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ABSTRACT The aim of this work is to prove that it is possible to develop a system able to detect gestures
based only on ultrasonic signals and Edge devices. A set of 7 gestures plus idle has been defined, being
possible to combine them to increase the recognized gestures. In order to recognize them, Ultrasound
transceivers will be used to detect the 2 dimensional gestures. The Edge device approach implies that
the whole data is processed in the device at the network edge rather than depending on external devices
or services such as Cloud Computing. The system presented in this paper has been proven to be able to
measure Time of Flight (ToF) signals that can be used to recognize multiple gestures by the integration of
two transceivers, with an accuracy between 84.18% and 98.4%. Due to the optimization of the preprocessing
correlation technique to extract the ToF from the echo signals and our specific firmware design to enable the
parallelization of concurrent processes, the system can be implemented as an Edge Device.

INDEX TERMS Edge computing, gesture recognition, human system interaction (HSI), ultrasound.

I. INTRODUCTION
The communication among humans is based on a
multi-modal system, which includes not only verbal commu-
nication but also face and body expressions to intensify the
meaning of the verbal content. The Human System Interac-
tion (HSI) trend is evolving, leading to the research of emerg-
ing technologies that mimic this natural communication,
minimizing the use of interfaces like touchscreens, buttons
or sliders. Well known virtual personal assistants such as
Alexa or Siri, developed by Amazon and Apple respectively
which allow communication with the system using only voice
commands. There are also several systems that introduce
gesture control to the system, i.e. SoundWave [1], AudioGest
[2], Dolphin [3], or UltraGesture [4]. All of them use low
frequency ultrasound signals to recognize between 5 and
12 gestures, which are mostly based on Doppler shift effect
(frequency variation due to movement) while running the
recognition algorithms on PC or Smartphones.

The associate editor coordinating the review of this manuscript and
approving it for publication was Maurizio Tucci.

The aim of this work is to prove the possibility to develop
a system able to detect gestures based only on ultrasonic
signals and to execute the signal processing in Edge devices,
without using neither a PC nor a cloud environment. For
testing, a set of 7 gestures plus idle has been defined, being
possible to combine them to increase the recognized gestures.
In order to recognize them, 2 transceivers will be used, since
it is the minimum number of transceivers required to detect
2 dimensional gestures.

This device works as an active sonar system: it transmits
ultrasonic waveforms, which are reflected back when they
collide with any solid obstacle, to its environment. Then the
transceivers receive these indirect echo signals in order to
locate the echo produced by the obstacle. The transceivers
are located on the same device. Thanks to this, it does not
need an external synchronization signal to get the time-of-
flight (ToF) value, which is the time between the transmitted
signal emission and the echo signal reception. These mea-
surements enable the system to have a great resolution in
the depth dimension due to the direct relation between time-
of-flight and the distance between the reflector object and
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the system. This is an advantage over 2D cameras or Electric
Near Field sensors, which are more sensitive to noise and
need to infer the distance from the strength of the received
signals. However, it has low positioning accuracy when it
comes to the lateral range. In spite of higher processing time,
it could be solved by adding more devices to the system,
getting a combination of time-of-flights estimations between
them.

This article is structured as follows: Section II introduces
the state of the art in Ultrasound technologies for gesture
recognition and the advantages of use Edge Computing for
this purpose. Section III explains in detail the system devel-
oped in this work, as well as the firmware developed for the
signal acquisition and ToF calculation. Section IV describes
the gestures defined for the experiment and the algorithms
studied for the recognition and classification. Section V sum-
marizes the results obtained. Finally, Section VI focuses on
conclusions of this work.

II. PRIOR WORK/STATE OF THE ART
A. ULTRASOUNDS
Originally, ultrasound technology started to be used to
increase the perception under the sea for navigation purposes,
known as sonar devices [5]. However, ultrasounds were soon
applied tomedicine [6] and quickly found inmore application
fields, such as non-destructive testing methods [7].

