation methods to update resource
demands, probabilities of selecting particular code branches,
loop execution numbers, and other relevant parameters. Such
updates are essential to continuously evolve the quality-aware
toolchain analysis synchronously with code commits.

An instance of work that tackles CC2 is as follows. Data
stores based on query languages such as RDF can be directly
stored on systems such as Github, allowing to coordinate the
publishing of data with CI/CD pipelines. This triggers the
question on what is the inter-play between CI/CD and data
quality engineering. [40] provides an overview of tools that
can be integrated in CI/CD pipelines to continuously meet
quality requirements on data. The include utilities for RDF
serialization quality checks, ontology validation tools, data
anti-patterns, linked open quality data assessment. An exam-
ple of CI pipeline to holistically coordinate the surveyed data
quality assurance tools is described in the paper.

The recent work in [45] illustrates another approach to
quality-aware DevOps, where the goal of the study is to
continuously integrate and orchestrate a system so to ensure
security and privacy. This aligns to challenge CC3. Model-
driven engineering methods are coupled with secure DevOps
practices to allow continuous changes in the deployment envi-
ronment. This is based on a so-called ‘‘models@runtime’’
approach, where the application model is evolved directly in
the production environment in response to dynamic events
that occur therein.
Analysis of Open Challenges: The above papers exemplify

novel trends in CI/CD towards integrating in the CI/CD
pipeline the specification of data services. It is possible to
envision that similar needs will arise in connection with
AI/ML services, which require a continuous evolution of
data pipelines, learning and training services alongside the
application. CI/CD support specific to such kind of services
offers outlet for novel research.

V. DevOps TESTING
Context: DevOps has been widely adopted in enterprises,
which leads to shortened development cycles and involve-
ment of automation. With speedy iterations, the risk and cost
of quality assurance increase at the same time. Testing is of
great importance to ensure the quality of software in DevOps
practice. In particular, automating the testing process enables
continuous testing of the frequent code changes occurring
throughout the development cycle. The following challenges
are highlighted in the literature:

TS1 Automatic workload selection and specification of
target services.

TS2 Test automation frameworks to enable automatic
execution within DevOps cycles.

TS3 Employing testing strategies to adapt to frequent
changes in DevOps.

Quality-Aware DevOps Research: In the phase of test
specification, a central goal is to maximize the coverage of
new changes and specify unit tests aiming at specific and
identifiable target services or functions, to make test results
quickly actionable for developers. Besides common func-
tional testing, which is not specific of DevOps, automated
load testing allows spotting possible performance issues dur-
ing the integration phase, preventing them from manifesting
in production. In [16], Schulz et al. propose an approach of
load testing selection based on contextual information that
focuses on TS1. Workloads can be automatically selected
according to monitoring data, target services, along with
testing requirements in the proposed load testing process.

The authors in [17] focus on representative workload mod-
els for load testing of individual microservices in session-
based systems. Two algorithms are proposed to enable
extracting specific workload for the microservices under test-
ing and consequent adjustments of workload models. Such
an approach aims at only target microservices and their
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TABLE 5. Comparing publications on DevOps testing.

dependencies so that they can reduce the testing cost, address-
ing the issue of TS1.

In [18], the authors also propose to solve TS1 by introduc-
ing a behavior-driven load testing language (BDLT), which
is designed to describe performance concerns in natural lan-
guage that can be easily adopted by users. Based on BDLT,
testing workloads can be automatically generated with the
method in [16].

To enable the automated execution of tests for the purpose
of faster integration and delivery, several test automation
frameworks and tools have been proposed to address the
problem of TS2. For example, in [34], the authors address
automated testing workflows in the process of continu-
ous integration, focusing on unit tests and integration tests.
Pietrantuono et al. in [35] present a continuous software
reliability testing approach called DevOpRET. This approach
mainly involves usage monitoring and operational profile
estimation and updating. By monitoring the endpoint users,
estimated operational profile is able to be updated with the
actual user profile. At each DevOps cycle, the reliability
testing can be executed based on the continuously updated
operational profile.

In addition, testing techniques such as canary releases
and shadow/dark launches are being increasingly adopted as
strategies to automate testing execution in TS3. In an empir-
ical study on continuous experimentation [21], the authors
provide an overview of continuous experimentation prac-
tices that contain canary releases, dark launches and A/B
testing in both research and practice of DevOps. In [36],
Schermann et al. proposed a live testing model and imple-
mented a middleware, Bifrost, to specify testing strategies
and execute tests through traffic routing. Bifrost is able to
describe release techniques with multiple phases including
canary releasing, dark launching, A/B testing and gradual
rollout in YAML-based language. The authors of [47] address
the issues of dependability and security of CD pipelines,
proposing involving testing strategies, such as canary releases
and A/B testing, into building and integration pipelines
execution.
Analysis of Open Challenges: Rapid changes bring new

challenges to test specification and execution in practice.
Learning and analyzing the internal and external depen-
dencies between components at specification stages could
also inform test specifications, enabling a more effective
identification of tests that need to be re-executed after a
change, trading off test complexity for coverage. In addition,

test automation needs to meet the dynamics of iterations in
DevOps cycles. For example, the objective of each iteration
may change, which will lead to involve different test strate-
gies into the respective iteration tomeet the QA requirements.

