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ABSTRACT Intentionally misguiding a global positioning system (GPS) receiver has become a potential
threat to almost all civilian GPS receivers in recent years. GPS spoofing is among the types of intentional
interference, in which a spoofing device transmits spoofed signals towards the GPS receiver to alter the
GPS positioning information. This paper presents a robust positioning algorithm, followed by a track filter,
to mitigate the effects of spoofing. It is proposed to accept the authentic GPS signals and spoofed GPS
signals into the positioning algorithm and perform the robust positioning with all possible combinations of
authentic and spoofed pseudorange measurements. The pseudorange positioning algorithm is accomplished
using an iterative least squares (ILS). Further, to efficiently represent the robust algorithm, the M-best
position algorithm is proposed, in which a likelihood-based cost function optimizes the positions and only
provides M-best positions at a given epoch. However, during robust positioning, the positions evolved due
to spoofed pseudorange measurements are removed to overcome GPS spoofing. In order to remove the
fake positions being evolved owing to wrong measurement associations in the ILS, a gating technique is
applied within the Kalman filter (KF) framework. The navigation filter is a three-dimensional KF with
a constant velocity (CV) model, all the position estimates evolved at a specific epoch are observations.
Besides, to enhance this technique’s performance, the track to position association is performed by using two
data association algorithms: nearest neighbor (NN) and probabilistic data association (PDA). Simulations
are carried out for GPS receiver positioning by injecting different combinations of spoofed signals into the
receiver. The proposed algorithm’s efficiency is given by a success ratemetric (defined as the navigation track
to follow the true trajectory rather than spoofing trajectory) and position root mean square error (PRMSE).

INDEX TERMS Anti-spoofing, data association, GPS spoofing, M-best positioning, navigation filter, robust
positioning, spoofing mitigation.

I. INTRODUCTION
Global navigation satellite system (GNSS) is generally used
for providing the position, navigation, and time (PNT) for
many civilian and military applications. GNSS, such as
GPS, Galileo, GLONASS, BeiDou, NavIC uses a receiver to
receive the signals transmitted by the satellites. The received
signals are processed to provide the receiver’s position with
an accuracy of a few meters [1]. Most of the autonomous
vehicles rely on GPS, an inertial navigation system (INS),
external sensors like radar, lidar, and camera for accurate
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positioning and navigation [2]. The un-intentional degra-
dation of positional accuracy in GPS is due to multi-path,
weak signals, urban environment, indoor environment [3].
However, the recent advancements, in radio frequency (RF)
generation, result in the simulation of various types of RF
signals with inexpensive devices [4]. Hence, intentionally
jamming a GPS receiver or adegradation of positional accu-
racy or false positioning is possible with the transmission of
false GPS like signals [5]. Spoofing is a process of trans-
mitting mimic GPS signals either by using a simulator or a
repeater with boosted power. Those fake signals are locked
onto the receiver and produces false positioning and results
in degraded autonomous navigation for vehicles.
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One of the fastest-growing industries throughout the
world is autonomous vehicular technology. The primary
motivation of this development is to provide assistance to
drivers, decrease the number of accidents, and autonomous
driving [6]. GPS is an integral part of most of the
autonomous vehicular designs for accurate navigation [7].
The misleading of GPS positioning, using false (spoofed)
measurements, leads to either degradation in its autonomous
navigation performance or threat to the vehicle. The develop-
ment of novel and efficient spoofing detection and mitigation
algorithms is a major requirement for the successful deploy-
ment of autonomous vehicular technology. The anti-spoofing
techniques for GPS receivers, proposed to date have been
reviewed in [5], [8]–[10]. Spoofing attack detection is
achieved by trusted reference signals, monitoring the power
of the individual signals, calculating the average power of
received signals, checking the clock, estimating the bias,
considering code and phase consistency rate which has been
reported from [11]–[14]. Here, trusting a reference signal
includes the availability of software-defined signals, which
can simulate the target’s trajectories, based on prior knowl-
edge. In a recent communication, the automatic gain con-
trol (AGC) and monitoring auto-correlation based method
to detect spoofing are proposed in [15] (with an assump-
tion that spoofing signals have higher power than legitimate
GPS signals). The signal monitoring techniques demand the
receiver’s re-design, as these detection algorithms are based
upon the internal signal measurements available outside the
receiver. One can apply these signal processing techniques,
to autonomous navigation of vehicles, to detect the spoofing
attack, however, they are unable to diminish the spoofing
effects. Therefore, deployment of mitigating methods for
spoofing consequences and securing the navigation track is a
significant consideration in the civilian GPS receiver design.