Nowadays, ultrasounds are used for object recognition [8],
which aim to reduce the power consumption, computation,
and cost of current optical sensors. In [9], DasIvan et al.
created an ultrasonic-based hand-gesture recognition device
using a single piezoelectric transducer and an 8-element
microphone array. Despite the fact that the accuracy was
lower than in devices using optical sensors, it increased the
number of gestures supported by a factor of 200 within
the same energy budget. The developed system uses the
Sound-Source Localization (SSL) algorithm.

However, other approaches have tried different techniques
with the same goal. UltraGesture [4] uses the Channel
Impulse Response (CIR) for finger motion perception and
recognition, getting a resolution of 7 mm in the measure-
ments. Soundwave [1], AudioGest [2], and Dolphin [3]
measure the frequency variation of the hand in the incoming
signal due to the movement of the user, known as Doppler
effect. All three works use commercial speakers and micro-
phones embedded in existing systems.

The difference among the previously commented systems
are the developed algorithms for the gesture recognition.
SoundWave [1] implements a threshold-based dynamic peak
tracking technique to capture the Doppler shifts recorded by
a laptop. Similarly, AudioGest [2] adds some of the signal
contexts to the estimation of the hand in-air time, average
waving speed as well as hand moving range. Smart mobile
devices have also been used for a closer interaction with the
user, using the same Doppler shift technique as the previous

papers [3]. A further comparison of these studies will be
shown in Section V.
Apart from large-scale gestures as studied in our paper,

ultrasound signals have also been used for multiple ges-
ture types. An example of this is the classification
of micro-gestures based on the micro-Doppler effect.
Sang et al. [10] and Zeng et al. [11] proposed two different
models for this purpose. The data to classify in these papers
are seven and five finger-based gestures respectively. Both
models are based on Recurrent Neuronal Networks (RNN)
and Convolutional Neuronal Networks (CNN) to study the
temporal evolution of the micro-Doppler images, achieving
an accuracy over 90% in both cases.

One of the reasons for the integration of ultrasound sensors
when using these techniques rather than other technologies
is its robust behaviour against the ambient light or visibility
changes. At the same time, while cameras ormicrophones can
easily differentiate not only the gestures or voice commands,
but also who is doing it, they may incur privacy concerns.
Ultrasounds only get relevant information of the movement
and, consequently, capture fewer attributes from the users,
which hardens user tracking and identification but improves
the privacy of the user.

One of the goals of the proposed system in this paper
is to integrate it into different multi-purpose large systems.
Therefore, in order to reduce the complexity of the integra-
tion of the ultrasound module, an Edge approach has been
researched. This implies that the whole data is preprocessed
in the device at the network edge instead of depending on
external devices or services such as Cloud Computing. At the
same time, this approachwould increase privacy since the raw
data is not transmitted but only the final processed gesture
classification is. The next subsection gives details about the
advantages of this approach as well as a deeper description of
Edge Computing.

B. EDGE COMPUTING
Edge Computing [12] is aimed at reducing Cloud workload
to process device data. To do so, some preprocessing and/or
computing tasks are executed at the network edge when pos-
sible. Thus, Edge Computing is suitable in scenarios where
low latency is required for the user, or where the end device
application has time critical constraints [13].

At the same time, this technique ensures integrity and
confidentiality of the information [14]. As a result of not com-
municating the information with external devices, the energy
consumption for the data transmission is reduced [15].
By preprocessing the data in the device, the confidential
information which is not relevant for the final task can be
masked/deleted before being shared with an external device.
This process also can be used to standardize the format of
the transmitted data in order to create a shared format that all
the devices can understand even if initially the format of each
device was different [16]. This is especially relevant when
multiple devices are collaborating as it is in the Internet of
Things environment.
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III. HARDWARE DESCRIPTION AND SIGNAL
ACQUISITION
The proposed system uses twomodules, as shown in Figure 1.
The first one is used to control two transducers to generate the
outgoing signal and acquire the incoming echo. This module
also calculates the time elapsed between the emission and
the reception of the signal for each transceiver. This time
is known as Time of Flight (ToF). The first module also
integrates the analog circuitry needed for the echo signals
amplification. The second module receives the ToF values
and, after filtering them, performs the recognition algorithm
to determine the gesture realized by the user. If needed, this
module can integrate an external Neuroshield board, to per-
form the recognition algorithm, and control an external device
(such as a led strip) to display the detected gesture.