VI. VERIFICATION IN DevOps
Context:Verification complements testing in software quality
assurance processes. Compared to testing, it leverages math-
ematical abstractions and code/model semantics to prove
the (partial) correctness of artifacts with respect to a variety
of properties.While still in their infancy, verificationmethods
tailored to DevOps are gaining traction in both industry and
academia for their potential to deliver stronger quality guar-
antees than testing. This section reviews a selection of paper
relevant to verification in DevOps (Table 6). The main open
challenges discussed through this section are summarized in
the following points:

VE1 Develop diff-time verification methods for prompt and
localized feedback to keep developers engaged

VE2 Increase compositionality and incrementality to sup-
port the analysis of large, rapidly changing code bases

VE3 Feed information from design time to runtime and
viceversa to improve runtime tasks and verification

Quality-Aware DevOps Research: Despite not as widely
adopted as testing, verification is applied at several stages of
a DevOps cycle, including, in order: design, build, diff, land,
and production times [55].
Design-time methods analyze pre-implementation soft-

ware artifacts, including goal or architectural models from
the DevOps plan and create phases. User-provided abstrac-
tions, e.g., statecharts or unambiguous dialects of UML, are
automatically translated into formal models to verify arti-
facts’ properties. For example, analytical models of perfor-
mance and reliability obtained from higher-level modeling
languages like the Palladio Component Model [56] or OASIS
TOSCA can be analyzed with numerical routines or proba-
bilistic model checking [57].
Build-time methods are usually embedded within compil-

ers and IDEs, providing quick feedback to the developers
about the module they are implementing. These are usu-
ally light-weight static analyses performed with tools like
Valgrind [41] andASan to detect buffer overflows or dangling
pointers and profile C/C++ artifacts, or FindBugs to localize
several classes of bugs in Java artifacts [42]. While most of
these methods are not specific to it, DevOps needs started
to push for adapting them into staged analyses, where static
code information computed during build time are carried on
to later development stages and runtime to enable subsequent
analyses [58]. For example, in [39], Beigi-Mohammadi et al.
exploit control flow analysis to extract security-related pred-
icates to be checked during operation, enabling automatic
adaptation actions for early countering potential attacks.
Diff-time is the gatekeeping at the end of code creation,

when submitted code waits for review and approval. Verifi-
cation methods in this phase usually completes within a few
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TABLE 6. Verification and static analysis through DevOps phases.

tens of minutes [55] to allow their reports to complement
human code reviews. The peculiarity of this phase is its
intrinsic incrementality: only portions of an artifact change
since the last run of the analysis, and they can be identified
by the diff. While few academic tools specialize for diff-time
analysis, notable industrial contributions include Facebook’s
Infer [43], Amazon’s s2n [37], and Microsoft’ Prefast [44].
Land-time occurs after a diff is approved and before release

to production. This phase is allowed longer execution time
(typically from hours to overnight) and can operate from
built and executable modules, which can be analyzed both
statically and dynamically [43]. Microsoft Prefix [44] is an
example of tools used in this stage.

Finally, in production, runtime verification methods can be
used to detect requirements violations as they happen. These
methods require the instrumentation of the application with
monitors and probes to measure specific quantities or detect
the violation of safety/security predicates [39], [57]. Methods
based on partial evaluation compute surrogate model of the
system that enable efficient verification at runtime, after cur-
rent monitoring information are gathered (e.g., [38] verifies
probabilistic properties).
Analysis of Open Challenges: Broadly speaking,

verification requires formal models and analysis algorithms.
Model-driven processes exploit human ingenuity to produce
semantically richer models of an application and its environ-
ment. While these models allow the use of established model
checking algorithms, keeping the models consistent with
the application code may be challenging in all but the few
domains where fully automated code generation is possible.
Nonetheless, where available, even partial design models
should be used in the future to improve the effectiveness of
later-stage methods. This includes, for example, the contex-
tualization of build-time verification within realistic usage
profiles specified by the designers, as well as using design
models to narrow down the relevant scenarios for diff-time
and runtime analysis, reducing the relevant search space to
cut verification time (V3). To improve diff-time verification,
research has to focus on compositional methods which enable
incremental re-analysis of only the changed parts of a code-
base [55]. This overall addresses challenge VE1. Academic
research largely underestimated so far the importance of
prompt and localized developer feedback, preferring detailed

verification reports produced overnight at land-time. How-
ever, empirical evidence from industry suggests that diff-time
verification is more effective for bug fixing and keeps devel-
opers more engaged [42]. Developing compositional verifi-
cation algorithms often requires to reduce the expressiveness
of verifiable properties, which may nonetheless allow to
intercept problems before they reach production, which falls
under challenge VE2. Adequate design-time models can also
help to narrow down the state space to be verified at later
process stages, bringing a global view hard to infer from
lower level artifacts like code or binaries. Finally, runtime
verificationmethods, whether measurement/probing based or
model-based, have the potential of observing the application
within its actual execution environment, which may differ
from design-time assumptions or land-time simulations. This
addresses challengeVE3. The ability to promptly detect issue
while the application is running can reduce the exposition
time to a bug, but also enable automatic adaptation actions to
self-protect an application or its infrastructure.

VII. RUNTIME SERVICE MANAGEMENT
Context: Runtime service management particularly concerns
dynamic resource scheduling of microservices. Microser-
vices is one of the core DevOps practices. It is a design
principle to build applications with fine-grained services. One
of the benefits arising from this is the ability to manage
each service individually. However, regardless of this ben-
efit, managing microservices at runtime is not trivial. This
involves multiple research challenges, regarding monitoring,
configuration options, decision making, etc. In a nutshell, the
following challenges were highlighted by the researchers:

RM1 Monitoring microservices
RM2 Container placement strategy
RM3 Autoscaling microservices

Quality-Aware DevOps Research: RM1 can be considered
as an ensemble of complex sub-problems. Researchers often
focus on these sub-problems rather than the overall issue. For
example, Noor et al. [25] focused on the issue of collecting
data from heterogeneous virtualization architecture. They
have developed a framework M3 using the SIGAR library
and RESTful API that collects both the system and process
level metrics through separate agents. On the other hand,
Miglierina and Tamburri [26] have focused on reducing the
complexity of monitoring configuration management. They
proposed Omnia that addresses this issue throughMonitoring
Configuration as Code. This is realized by defining a set
of vocabulary and protocols, which are used to setup and
update the monitoring configurations for popular tools like
InfluxDB, Prometheus, Grafana, etc.