The optimal way to counter spoofing threats is by
the deployment of authentication techniques, which can
effectively combat this intentional interference. In [16],
a cryptographic authentication is employed to counter spoof-
ing signals. Additionally, cryptographic based encoding and
decoding have been successfully employed to prohibit poten-
tial hacking of autonomous vehicles and is presented in
[17], [18]. It is expensive to deploy these cryptographic
based methods in the GPS receiver design, and to inte-
grate them into relatively inexpensive andwidespread civilian
GPS receivers. Besides these techniques, there are spatial
processing and navigation track-based anti-spoofing tech-
niques [19]. The spatial processing techniques include the
direction of arrival (DOA) discrimination, using multiple
antennas, by applying spatial diversity [20]. Further, in [21],
the exchange of measured GPS code based pseudoranges
with neighboring vehicles (by using dedicated short-range
communications) has been suggested to safeguard the vehicle
from spoofing. In addition, the inertial sensor-based anti-
spoofing techniques are proposed in [22]. The range sensors,
bearing sensors, and vision sensors are integrated to generate
efficient anti-spoofing algorithms and are introduced in [23].

Furthermore, the unknown sudden changes in system state
variables are addressed in [24]. Managing the simultaneous
localization and mapping (SLAM) and sensor fusion capabil-
ities are presented in [25]. The information of each vehicle’s
position and their relative distances are incorporated to effec-
tively counter the spoofing and achieving the desired group
performance has been suggested in [26].

Recently, a significant portion of the GPS market has
been occupied by hand-held devices, emphasizing fast acqui-
sition and reliable positioning, over accurate positioning.
Examples like positioning in an urban environment using
ill-conditioned GPS, positioning in dense forest, and indoor
localization are the problems investigated from [27], [28],
and [29] respectively. The least-squares (LS) solution is
widely used in GNSS positioning. In such cases, LS gives a
reasonable solution, by minimizing the sum of squares of the
errors between measurements and the estimated model [1].
On the other hand, another segment of the GPS market is
looking for quick navigation solutions on time, than possess-
ing only positional accuracy. For example, a scenario may
be considered in which navigation solution’s integrity is cru-
cial (autonomous vehicles, surveillance drones, andmobiles).
In such instances, a Kalman filtering (KF) based techniques
are generally applied to establish navigation over the dynamic
trajectory of the target [30].

In all the above contributions of autonomous vehicle posi-
tioning in GPS spoofing environment [17], [21], [24]–[26],
either authentication of signals or communication among the
vehicles is applied to either detect the spoofing or secure
the navigation track. Further, multiple vehicles and com-
munications among them are seldom present in practical
situations. Moreover, huge buildings and other man-made
structures in the urban environment may create low observ-
ability of satellites. The majority of contributions reviewed
so far reveal that most of the spoofing literature focus on
detecting a spoofing attack. Since alleviating measures of
this spoofing effect has been scarcely addressed in recent
contributions, there is a need to develop mitigating methods
with equal importance to GPS receiver design. Accordingly,
the proposed work is motivated to investigate novel tech-
niques and algorithms, to alleviate spoofing consequences,
without altering / re-designing GPS receiver architecture.
Hence, there is a strong requirement to develop an algorithm
that should address the problem of a single GPS receiver
in the low observable case, which can effectively counter
the GPS spoofing. Therefore, this paper introduces a novel
approach of combining the epoch-by-epoch robust position-
ing, followed by KF, to secure the navigation track. In a
particular epoch, all the pseudorange measurements (spoofed
and true) available at a receiver are considered to calculate
all possible positions. Later, to decrease the algorithm’s com-
plexity, the M-best position algorithm is employed, in which
only M-best positions are evolved at a specific epoch by
formulating a cost function based on likelihood. Once this
robust positioning is performed at a specific epoch, it results
in huge position estimates at an epoch, which contains both
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true and spoofed positions. Interestingly, once the multiple
positions are obtained at a given epoch, this navigation prob-
lem is partially modified into a well-established target track-
ing problem. The ambiguity of selecting one position from all
the available positions, at a particular epoch, is resolved by
using data association and gating technique within a Kalman
filter framework.