FIGURE 1. System diagram.

Both modules are composed of a XMC4700 microcon-
troller performing the acquisition/recognition task, as well as
a Bluetooth HC-05 device for the communication between
them. This communication technology has been chosen to
add a wireless channel between both modules to have flex-
ibility on how to place them, but other technologies can be
used as well.

The ultrasound transducers used in this work are based
on a dual-backplate MEMSmicrophone technology allowing
a combined use as an airborne ultrasonic transceiver and
audio microphone. Those transducers need a low bias voltage
and offer an audio performance of 68 dB(A) signal-to-noise
ratio (SNR) and between 80 and 90 dB SNR in the ultrasonic
frequency range. After the emission of the pulses, a free oscil-
lation of the membrane (ringing) can override the incoming
echo, producing a shadow zone that allows obstacle detection
from 10 cm on [17].

A. SIGNAL EMISSION AND RECEPTION
The signal emission and reception are performed by the mod-
ule 1, whose block diagram is shown in Figure 2. The signal
to transmit is a square signal generated by a Pulse Width
Modulation (PWM) block integrated into the processor. This
signal is later transformed into an acoustic wave by one of
the transducers. As soon as the PWM block finishes the
pulse generation, the microcontroller starts collecting sam-
ples using two Analog Digital Converter (ADC) in parallel,
one for each transceiver, to minimize time skew between
samples. The echo received by the transducer, as an analog
signal, carry some noise from the environment (as could be
the use of buttons from a computer’s keyboard or mouse,

FIGURE 2. Transducer control and ToF calculation.

that have been seen to be harmful to the device’s operating
frequency). A band-pass amplifier was developed for this
task, which amplifies the lower ultrasonic band (20 kHz to
100 kHz) while filters out all other frequencies. After this
filter, the signal must be digitalized by the microcontroller
ADC module for further processing, as it is explained in the
next subsection.

B. TIME OF FLIGHT
After the signal is acquired it has to be processed to identify
if there is an incoming echo, and the position of this if appli-
cable. The ToF calculus has to be done while the following
frame is being acquired, running both processes in parallel as
shown in Figure 3.

The signal can be processed in different domains to calcu-
late the ToF, finding in the literature several methods for each
domain, as collected by Jackson et al. [18]. and summarized
in table 1.

FIGURE 3. Firmware task parallelization to minimize execution time.

TABLE 1. Example of ToF calculus techniques.
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Somemethods try to imitate the nature systems to calculate
the ToF. for example, Hayward et al. [19] developed the
‘‘Biologically Inspired Ranging Algorithm (BIRA)’’ based
on the bats hearing system for echolocation.

Other models are based in the frequency domain, as for
example Huang and Huang [20] use the phased difference of
a single frequency signal to calculate the ToF. Also, signal
with more than one frequency component has been studied
to calculate the desired parameter, as for example Cowell
and Freear [21] used chirp-signals to increase the accuracy
of the estimated ToF. This approach also avoids multi-path
problems and differentiates between several emitters.

Due to the low computation power required and good
results, most works base this calculus on time domain meth-
ods, based i.e. on the amplitude of the incoming signal
or in the cross-correlation of the echo with the sent (or
expected) signal. The cross-correlation method reduces the
high influence of noise in the amplitude method, since the
cross-correlation, which acts as matched filtering, produces
a time-domain signal with a maximum at the time when the
echo was received [18], [22].