RM2 is often addressed based on the scale of the comput-
ing environment. For example, in [22], Boza et al. proposed
kube-scheduler to address RM2 in a typical multi-server
setup. kube-scheduler is a performance-aware orchestrator,
based on Kubernetes, that take container placement decisions
by considering the number of available CPUs in the host
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machine and how they effect the runtime and initialization
time performance. However, considering a geo-distributed
environment like edge or fog, the placement approach needs
to be adapted to incorporate information on heterogeneous
computing environment. Rossi et al. [27] focused on this
issue and proposed ge-kube. Along with the placement issue,
ge-kube focuses on the elasticity problem as well, thus
addressing RM3. They resolved the placement issue by for-
mulating it as an optimization problem and the elasticity issue
is resolved using model-based Reinforcement Learning (RL).

Recently, compared to RM1 and RM2, RM3 has gained
more attention from the researchers. Multiple autoscalers
have been proposed to address this issue, each differing on
how the problem is perceived. In [23], Kwan et al. propose an
autoscaler, HyScale, that focuses on the performance trade-
offs between horizontal and vertical scaling. HyScale’s prin-
ciple is to scale vertically if the resources are available. If not,
it performs horizontal scaling. Rossi et al. [28] also empha-
size the use of both horizontal and vertical scaling. However,
in contrast to [23], they adopted a model-based approach.
It is based on a novel Reinforcement Learning model that
relies on approximations (state transition probabilities and
the associated costs) from monitoring data. They realized the
so-called Elastic Docker Swarm (EDS) by integrating their
method with Docker Swarm.

Another context in RM3 is coordinated scaling to solve
the bottleneck shift problem. Bauer et al. [29] present Cha-
multeon that focuses on that issue. It is based on queue-
ing models which are used to forecast system performance
and taking a coordinated scaling actions. Chamulteon also
includes a workload forecasting component, which makes
it proactive. Barna et al. [12] propose an Autonomic Man-
agement System (AMS) based on Layered Queueing Net-
work (LQN) that inherently offers coordinated autoscaling.
However, Chamulteon and AMS both do not consider vertical
scaling. In [30], Gias et al. present an autoscaler, ATOM,
that supports both horizontal and vertical scaling along with
coordinated autoscaling. Similar to AMS, ATOM is based on
LQN models but it considers both a microservice CPU share
(vertical scaling) and the number of its replicas (horizontal
scaling) during performance forecasting.

In [24], Qiu et. al present FIRM that focuses on
fine grain resource management of microservices con-
sidering resources like cache, network bandwidth, CPU,
memory, etc. However, unlike most of the approaches,
it opted for a model-free method. Their approach relies
on a combination of support vector machine and Rein-
forcement Learning to identify and allocate resources to
bottleneck microservices. Rossi et al. highlight another
important issue - decentralizing the autoscaler components
and propose a hierarchical autoscaler me-Kube [31]. Such
decentralization makes the autoscaler more scalable when
deployed in a large cluster. Although me-Kube uses queue-
ing models, it does not support coordinated scaling as they
model each microservice separately rather than the overall
application.

TABLE 7. Comparing different autoscalers for microservices.

A comparison of these autoscalers, based on different
attributes (model-based, supporting vertical scaling, proac-
tive, coordinated scaling), are presented in Table 7.
Analysis of Open Challenges: Regardless of the progress

made, there are still multiple research challenges concerning
runtime service management. A major challenge concerning
RM1 is providing support for the model-based approaches.
Thus, amonitoring framework formicroservices should focus
on providing metrics related to queueing or machine learning
models, like queue length, arrival rates, transition proba-
bilities, etc., to improve the estimates of different model-
based runtime controllers. In addition, they can also lever-
age machine learning techniques to provide insight of a
system architecture such that a model can be automatically
generated.

For a runtime controller, focusing on RM2, a major chal-
lenge is to forecast the performance of container groups
rather than a single container. A container group can repre-
sent a chain of microservices. Considering a single container
alone will only provide a partial view of performance in that
particular cluster node. On the other hand, the controllers
focusing on RM3, particularly the model-based ones, should
emphasize faster decision making. This issue can be solved
by being proactive but that requires a huge volume of data for
accurate forecasting. Thus, researchers should investigate the
effectiveness of hybrid autoscalers that combines proactive,
simple reactive and model-based reactive approaches.

VIII. EMERGING TRENDS: BRIDGING AI/ML, BIG DATA,
AND DevOps
Artificial Intelligence (AI) and machine learning (ML) algo-
rithms are being increasingly used by industry for monitoring
and development to boost performance. These techniques
offer the ability to quickly learn the pattern of baseline perfor-
mance from a large space of performance metrics to diagnose
system issues. AI/ML can play a crucial role in accelerating
DevOps efficiency for today’s dynamic and distributed data-
intensive environment. The future of DevOps will be AI,
ML, data-intensive driven, which offer potential benefits to
enhance functionality and transform how system develop-
ers and administrators can design, test, deploy, and main-
tain systems. Monitoring the modern DevOps environment
involves a high level of complexity that AI/ML techniques
can alleviate. Dealing with Exabytes of data to investigate
the root causes analysis using conventional DevOps solutions
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may lead to unexpectedly long time to identify the reason of
failures within complex distributed systems.