The key contributions of the paper are as follows:

• It is proposed to accept the authentic GPS signals and
spoofed GPS signals into the positioning algorithm and
perform the robust positioning in a given epoch with all
possible combinations of real and spoofed pseudorange
measurements.

• To reduce the complexity of the proposed robust algo-
rithm, M-best positioning algorithm is introduced based
on the cost minimization problem for given measure-
ments to form M-best likelihoods.

• The estimation of the vehicle’s time-varying dynam-
ics and removal of the unwanted position estimates is
accomplished using a gating technique within the KF
framework.

• The study has also explored the measurement-to-track
association using nearest neighbor association and prob-
abilistic data association.

• Moreover, the impact of proposed algorithm is also eval-
uated against the urban environment

The remainder of this paper is organized as follows. In the
next Section II, a single GPS receiver in the spoofing envi-
ronment, is formulated, alongwith the underlying assumption
of accepting all the measurements available at a particular
scan. In Section III, the iterative least squares framework for
position estimation using the combinations of pseudorange
measurements at a given epoch is presented, and later the
M-best position algorithm is derived. Further, in Section IV,
the KF framework with gating technique is described, and
the data association algorithms are explored. In Section V
and VI, results and discussions, and conclusions of the work
are presented, respectively.

II. PROBLEM FORMULATION
This section describes GPS receiver in a clean environment,
GPS receiver in spoofer only environment, and GPS receiver
with an authentic and spoofed environment.

A. GPS RECEIVER IN CLEAN ENVIRONMENT
The GPS receiver uses Si number of satellite transmitters
located at Xt

i ∈ R3. The satellite-based transmitted signals
are

{
sti (t)

}I
i=1, where I represents the number of satellites

governing in the range. Here, we assumed that all the satellite
transmitters are equipped with synchronized clock with no
clock offset to extract the exact system time t ′ as given
in [31]. However, this assumption is not valid in reality due to
presence of clock offset in the satellites. In practice, this offset
is transmitted in the navigation message, the receiver decodes
the navigation message and uses the information to remove

the clock offset from the measurement. The navigation signal
sti (t) consists of satellite position, transmission timestamp,
satellite health, and satellite trajectory deviation information.
These satellite signals are propagated with the speed of light
c and received by the GPS receiver, located at xt ∈ R3 to
estimate its position. The received combined signals of all
satellites in the range are

st (xt , t) =
I∑
i=1

Aisti

(
t −
| Xt

i − xt |
c

)
+ wt (xt , t). (1)

Ai is the signal’s attenuation due to the propagation of the sig-
nal from the satellite location to the target receiver. wt (xt , t) is
the background noise. Due to the properties of the navigation
signal si(t), the receiver separates individual terms and extract
the satellite ID, relative spreading code phase using replica
of the used spreading code. Highly stable clocks like cesium
oscillators are costly to employ in civilian GPS receivers. The
GPS receivers cannot have two-way clock synchronization,
yields in clock offset δ. The exact time at receiver is equal
to summation of satellite system time and offset. Therefore,
the exact time is t = t ′+ δ. The modified received combined
signals is

st (xt , t ′) =
I∑
i=1

Aisti

(
t −
| Xt

i − xt |
c

− δ

)
+ wt (xt , t ′). (2)

The true pseudorange measurements, corresponding to
received authentic satellite signals, are given by

zti =
√
(x t − X ti )