The ToF calculation proposed in this system can be divided
in four steps as described in Figure 4. First, the acquired
signal is cross-correlated with the template of the expecting
echo, giving a maximum value where the expected and real
echo overlap. Then, the envelope of the previous signal is
obtained using a low pass filter. After that, the envelope is
evaluated to extract the first cut with a dynamic threshold.
This threshold represents the attenuation of the signal due
to the distance traveled. It can be adjusted according to
the ambient noise level of each specific scenario. Finally,
the maximum of the cross-correlated signal is searched on a
window with center in the threshold-envelope crossing value,
giving the position of the ToF in number of samples. Once
the number of ToF samples is determined, it can be easily
converted to time knowing the ADC sampling frequency.

Using only one transceiver as emitter brings a non-desire
effect in the ToF calculus. The distance from the obstacle to
the transmitter is a direct relation with the ToF estimated,
as shown in (1), but the ToF estimated in the signal of
the second transceiver is a relation of the distance between the
obstacle with both transceivers, as shown in (2). The solution
to this effect will be further discussed in following sections.

ToF1 =
2d1
cs

(1)

ToF2 =
d1 + d2
cs

(2)

where ToFn indicate the ToF for the transceiver n, dn the
distance between the target and the transceiver n and cs the
speed of the sound.

The proposed system is robust also to temperature changes.
The speed of the sound in the air depends, among other
environmental effects, on the air temperature [23]. This
dependency is significant enough to allow the estimation
of air temperature based on the difference between ToF

FIGURE 4. ToF calculus algorithm: cross-correlation signal (blue),
cross-correlation signal envelope (red), threshold for echo
detection (yellow) and peak value detected (black).

measurement as shown by Annibale et al. [24]. Once more,
the use of the relation between ToF of both transceivers
provides the mitigation of this non desire effect.

IV. GESTURE RECOGNITION METHODS
Seven gestures, and idle, have been selected for this experi-
ment: front push, front pull, right push, right pull, left push,
left pull, static position, and no gesture. These gestures are
well defined arm or hand movements in two dimensions
to minimize the gesture complexity and reduce to two the
required transceivers. Therefore, all gestures must be con-
tained in this plane and so they are assumed to be in the
front part of the sensors as shown in Figure 5. Otherwise,
the system won’t be able to track the gesture, due to the
transceiver’s unidirectional sensitivity and radiation pattern.
This is an effect of the package to protect the membranes and
electronics, which is also used to increase the strength of the
emitted signal.

These gestures are measured using both transceivers simul-
taneously. By extracting the ToF from each sensor in each
moment, as explained in IV-A by (1) and (2), it is possible to
determine the movement direction and the region of the plane
where the movement has been done.

Four individuals performed these gestures in different con-
ditions within a distance of 15-50 cm from the device to col-
lect data from different conditions. Each individual repeated
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FIGURE 5. Gestures diagram: push(red) and pull(blue) direction in the
three different regions (Top view).

each gesture 4 times per session during 20 sessions. These
gestures have a variable length depending on the subject and
the specific time, which helps to create amore diverse dataset.
The average time length of these gestures was approximately
3 seconds after a review of average length on hand gestures.
The frequency used for recording the ToF samples was 30 Hz.
Nevertheless, the time length of the whole gesture is not a
critical factor, since each gesture is classified multiple times
during its performance. Therefore, even if a gesture is short,
as far as it lasts for the required 7 ToF samples (250ms), it will
be correctly classified. However, the speed of the gesture may
affect on a larger scale since a lower hand speed will result
in a smaller variation of the ToF. If this happens, the system
may classify this gesture as idle due to its low variance of the
position.

The final data-set created contains 3150 gesture samples
where each gesture sample consists of a number ToF samples
from each transceiver as shown in Figure 6. The specific
number of ToF samples will be commented in Section IV-B.
Out of all the gestures samples, 80% were used during the
training process and the remaining 20% were used for testing
the final system.

FIGURE 6. Gesture sample creation.

A. FILTERING THE RAW ToF DATA
After preprocessing the raw ToF data extracted from the
transceivers, the data needs to be filtered in order to remove

FIGURE 7. Filter window.

TABLE 2. Comparison of multiple sizes for the window of the filter
technique.

outlier points as well as reconstruct the ToF signal when
possible.