AI/ML solutions for DevOps are utilized to play a signif-
icant role in automating and enhancing DevOps processes.
Sun et al. [59] propose a non-intrusive automated fault diag-
nosis for public cloud (such as Amazon Web Service) and
rolling upgrade DevOps operation using system logs and
machine learning algorithm. They use performance metrics
that are collected duringmonitoring time to train theML clas-
sifier for detecting issues and to expect behavior over every
time interval within the system. Their proposed approach
achieves on average 90% for recall and precision. The study
in [59] demonstrates that using ML for fault diagnoses within
DevOps operations (such as rolling upgrade) is promising.

Real challenges for building AIOps solutions are presented
by Dang et al. [60] based on practices within Microsoft.
The term AIOps comes from Gartner to address the chal-
lenges of DevOps using AI. Dang et al. [60] mention that
AIOps is about enabling software and system engineers to
operate services efficiently using ML and AI solutions. The
added values of AIOps includes: ensuring high service qual-
ity, offering high service intelligence, increasing engineering
productivity, and decreasing operational cost. Around 60% of
firms will adopt AI and ML analytics for DevOps by 2024 to
accelerate service delivery, improve performance, and secure
systems [60].

Nogueira et al. [61] review existent research that applies
ML to optimize the quality of process within DevOps
pipeline. ML techniques have the ability to provide insight
into specific IT processes to effectively assist stakehold-
ers in recognizing improvements that are needed within
the software development life cycle. Kumar et al. [62]
present Sankie, which is an AI Platform for Azure DevOps
which is a scalable and general service that is developed to
assist and impact all stages of the modern software devel-
opment life cycle. The proposed AI platform can provide
smart and actionable recommendations to system developers
and administrators, which include training, recommending,
explaining, and evaluating. The proposed platform is used at
Microsoft and is enabled for over 50 repositories internally.

There are some DevOps solutions for AI/ML. While
AL/ML offers valuable benefits to DevOps, there are some
existing DevOps solutions for AL/ML stakeholders that
help in developing continuous efficient AL/ML services.
Ciucu et al. [63] develop a software architecture solution
that can ensure the continuous development of computer
vision applications. They examine high-performance com-
puting and GPU resource management for model implemen-
tation within data centers to enhance the integration process
and performance optimization. The integration covers soft-
ware services and microservices to orchestrate the containers
within systems to high availability services.

Palacin et al. [13] present a DevOps industrial application
that focuses on software quality evaluation tools for tax fraud
detection in the context of improving the quality and relia-
bility of Big Data. During development iterations, the impact

TABLE 8. Taxonomy for AI/ML, Big Data, and DevOps.

of quality assessment is reported with a particular focus on
the accomplishment of performance requirements during the
continuous adding of new functionalities to systems. The
authors in [13] target applications that manage billions of
invoice records. The evaluation is conducted using simulation
(SimTool), which is developed by DICE European project
developers for quality analysis. The goal is to reduce the
number of DevOps iterations.

Regarding software architecture, Di Nitto et al. [48] inves-
tigate concerns and obstacles, which are needed to be tackled
in DevOps scenarios. The authors in [48] present Specifica-
tion Quality In DevOps (SQUID), which is a framework for
software architecture. The proposed framework is evaluated
in the Big Data domain. SQUID is evaluated on a real indus-
trial DevOps scenario, to find SQUID’s pros and limitations.

Chen et al. [64] contribute to the field of Big Data
and DevOps by presenting a methodology revolve around
architecture-centric Agile Big data Analytics (AABA), which
is evaluated on many Big Data analytics projects in secu-
rity, cloud-based mobile, healthcare, etc. The authors [64]
conclude that architecture agility has a significant impact
on the rapid continuous delivery within Big data intensive
applications. Finally, it is obvious that AI/ML will play a
crucial role in improving DevOps productivity for future
dynamic and distributed data-intensive systems. The future
of DevOps will be AI, ML, data-intensive driven that offer
potential advantages to improve functionality and transform
how system developers and administrators can design, test,
deploy, and maintain systems.
Analysis of Open Challenges: While AI/ML clearly pro-

vides valuable benefits to DevOps, there are some potential
challenges that may arise in the future. This is because they
are fundamentally different from conventional applications,
and it is crucial to take into account that they have a differ-
ent development lifecycle. Another well-known challenge of
AI/ML is the availability of sufficient real-world datasets to
build, train, and test the model before deploying it into the
real production environment. In addition, the characteristic of
the systemmay continuously change, which make the AI/ML
model fail to be generalized from datasets that are used
for training purposes. Therefore, AI/ML requires continuous
model evaluating, tuning, retraining, and retesting.

A team from Microsoft illustrates that the data used in
AI systems are large, specific for each context, and compli-
cated for explaining and becoming a burden. These factors
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TABLE 9. Summary of challenges and current contributions.

make it challenging to integrate AI model on a large scale
and distributed system. Therefore, system engineers need to
carefully collect and preprocess datasets before training and
tuning AI algorithms to gain high accuracy performance.

In addition, the collected data has to be efficiently stored
and updated continuously with a predefined schema. Another
challenge is that datasets’ schema may frequently change
in a real-time, which need to be resilient with continuous
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developments when new data is ingested from large scale
systems with changeable performance characteristics [66].