2 + (yt − Y ti )
2 + (zt − Z ti )

2 + cδ + nti . (3)

The received pseudorange measurement set is denoted by{
zti
}I
i=1. Here xt =

[
x t , yt , zt

]′, Xt
i =

[
X ti ,Y

t
i ,Z

t
i

]′, and nti
is the measurement noise with zero mean Gaussian proba-
bility density function with variance (σ t )2. Since the pseu-
dorange measurement consists of four unknowns, at-least
four authentic satellite measurements are required to estimate
three dimensional GPS receiver’s location.

B. GPS RECEIVER IN SPOOFER ONLY ENVIRONMENT
The simulation of fake constillation and exact satellite time
is hard. But, one can acheive this by using a meaconing
technique as given in [32]. Spoofer is a device that transmits
mimic GPS signals

{
sf (t)

}J
j=1 onto the target receiver with

higher power than the authentic satellite signals, to achieve
easy locking into the receiver and thereby forcing the GPS
receiver to wrong positioning. Let us assume that a stealthy
spoofer simulates J mimic satellite signals and project them
towards the target, and one cannot mitigate it using clock bias
based detection technique as given in [33]. The composite
signal representation of all the signals due to the presence of
spoofer (fake signals) in the range is

sf (xf , t ′)=
J∑
j=1

Ajs
f
j

t− | Xf
j −x

f
|

c
− δ

+ wf (xf , t ′). (4)
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Here Aj is the attenuation of the signal due to propagation
from spoofer to the target and wf (xf , t ′) is the background

noise. Here
{
Xf
j

}M
j=1

are the set of fake satellite positions.

This fake satellite position set is different from the true satel-
lite position set due to the simulated signals, or they have
captured signals at some other place or time. Xf is the fake
location projected by the spoofer. The spoofed pseudorange
measurement is given by

zfj =
√
(x f − X fj )

2 + (yf − Y fj )
2 + (zf − Z fj )

2 + cδ + nfj .

(5)

The received fake pseudorange measurement set is
{
zfj
}M
i=1

.

Here xf =
[
x f , yf , zf

]′ and Xf
i =

[
X fi ,Y

f
i ,Z

f
i

]′
. Due to

locking of fake signals into the target receiver, the position
estimation with these processed fake measurements results
in spoofed locations. Even though the target is physically
present at xt , the position estimate on account of fake pseu-
doranges results in xf as shown in Fig. 1. The noise statistics
of the spoofed pseudoranges are considered the same as true
measurements, nfj follows white Gaussian distribution with
mean zero and variance (σ f )2; assuming that the spoofer is
ideal, and the spoofing attack cannot be detected by the sig-
nal processing techniques, like power thresholding, satellite
observations, power across the individual signals, and clock
bias analysis. The attenuation Ai, bias δ and noise n are same
in (1) and (4) owing to ideal spoofer assumption.

FIGURE 1. Geometry of the spoofing scenario (dotted lines represent the
authentic satellite signals, dotted circle represent the true location of the
target, dark lines represent the fake satellite signals, dark circle represent
the fake location of the target, and the hacker).

C. GPS RECEIVER IN AUTHENTIC AND SPOOFING
ENVIRONMENT
Based on the correlation of signals, the receiver receives all
the available signals, and few measurements are considered

for the position estimation. Here it is assumed that, the GPS
receiver is receiving all the authentic and spoofed signals. The
received signals in the range are expressed as a composed
signal of true and spoofed signals as

s(t ′) =
K∑
k=1

sk (t). (6)

Here, (6) is composite form of (2) and (4). However, to avoid
the ambiguity, we represented (6) in the simplified form.