While multiple filtering techniques may be applied in this
scenario, the speed of the system when applying the filtering
technique has to be taken as a constrain in order to avoid
creating a bottleneck at this point. Therefore, a filtering tech-
nique where the ToF data is compared with the n previous
ToF samples has been designed resulting in a smooth filter
specific for this application. This filter has been designed to
take into account the most frequent and relevant problems
detected in the raw signal, such as missing information or
measurements when the sensor is saturated. As a result of this,
it is more suitable than a general purpose smooth filter.

The window approach used with the filtering technique
described is shown in figure 7. The goal of this filter is
to remove outlier points and recover lost ToF samples. The
dimension of the window of data that will be used with this
filter has been researched to determine the optimal size. The
compared parameters for these filters are the execution time
as well as the noise reduction. Table 2 shows all the compared
dimensions.

The final size of the window is 11 ToF samples. This deci-
sion was based on the trade-off between the noise reduction
and the execution time. Larger window filters lead to latency
problems since its execution and the later classification would
exceed the time limit of 33 us. At the same time, these filters
only provide, as maximum, a 0.97% improvement respect the
chosen filter regarding noise reduction. The effect of applying
this filter in the ToF data can be observed in figure 8.
This preprocessing has proven to increase the accuracy of

the gesture classification, as shown in Section V, where this
fact will be further explained.

The filtered ToF samples of some of the studied gestures
using the previous filtering technique are shown in figure 9
for a deeper understanding of the data used in this paper.

Besides the remaining noise in the signal after the filtering
process, it is possible to obtain high classification accuracy
thanks to the researched algorithms. During the training
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FIGURE 8. ToF data before and after applying filter.

FIGURE 9. Filtered ToF samples of left and right push and pull gestures.

process, at the same time the AI models learn to classify the
input data, they learn as well to adapt themselves to the noise
of the signals. Further explanations of these algorithms are
done in Section IV-B.

B. ALGORITHMS
Multiple classification algorithms were applied to the gath-
ered data aiming to compare the gesture recognition accuracy
based on the collected data explained in the previous sec-
tions. The data used for the classification has been explained
in Subsection IV, where Figure 6 shows how each gesture
sample is created as a succession of ToF samples from both
transceivers. This enables the system to learn the time evolu-
tion of the signal without using complex algorithms such as
LSTM neural networks.

Each time a new ToF sample is received, the window slides
creating a new gesture sample including the new ToF sample
and removing the oldest one. The sliding window enables
the system to generate more gesture samples for the learning
phase than dividing the whole data-set into sub-datasets of n
ToF samples.

Since the algorithms used for the classification are based
on a supervised learning approach, the ToF data does not have

to be preprocessed to obtain the real distances with respect to
each transceiver. At the same time, the algorithms learn to
overcome the possible remaining noise in the data after the
first filter explained in Subsection IV-A.

Finally, from each gesture sample, the slope of the ges-
ture sample from each transceiver as well as the difference
between their mean values were used as input features for the
classification algorithms.

The relevant information of the gesture data for its clas-
sification is the evolution of the value of the ToF signals.
Therefore, a study to decide the number of ToF samples
contained in each gesture sample was carried out. As the
gesture data will be preprocessed to extract the previously
explained features, the number of inputs for the algorithms
is independent from the number of ToF samples per gesture
sample. The comparison was based on the final accuracy
achieved in Multilayer Perceptron (MLP) [25] that will be
commented in this section, as shown in Table 3.

TABLE 3. Comparison of multiple number of ToF samples per gesture
sample.

As a result of this study, the number of ToF samples per
gesture sample was set to 7. The reason for this decision is
its high accuracy in the MLP model as well as its reduced
number of samples. The latest reason leads to an increase
of the number of gestures samples created. This is beneficial
during the training phase of the models. Its higher accuracy
in comparison with the cases of a higher number of ToF
samples is due to the fact this increase leads to problems
during transitions between gestures.