When developing a large scale DevOps project, it is chal-
lenging tomaintainmodularity. This is because the AImodels
are developed in a separated and isolated environment to
ensure the prevention of interference among systems com-
ponents. These separated AI subsystems are developed by
different engineering teams, where AI services communicate
with other systems in non-obvious ways using a controlled
API that has to be precisely controlled [67], [68]. This kind
of challenge may cause error to be propagated among system
and impact the overall performance of services. There is a
need for a more advanced researches and effective solutions
to continuous update of AI models and discover the unseen
misconceptions among system components while taring data
characteristics are changing.

IX. CONCLUSION
DevOps methods have reduced the cultural and methodolog-
ical gap between developers and operators, which lead to
the formation of many new organizational structures, such
as virtual teams working on both development and oper-
ation tasks. This motivates the establishment of new pro-
fessional figures, often referred to as DevOps engineers,
who center their activity on tooling and automation across
the whole application lifecycle. DevOps paradigm allocates
more attention towards continuous re-release, unified tooling
and organizational processes. Common DevOps advances
include, for example, continuous-integration/continuous-
delivery (CI/CD) pipelines and highly-automated orchestra-
tion solutions for the run-time environment.

This survey reviews recent research to support DevOps
with quality-aware software engineering tools. The paper
reviews the context in which research was carried out
and reveals some gaps in areas such as continuous-
integration/continuous-delivery (CI/CD), incremental verifi-
cation, and infrastructure-as-code (IaC). Table 9 provides
a summary of challenges and current contributions with
the domain of quality-aware DevOps. Initial activity on the
upcoming AI for DevOps and DevOps for AI software as also
been surveyed, outlining possible directions for further work.

ACKNOWLEDGMENT
(Ahmad Alnafessah, Alim Ul Gias, Runan Wang, and Lulai
Zhu contributed equally to this work.)

REFERENCES
[1] M. Virmani, ‘‘Understanding DevOps & bridging the gap from continuous

integration to continuous delivery,’’ in Proc. INTECH, May 2015,
pp. 78–82. [Online]. Available: http://ieeexplore.ieee.org/document/
7173368/

[2] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu,
‘‘The impact of continuous integration on other software development
practices: A large-scale empirical study,’’ in Proc. ASE. Urbana, IL,
USA: IEEE, Oct. 2017, pp. 60–71. [Online]. Available: http://ieeexplore.
ieee.org/document/8115619/

[3] J. Wettinger, U. Breitenbücher, and F. Leymann, ‘‘Devopslang-bridging
the gap between development and operations,’’ in Proc. Eur. Conf.
Service-Oriented Cloud Comput. Berlin, Germany: Springer, Sep. 2014,
pp. 108–122.

[4] L. J. Bass, I. M. Weber, and L. Zhu, DevOps—A Software Architect’s
Perspective (SEI Series in Software Engineering). Reading, MA, USA:
Addison-Wesley, 2015. [Online]. Available: http://bookshop.pearson.
de/devops.html?productid=208463

[5] A. Balalaie, A. Heydarnoori, and P. Jamshidi, ‘‘Microservices architecture
enables DevOps: Migration to a cloud-native architecture,’’ IEEE Softw.,
vol. 33, no. 3, pp. 42–52, May 2016.

[6] W. Hasselbring and G. Steinacker, ‘‘Microservice architectures for scala-
bility, agility and reliability in e-commerce,’’ in Proc. ICSAW, Apr. 2017,
pp. 243–246.

[7] T. Schneider, ‘‘Achieving cloud scalability with microservices and DevOps
in the connected car domain,’’ in Proc. Soft. Eng. CEUR, 2016,
pp. 138–141.

[8] A. Rahman, C. Parnin, and L. Williams, ‘‘The seven sins: Security smells
in infrastructure as code scripts,’’ in Proc. ICSE, 2019, pp. 164–175.

[9] D. A. Tamburri, W.-J. Van den Heuvel, C. Lauwers, P. Lipton, D. Palma,
and M. Rutkowski, ‘‘TOSCA-based intent modelling: Goal-modelling
for infrastructure-as-code,’’ Softw.-Intensive Cyber-Phys. Syst., vol. 34,
nos. 2–3, pp. 163–172, Jun. 2019.

[10] M. Guerriero, M. Ciavotta, G. P. Gibilisco, and D. Ardagna, ‘‘A model-
driven DevOps framework for QoS-aware cloud applications,’’ in Proc.
SYNASC, Sep. 2015, pp. 345–351.

[11] D. Sun, S. Chen, G. Li, Y. Zhang, and M. Atif, ‘‘Multi-objective optimi-
sation of online distributed software update for DevOps in clouds,’’ ACM
Trans. Internet Technol., vol. 19, no. 3, pp. 1–20, Nov. 2019.

[12] C. Barna, H. Khazaei, M. Fokaefs, and M. Litoiu, ‘‘Delivering elastic
containerized cloud applications to enable DevOps,’’ in Proc. SEAMS,
May 2017, pp. 65–75.

[13] D. Perez-Palacin, Y. Ridene, and J. Merseguer, ‘‘Quality assessment in
DevOps: Automated analysis of a tax fraud detection system,’’ in Proc.
8th ACM/SPEC ICPE, 2017, pp. 133–138.

[14] M. Peuster and H. Karl, ‘‘Profile your chains, not functions: Automated
network service profiling in DevOps environments,’’ in Proc. NFV-SDN,
2017, pp. 1–6.