Here sk (t) ∈
{{
sti (t)

}I
i=1 ,

{
sfj (t)

}J
j=1

}
. The total number

of independent signals available in the composite signal is
K = I + J . The extraction of navigation signal components
from the composite signal can be obtained by spread spec-
trum techniques [34], [35]. For the above (6), the equivalent
measurement equation is given by

zk = hk (x)+ nk ; k = 1, . . . ,K . (7)

where

zk ∈
{{

zti
}I
i=1 ,

{
zfj
}J
j=1

}
,

Xk ∈

{{
Xt
i
}I
i=1 ,

{
Xf
j

}J
j=1

}
, and

x ∈
{
xt , xf

}
.

The function h has a real and non linear relation between
x and X. The non-linear geometry matrix is h(x) =

[h1(x), . . . hK (x)]′. Here x can be real position or fake posi-
tion. The measurement noise vector is n = [n1, n2, . . . nK ]′.
From K measurements, only four measurements are

involved in the correlation to compute the 3D positioning.
However, for 2D positioning, three measurements are ade-
quate. Out of K measurements, I measurements are from
authentic, and J measurements from the spoofer. For a given
measurement, suppose the fake pseudorange probability is
p, and true pseudorange probability is q. Accordingly, sum
of probabilities p + q = 1. If L measurements are selected
randomly out of available K measurements, the probability
of correct solution by selecting authentic measurements from
the set of received measurements is

Probability =
ICL
KCL

. (8)

For example, the number of authentic measurements I = 6,
the number of spoofed measurements in the range J = 4,
the probability of a correct solution by selecting L = 4
measurements is 0.0714, which is very low. Therefore, there
is a strong need to develop robust algorithms to compute
all possible combinations or at least M-best combinations
of measurements, and to eliminate unwanted positions to
increase detection probability.

III. ROBUST POSITIONING
This section deals with the problem of position spoofing
of a true target by imposing fake measurements, as shown
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in Fig. 1. In this section, the robust positioning algorithm
is described, and the M-best position estimates algorithm is
proposed to reduce the complexity at a particular epoch.

A. ILS FRAMEWORK FOR ROBUST POSITIONING
Least squares is the most popular technique in determined
and overdetermined systems. Usually, in GPS positioning,
the number of pseudorange equations are more than the
unknowns to be estimated or some times equal. LS usually
solves the whole set to offer a solution that minimizes the sum
of squared errors. In LS estimation, linear LS and non-linear
LS solutions exist. The closed-form of the solution is linear
LS, and iterative refinement of the solution is non-linear LS.
Considering the user position x = [x, y, z]′, the position
x ∈

{
xt , xf

}
depends on the tuple of measurements con-

sidered from all possible pseudoranges, arrived due to true
and spoofed measurements. The generalized pseudorange
measurement equation combining (3) and (5) is given by

zk = hk (γ )+ nk ,

=

√
(x − Xk )2 + (y− Yk )2 + (z− Zk )2 + ct + nk . (9)

To solve the above nonlinear equation using LS technique,
zk has to be linearized using Taylor series expansion around
the approximate user position [x̂, ŷ, ẑ]′. Defining ẑk as zk at
[x̂, ŷ, ẑ]′ can be written as

zk = ẑk +
∂zk
∂x
|(x̂,ŷ,ẑ)

(
x − x̂

)
+
∂zk
∂y
|(x̂,ŷ,ẑ)

(
y− ŷ

)
+
∂zk
∂z
|(x̂,ŷ,ẑ)

(
z− ẑ

)
+ H .O.T + ct + nk . (10)

Here, H.O.T is the higher-order terms in the Taylors series
expansion. The higher-order terms are ignored in further cal-
culations, and the resultant is the linear approximation to (9).
Let 1x = x − x̂, 1y = y − ŷ, 1z = z − ẑ. The partial
derivatives are given by

∂zk
∂x
=

Xk − x
ẑk

,

∂zk
∂y
=

Yk − y
ẑk

, and (11)

∂zk
∂z
=

Zk − z
ẑk

.

The resultant equation after substituting the partial derivatives
is

zk − ẑk =
Xk − x
ẑk

1x +
Yk − y
ẑk

1y+
Zk − z
ẑk

1z+ ct + nk .