Three algorithms have been researched in this paper:
• Deep Learning model. Different structures of Deep
Neural Networks (DNN) were researched, such as MLP
[25], Long Short Term memory (LST) DNN [26] and
Convolutional Neural Network [27]. Since the features
used for the classification do not require a time evolution
study or a further feature extraction, we concluded the
MLPwas the structure that fits in this application among
the DNN structure researched. This decision was based
on the time required to re-train the DNN in case new
gestures are added to the system as well as its speed
to compute the result. In case any of the other DNN
structure were implemented, the latency of the system
would increase leading to bottleneck problems in the
classification step of the pipeline.
The proposedMLPmodel was designed keeping inmind
the number of layers as well as artificial neurons while
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FIGURE 10. MLP network structure.

achieving high accuracy results. The chosen structure is
an MLP of 4 layers as Figure 10 shows. The input layer
includes 3 artificial neurons, which represent the number
of features that will be fed into this DNN. Following the
input layer, there are two hidden layers with 6 and 9 neu-
rons respectively. The output layer contains 8 neurons to
match the number of gestures (including idle) studied in
this paper. In the structure, batch normalization layers
have been added between each layer to increase the
stability of the DNN.
As a result, this model could be implemented in an Edge
Device for the inference process due to its low memory
requirements as well as the speed to process the input
data.

• Deep Learning model based on Neuroshield device.
Another approach researched in this paper was the
implementation of the classification task in the Neu-
roshield device [28]. This device includes 576 artificial
neurons programmed with a radial basis activation func-
tion [29] rather than the previously commented DNN.
This activation function computes the distance, in the
feature representation plane, of the established center of
each neuron with the input data as shown in Figure 11.
After calculating all the distances, it calculates which
neuron is the closest to the input data and, in case the
distance is smaller than the activation distance, the input
activates the corresponding artificial neuron.
This optimized algorithm, apart from moving the infer-
ence stage to the network edge due to its reduced latency,
enables the execution of the training of the AI model
at the network edge. The limitations of this model fall
on the fact the DNN designed for this device must be

FIGURE 11. Neuroshield activation function structure.

trained using the same technique, radial basis activation
function.

• Decision Tree model. This model is based on a set of
rules which are defined during the training stage in order
to classify the gesture by comparing the input data with a
list of conditional clauses where the data is divided into
different decisions according to a certain parameter [30]
leading to a final decision based on the results of these
conditional clauses. This model is less computing-power
demanding due to its simplicity to classify a new data
sample. At the same time, this simplicity makes it diffi-
cult to maintain its accuracy when the complexity of the
data increases.

The features fed into the classification techniques were
the same: the slope of the ToF signal measured from the
first transceiver and the average value of the last seven ToF
samples as well as the difference of the mean values of
the ToF signals measured with both transceivers. The same
postprocessing technique has been applied to all the previous
algorithms in order to further improve their accuracy while
still being able to compare them. The postprocessing tech-
nique applied is a sliding window to extract the most frequent
classification results in the last 5 classification results. There-
fore, outlier classification results are filtered, maintaining a
slow and continuous change between gestures. The improve-
ment of the accuracy when applying this technique can be
observed in Section V.

V. RESULTS
The results obtained with the previously explained techniques
are presented in this section using the same data to ensure a
correct comparison of the algorithms.

Due to the fact that all these techniques accomplishwith the
time restriction of the system, the compared parameter in this
section is the accuracy, which is measured in this experiment
as correct classifications over all the classifications.

The Table 4 shows the accuracy achieved using each clas-
sification approach. At the same time, this table compares
the accuracy results obtained when using the raw signal (first
column), the filtered ToF data (second column), and using all
the previously explained preprocessing techniques as well as
the window to filter the output classification results.

TABLE 4. Accuracy results without any filter or window (acc. 1), without
the window (acc. 2) and using all the filtering techniques (acc. 3).

The results obtained with the Neuroshield device achieved
the highest accuracy among the researched techniques, both
scenarios of not applying or applying the postprocessing
technique. However, this system lacks the flexibility the other
two techniques can provide due to the fact that this device can
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only execute one kind of DNN and it can not be transferred
to another device different from a Neuroshield device.