[15] F. Boyer, X. Etchevers, N. De Palma, and X. Tao, ‘‘Architecture-
based automated updates of distributed microservices,’’ in Proc. Int.
Conf. Service-Oriented Comput. Cham, Switzerland: Springer, Nov. 2018,
pp. 21–36.

[16] H. Schulz, T. Angerstein, and A. van Hoorn, ‘‘Towards automating repre-
sentative load testing in continuous software engineering,’’ in Proc. ICPE
(Companion), 2018, pp. 123–126.

[17] H. Schulz, T. Angerstein, D. Okanović, and A. van Hoorn, ‘‘Microservice-
tailored generation of session-based workload models for representative
load testing,’’ in Proc. MASCOTS, 2019, pp. 323–335.

[18] H. Schulz, D. Okanović, A. van Hoorn, V. Ferme, and C. Pautasso,
‘‘Behavior-driven load testing using contextual knowledge-approach and
experiences,’’ in Proc. ICPE, 2019, pp. 265–272.

[19] A. Avritzer, V. Ferme, A. Janes, B. Russo, A. V. Hoorn, H. Schulz,
D. Menasché, and V. Rufino, ‘‘Scalability assessment of microservice
architecture deployment configurations: A domain-based approach lever-
aging operational profiles and load tests,’’ J. Syst. Softw., vol. 165,
Jul. 2020, Art. no. 110564.

[20] H. Kang, M. Le, and S. Tao, ‘‘Container and microservice driven design
for cloud infrastructure DevOps,’’ in Proc. IC2E, 2016, pp. 202–211.

[21] G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. C. Gall, ‘‘We’re doing
it live: A multi-method empirical study on continuous experimentation,’’
Inf. Softw. Technol., vol. 99, pp. 41–57, Jul. 2018.

[22] E. F. Boza, C. L. Abad, S. P. Narayanan, B. Balasubramanian, andM. Jang,
‘‘A case for performance-aware deployment of containers,’’ in Proc. WOC,
2019, pp. 25–30.

[23] A. Kwan, J. Wong, H. Jacobsen, and V. Muthusamy, ‘‘HyScale: Hybrid
and network scaling of dockerized microservices in cloud data centres,’’ in
Proc. ICDCS, 2019, pp. 80–90.

[24] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, ‘‘FIRM:
An intelligent fine-grained resource management framework for SLO-
oriented microservices,’’ in Proc. OSDI. Berkeley, CA, USA: USENIX,
2020, pp. 805–825.

[25] A. Noor, D. N. Jha, K. Mitra, P. P. Jayaraman, A. Souza, R. Ranjan,
and S. Dustdar, ‘‘A framework for monitoring microservice-oriented
cloud applications in heterogeneous virtualization environments,’’ in Proc.
CLOUD, 2019, pp. 156–163.

[26] M. Miglierina and D. A. Tamburri, ‘‘Towards omnia: A monitoring
factory for quality-aware DevOps,’’ in Proc. ICPE ACM/SPEC, 2017,
pp. 145–150.

[27] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, ‘‘Geo-distributed
efficient deployment of containers with Kubernetes,’’ Comput. Commun.,
vol. 159, pp. 161–174, Jun. 2020.

VOLUME 9, 2021 44487



A. Alnafessah et al.: Quality-Aware DevOps Research: Where Do We Stand?

[28] F. Rossi, M. Nardelli, and V. Cardellini, ‘‘Horizontal and vertical scaling
of container-based applications using reinforcement learning,’’ in Proc.
CLOUD, 2019, pp. 329–338.

[29] A. Bauer, V. Lesch, L. Versluis, A. Ilyushkin, N. Herbst, and S. Kounev,
‘‘Chamulteon: Coordinated auto-scaling of micro-services,’’ in Proc.
ICDCS, 2019, pp. 2015–2025.

[30] A. U. Gias, G. Casale, and M.Woodside, ‘‘ATOM:Model-driven autoscal-
ing for microservices,’’ in Proc. ICDCS, Jul. 2019, pp. 1994–2004.

[31] F. Rossi, V. Cardellini, and F. L. Presti, ‘‘Hierarchical scaling of microser-
vices in kubernetes,’’ in Proc. ACSOS, 2020, pp. 28–37.

[32] T. Suk, J. Hwang, M. F. Bulut, and Z. Zeng, ‘‘Failure-aware application
placement modeling and optimization in high turnover DevOps environ-
ment,’’ in Proc. CLOUD, 2019, pp. 115–123.

[33] A. Gorbenko, A. Romanovsky, and O. Tarasyuk, ‘‘Fault tolerant Internet
computing: Benchmarking and modelling trade-offs between availability,
latency and consistency,’’ J. Netw. Comput. Appl., vol. 146, Nov. 2019,
Art. no. 102412.

[34] V. Ferme and C. Pautasso, ‘‘Towards holistic continuous software perfor-
mance assessment,’’ in Proc. ICPE (Companion), 2017, pp. 159–164.

[35] R. Pietrantuono, A. Bertolino, G. De Angelis, B. Miranda, and S. Russo,
‘‘Towards continuous software reliability testing in DevOps,’’ in Proc.
AST, 2019, pp. 21–27.

[36] G. Schermann, D. Schöni, P. Leitner, and H. C. Gall, ‘‘Bifrost: Supporting
continuous deployment with automated enactment of multi-phase live
testing strategies,’’ in Proc. ACM Middleware, 2016, pp. 1–14.

[37] J. Backes, C. Varming, M. Whalen, P. Bolignano, B. Cook, A. Gacek,
K. S. Luckow, N. Rungta, M. Schaef, C. Schlesinger, and R. Tanash,
‘‘One-click formal methods,’’ IEEE Softw., vol. 36, no. 6, pp. 61–65,
Nov. 2019.