(12)

In the above, replace1zk = zk−ẑk , hxk =
Xk−x
ẑk

, hyk =
Yk−y
ẑk

,

and hzk =
Zk−z
ẑk

. Where hxk , hyk , and hzk , are direction cosines
of unit vector pointing from approximate GPS position to the
k th satellite. The unit vector is given by hk =

[
hxk hyk hzk 1

]
.

H is a geometry matrix, given by H = [h1, . . . , hL]′ The
linearized measurement model is given by

1z = Hγ + n, (13)

where1z is a measurement vector to represent the difference
between actual pseudorange measurement and computed
pseudorange measurement, i.e.,1z = [1z1, . . . ,1zL]′. γ =
[1x, δ]′ is a vector of unknown parameters to be estimated,
and n is a pseudorange measurement error vector, given by
n = [n1, . . . , nL]′. For (13), linear model exists and the
noise vector n has Gaussian distribution with zero mean and
covariance C . The best linear unbiased estimator (BLUE) of
position is

γ̂ = (H ′C−1H )−1H ′C−11z. (14)

The covariance of the estimator is given by

R = H ′C−1H . (15)

This LS algorithm can run iteratively by using the old position
estimates to estimate the new positions. In the above equation,
once the unknowns are computed, these unknowns can be
used to obtain the new estimates x̂, ŷ, and ẑ. The iterative least
squares (ILS) has termination criteria based on the maximum
number of iterations or based on the maximum amount of
correction.

At a given epoch with K pseudoranges (true and spoofed),
this ILS runs KCL times to produce KCL position estimates,
in which ICL are true position estimates and rest are spoofed
position estimates as shown in the Fig. 2. Here in the given
Fig. 2, The bottlenecks of this robust algorithm are com-
plexity and decision making. The complexity of the robust
algorithm increases exponentially with every single injec-
tion of spoofed pseudorange. we can clearly see that the
true position estimates are forming a cluster and similarly
fake position estimates creating another cluster. Consider an
example with I = 5 and J = 5 to understand the problem
clearly. In this case, IC4 true position estimates are available

FIGURE 2. Robust positioning by considering all possible solutions and
M-best solutions at a given epoch in GPS spoofing scenario (Black dots
are the position estimates due to robust positioning and circles are the
position estimates due to M-best estimation algorithm).

51540 VOLUME 9, 2021



B. Pardhasaradhi et al.: Navigation in GPS Spoofed Environment Using M-Best Positioning Algorithm and Data Association

in true cluster and JC4 position estimates are present in fake
cluster. The remaining number of KC4−(IC4+

JC4) estimates
are biased estimates neither fall in true cluster nor fake cluster.
So, the algorithm should be intelligent enough to compute
M-best pseudorange sets from the given scan of measure-
ments rather than finding all the possible combinations. After
that, for the best sets, the ILS algorithm computes position
estimates as presented in Section III-B. It is very hard to
decide which cluster of positions belong to true positions.
Hence, there is a need to discard unwanted position estimates
from the given estimates.

B. M-BEST POSITIONING ALGORITHM
In a given scan of measurements (true and spoofed),
the spoofer simulatedmeasurements are totally different from
the authentic satellite measurements by satellite ID, or few
spoofer simulated signals match with the authentic satellite
signals, thus the measurement set is given as{

zt1, · · · , zti , · · · , ztj , · · · , ztI , 0, 0, 0

0, 0, zfi , · · · , zfj , 0, 0, zf1, · · · , zfJ

}
Here, the measurement index i to j have the same satellite ID.
Hence there exist total of S active satellites, where S ≤ K
and s = 1, 2, · · · , S. We wish to associate the observations
from S lists of ns measurements. For a single spoofed signal
case, ns = 3, since {ztis , z

f
is , 0}, here zero is the dummy

variable. The index is = 1, 2, · · · , ns. The measurement
corresponding to every index is is with detection probability
either one or zero.

PDζ (is) =

{
0, if zis = 0,
1, otherwise.