The Decision Tree algorithm achieved a final accuracy
of 5.6% and 1.46% lower than the Neuroshield device, with-
out the postprocessing and including it respectively. Never-
theless, this technique is the less power requiring due to its
simplicity in comparison with the DNN structures presented
in the paper.

The MLP classificator achieved a final accuracy of 6.59%
and 5.53% lower than the Neuroshield devices, without
the postprocessing and including it respectively. In spite of
achieving the lowest accuracy among these techniques, this
one provides the highest flexibility since the structure of the
DNN and the activation function can be modified easily as
well as transferred to other devices.

For a deeper comparison of the accuracy achieved for each
gesture, Figures 12, 13 and 14 show the confusion matrix of
the final algorithms (including all the filtering techniques).
It is possible to observe how all the researched algorithms
achieve high accuracy for all the gestures, being the low-
est one the accuracy achieved for the gesture 5 (left push),

FIGURE 12. MLP confusion matrix.

FIGURE 13. Neuroshield algorithm confusion matrix.

FIGURE 14. Decision tree confusion matrix.

TABLE 5. Comparison of the size of the researched algorithms.

83.1%, when using the MLP algorithm. Therefore, we can
conclude all these models can generalize the data properly.
As previously commented, these tables also show how the
MLP model achieves the lowest accuracy results for all the
gestures among the researched algorithms. The main differ-
ence we can observe from these confusion matrices is the
error distribution. While the errors in the MLP and decision
treemodels are distributed across all the gestures, the errors of
the Neuroshield model are concentrated in the last 4 gestures.

Another relevant factor to compare among the researched
algorithms is the memory consumption of the different mod-
els since this is one of the restrictive parameters in Edge
Devices. Table 5 shows this comparison, where it is possible
to observe how the MLP model, even when its accuracy is
approximately 5% lower than the best model of the Neu-
roshield device, leads to a memory consumption reduction
for the model of an 83.1%.

The latency of these models has not been compared since
all of them satisfied the restriction of the 33ms established
by the hardware providing a classification result for any new
data before receiving the next one.

A comparison of the studies described in Section II is
presented in Table 6. Even though it is not possible to com-
pare the performance of the algorithms due to the lack of a
common public dataset as well as the difference in the data
structure each technique requires, significant parameters of
each system can be compared. The future development of
gesture recognition systems based on ultrasound technology
could benefit from a common data framework, thus allowing
the cooperative development of algorithms with much more
data and from different sources and conditions.
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TABLE 6. Comparison of state-of-the-art techniques for gesture recognition with ultrasounds.

One of the features that we can compare is the devices
integrated into these systems. It is possible to observe how
the majority of the researchers are basing the systems on
a multi-sensor approach where a separated microphone and
speaker are integrated. On the other hand, our proposed
system tries to reduce the number of devices integrating
transceivers.

VI. CONCLUSION
The system presented in this paper has been proven to be able
to measure ToF signals that can be later used to recognize
multiple gestures by the integration of two transceivers. Due
to the optimization of the preprocessing correlation technique
to extract the ToF from the echo signals and the specific
design of the firmware to enable the parallelization of con-
current processes, the system can be implemented as an Edge
Device. This system does not require any external device or
cloud server to preprocess the information.

At the same time, by using the Neuroshield device, which
enables the implementation of an AI classificator at the net-
work edge, or the MLP implemented in an Edge Device, it is
also possible to execute the full process from data gather-
ing to extract the classification at the network edge while
maintaining high accuracy results. It has been shown how
the researched algorithms provided high accuracy, where the
best result is extracted from the Neuroshield with a 98.4%
accuracy.

The memory sizes of the models are also a relevant feature
to compare since it is one of the main constrains in Edge
Devices. Because of this, this feature has been taken into
account during the optimization of the models. As a result
of this, the size of all the proposed models has been reduced,
i.e. the proposed MLP, whose size is 23 KB while it stills
achieves an accuracy of 92.87% in our dataset.
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