[38] A. Filieri, G. Tamburrelli, and C. Ghezzi, ‘‘Supporting self-adaptation via
quantitative verification and sensitivity analysis at run time,’’ IEEE Trans.
Softw. Eng., vol. 42, no. 1, pp. 75–99, Jan. 2016.

[39] N. Beigi-Mohammadi, M. Litoiu, M. Emami-Taba, L. Tahvildari,
M. Fokaefs, E. Merlo, and I. V. Onut, ‘‘A DevOps framework for quality-
driven self-protection in Web software systems,’’ in Proc. CASCON, 2018,
pp. 270–274.

[40] R. Meissner and K. Junghanns, ‘‘Using DevOps principles to continu-
ously monitor RDF data quality,’’ in Proc. SEMANTiCS. Leipzig, Ger-
many: ACM, 2016, pp. 189–192. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=2993318.2993351

[41] N. Nethercote and J. Seward, ‘‘Valgrind: A framework for heavyweight
dynamic binary instrumentation,’’ in Proc. PLDI, 2007, pp. 89–100.

[42] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
‘‘Lessons from building static analysis tools at Google,’’ Commun. ACM,
vol. 61, no. 4, pp. 58–66, 2018, doi: 10.1145/3188720.

[43] M. Harman and P. O’Hearn, ‘‘From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,’’ in Proc.
SCAM, 2018, pp. 1–23.

[44] J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J. Pincus,
S. K. Rajamani, and R. Venkatapathy, ‘‘Righting software,’’ IEEE Softw.,
vol. 21, no. 3, pp. 92–100, May 2004.

[45] N. Ferry, P. H. Nguyen, H. Song, E. Rios, E. Iturbe, S. Martinez, and
A. Rego, ‘‘Continuous deployment of trustworthy smart IoT systems,’’
J. Object Technol, vol. 19, no. 2, pp. 16:1–23:1, 2020.

[46] M. Mazkatli and A. Koziolek, ‘‘Continuous integration of performance
model,’’ in Proc. ICPE (Companion). Berlin Germany: ACM, Apr. 2018,
pp. 153–158. [Online]. Available: https://dl.acm.org/doi/10.1145/
3185768.3186285

[47] T. F. Düllmann, C. Paule, and A. van Hoorn, ‘‘Exploiting DevOps practices
for dependable and secure continuous delivery pipelines,’’ in Proc. RCoSE,
2018, pp. 27–30.

[48] E. Di Nitto, P. Jamshidi, M. Guerriero, I. Spais, and D. A. Tamburri,
‘‘A software architecture framework for quality-aware DevOps,’’ in Proc.
QUDOS, 2016, pp. 12–17.

[49] R. Heinrich, R. Jung, C. Zirkelbach, W. Hasselbring, and R. Reussner,
‘‘An architectural model-based approach to quality-aware DevOps in cloud
applications,’’ in Software Architecture for Big Data and the Cloud.
Amsterdam, The Netherlands: Elsevier, 2017, pp. 69–89.

[50] M. Jiménez, L. F. Rivera, N. M. Villegas, G. Tamura, H. A. Müller,
and N. Bencomo, ‘‘An architectural framework for quality-driven adap-
tive continuous experimentation,’’ in Proc. RCoSE/DDrEE, 2019,
pp. 20–23.

[51] H.-M. Chen, R. Kazman, S. Haziyev, V. Kropov, and D. Chtchourov,
‘‘Architectural support for DevOps in a neo-metropolis BDaaS platform,’’
in Proc. SRDSW, 2015, pp. 25–30.

[52] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, ‘‘A systematic map-
ping study of infrastructure as code research,’’ Inf. Softw. Technol., vol. 108,
pp. 65–77, Apr. 2019. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0950584918302507

[53] L. Chen, ‘‘Continuous delivery: Overcoming adoption challenges,’’ J. Syst.
Softw., vol. 128, pp. 72–86, Jun. 2017.

[54] M. Shahin, M. A. Babar, and L. Zhu, ‘‘The intersection of continuous
deployment and architecting process: Practitioners’ perspectives,’’ in Proc.
ESEM. Ciudad Real, Spain: ACM, 2016, pp. 1–10. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2961111.2962587

[55] P.W. O’Hearn, ‘‘Continuous reasoning: Scaling the impact of formal meth-
ods,’’ in Proc. LICS, 2018, pp. 13–25, doi: 10.1145/3209108.3209109.

[56] H. Koziolek and R. Reussner, ‘‘A model transformation from the pal-
ladio component model to layered queueing networks,’’ in Proc. SPEC
Int. Perform. Eval. Workshop. Berlin, Germany: Springer, Jun. 2008,
pp. 58–78.

[57] A. Brunnert et al., ‘‘Performance-oriented DevOps: A research
agenda,’’ 2015, arXiv:1508.04752. [Online]. Available: https://arxiv.org/
abs/1508.04752

[58] E. Di Nitto, P. Jamshidi, M. Guerriero, I. Spais, and D. A. Tamburri,
‘‘A software architecture framework for quality-aware DevOps,’’ in Proc.
QUDOS. New York, NY, USA: Association for Computing Machinery,
2016, pp. 12–17, doi: 10.1145/2945408.2945411.

[59] D. Sun,M. Fu, L. Zhu, G. Li, and Q. Lu, ‘‘Non-intrusive anomaly detection
with streaming performance metrics and logs for DevOps in public clouds:
A case study in AWS,’’ IEEE Trans. Emerg. Topics Comput., vol. 4, no. 2,
pp. 278–289, Apr. 2016.

[60] Y. Dang, Q. Lin, and P. Huang, ‘‘AIOPS: Real-world challenges and
research innovations,’’ in Proc. IEEE/ACM ICSE (Companion), 2019,
pp. 4–5.

[61] A. F. Nogueira, J. C. Ribeiro, M. Zenha-Rela, and A. Craske, ‘‘Improving
La Redoute’s CI/CD pipeline and DevOps processes by applying machine
learning techniques,’’ in Proc. QUATIC, 2018, pp. 282–286.

[62] R. Kumar, C. Bansal, C. Maddila, N. Sharma, S. Martelock, and
R. Bhargava, ‘‘Building Sankie: An AI platform for DevOps,’’ in Proc.
IEEE/ACM BotSE, 2019, pp. 48–53.

[63] R. Ciucu, F. C. Adochiei, I.-R. Adochiei, F. Argatu, G. C. Seriţan,
B. Enache, S. Grigorescu, and V. V. Argatu, ‘‘Innovative DevOps for
artificial intelligence,’’ Sci. Bull. Electr. Eng. Fac., vol. 19, no. 1, pp. 58–63,
Apr. 2019.

[64] H.-M. Chen, R. Kazman, and S. Haziyev, ‘‘Agile big data analytics
development: An architecture-centric approach,’’ in Proc. HICSS, 2016,
pp. 5378–5387.

[65] G. C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow, ‘‘HPC-
ABDS high performance computing enhanced apache big data stack,’’ in
Proc. IEEE/ACM CCGRID, Jun. 2015, pp. 1057–1066.

[66] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan,
B. Nushi, and T. Zimmermann, ‘‘Software engineering for machine learn-
ing: A case study,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., Softw.
Eng. Pract. (ICSE-SEIP), Jun. 2019, pp. 291–300.

[67] C. R. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and J. Patterson,
‘‘Sometimes you need to see through walls: A field study of application
programming interfaces,’’ in Proc. ACM Conf. Comput. Supported Coop-
erat. Work, 2004, pp. 63–71.

[68] C. R. De Souza, D. Redmiles, and P. Dourish, ‘‘‘Breaking the code’ moving
between private and public work in collaborative software development,’’
in Proc. Int. ACM SIGGROUP Conf. Supporting Group Work, 2003,
pp. 105–114.

AHMAD ALNAFESSAH is currently pursuing the
Ph.D. degree with the Department of Comput-
ing, Imperial College London. He was a Senior
Academic Researcher with the National Centre
for AI and Big Data Technologies, KACST, from
2012 to 2017. His research focuses on perfor-
mance engineering for big data systems and AI,
with a specific focus on in-memory platforms.
He is interested in big data systems, AI, IoT,
HPC, complex distributed systems, and cloud
computing.

44488 VOLUME 9, 2021

http://dx.doi.org/10.1145/3188720
http://dx.doi.org/10.1145/3209108.3209109
http://dx.doi.org/10.1145/2945408.2945411


A. Alnafessah et al.: Quality-Aware DevOps Research: Where Do We Stand?

ALIM UL GIAS received the bachelor’s degree in
information technology (major in software engi-
neering) from the Institute of Information Tech-
nology (IIT), University of Dhaka (DU), and the
M.Sc. degree in software engineering from IIT,
DU, with thesis on adaptive software performance
testing. He is currently pursuing the Ph.D. degree
with Imperial College London, U.K. His current
research interest includes software performance
engineering using stochastic process modeling and
machine learning.

RUNAN WANG received the B.Eng. and M.Sc.
degrees in software engineering from the Beijing
Institute of Technology (BIT), China, in 2017
and 2019, respectively. She is currently pursu-
ing the Ph.D. degree with the Department of
Computing, Imperial College London. Her current
research focuses on performance models, program
engineering, and machine learning.

LULAI ZHU received the B.Eng. and M.Eng.
degrees in measurement technology and instru-
ments from Sichuan University, China, in 2008
and 2011, respectively, and the M.Sc. degree in
computing science from Imperial College London,
U.K., in 2016. He is currently pursuing the Ph.D.
degree with the Department of Computing. He is
currently an RA with the Department of Comput-
ing. His current research focuses on performance
models, such as queuing networks and Petri nets,

and their applications to distributed systems and cloud computing.

GIULIANO CASALE joined the Department of
Computing, Imperial College London, in 2010,
where he is currently a Senior Lecturer in model-
ing and simulation. Previously, he worked as a Sci-
entist at SAP Research, U.K., and as a Consultant
in the capacity planning industry. He teaches and
does research in performance engineering, cloud
computing, and big data, topics on which he has
published more than 100 refereed articles. He has
served on the technical program committee of over

80 conferences and workshops and as co-chair for several conferences in the
area of performance engineering, such as ACMSIGMETRICS/Performance.
He was a recipient of multiple awards, recently the Best Paper Award at
ACM SIGMETRICS in 2017. He serves on the Editorial Board of IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (TNSM) and ACM
TOMPECS and as the Chair of ACM SIGMETRICS.

ANTONIO FILIERI is an Assistant Professor with
Imperial College London, U.K. His main interests
are in the application of mathematical methods
for software engineering, in particular, probabil-
ity, statistics, logic, and control theory. His recent
work includes exact and approximate methods
for probabilistic symbolic execution, incremen-
tal verification, quantitative software modeling
and verification at runtime, and control-theoretical
software adaptation. www.antonio.filieri.name.

VOLUME 9, 2021 44489