(16)

Here, the source may be an authentic satellite, then the
true measurements are assumed to be a function of the
true state and the additive measurement noise is as given
in (3). Whereas, in case the source is a spoofer, the spoofed
measurements are assumed to be a function of the spoofed
state and the additive measurement noise is as given in (5).
The problem is formulated as a multi-sensor state estima-
tion problem with association and estimation. Association
is the process of linking the measurements, and the linked
measurements are filtered with estimation. Thus, the mea-
surements have been selected in such a way that one mea-
surement is selected from each index. The measurement
index is appended to the dummy variable of zero. This prob-
lem is commonly seen in assignment problem formulations
in multi-sensor multi-target scenarios [36]. Here estimation
refers to position estimate by using pseudorange algorithms.
The target state uniquely determines as a true position or
spoofed position. For convenience, the target state is given by
x ∈ {xt , xs}. To associate the list of measurements obtained
for sources ζ (s) ∈ [1, 2, . . . S], where ζ (is) is the source of
measurement either generated by satellite or spoofer. Let the
selection of measurement from is index be zis . Where zis
∈ {ztis , z

f
is , zo}. The measurement zis either originated from

satellite or spoofer or missed detection (zero measurement),
in which case, weather true or fake it is taken as H (x,Xis )
plus some additive white Gaussian noise. Besides, each ζ (is)
has a known detection probability PDζ (is) and it depends on
the characteristics of the signal as given in (16).

The likelihood of S-tuple of measurements z =

{z1, . . . , zL} originating from target x is

3(zi1 , . . . , ziS | x) =
S∏
s=1

[1− PDζ (is)]
1−u(is)

× [PDζ (is)p
(
zis | x

)
]u(is). (17)

The likelihood of set ofmeasurements are spuriouswithψζ (is)
as a field of view for sensor ζ (is) is given by

3(zi1 , . . . , ziS | x = φ) =
S∏
s=1

[
1

ψζ (is)

]u(is)
. (18)

u(is) is a indicator function, given by

u(is) =

{
0, if zis = 0,
1, otherwise.

(19)

The cost of associating the set of measurements to target x is
defined with negative log likelihood ratio

Ci1,...,iS = − ln
3(zi1 , . . . , ziS | x)

3(zi1 , . . . , ziS | x = φ)
. (20)

However, x is unknown and replaced by maximum likelihood
estimate x̂ML . The likelihood can be written as

3(Z | x) = 3(zi1 , . . . , ziS | x),

=

(
1

√
2πσ

)S
exp

(
−1
2σ 2

S∑
s=1

[Z− h][Z− h]′
)
,

(21)

where σ = σ t = σ f from ideal spoofer assumption. Here
Z = [zi1 , . . . , ziS ]

′ and h = [hi1 , . . . , hiS ]. Similarly the log
likelihood is written as

ln3(Z | x) =

[
−1
2σ 2

S∑
s=1

[Z− h][Z− h]′
]
. (22)

Therefore maximizing the log likelihood is given by

x̂ML = argmax

[
−1
2σ 2

S∑
s=1

[Z− h][Z− h]′
]
,

= argmin

[
S∑
s=1

[Z− h][Z− h]′
]
. (23)

Therefore, the cost of associating the measurements to target
x is

Ci1,...,iS =
S∑
s=1

[u(is)− 1] ln[1− PDζ (is)]

− u(is) ln

(
PDζ (is)ψζ (is)√

2π6ζ (is)

)
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+ u(is)×
1
2

[
zis − his

(
x̂ML

)]′
6−1ζ (is)

×

[
zis − his

(
x̂ML

)]
. (24)

The main goal of this formulation is to get most likely set of
S-tuples such that either the measurement assigned to target
or declared as false by taking at most one measurement from
each list. This can be reformulated as a well known optimiza-
tion problem of S-D assignment in multi-sensor multi-target
as

min
ξi1i2···iS

ns∑
i1=1

ns∑
i2=1

· · ·

ns∑
iS=1

Ci1i2···iS ξi1i2···iS (25)

subjected to
ns∑
i2=1

· · ·

ns∑
iS=1

ξi1i2···iS = 1; i1 = 1, · · · ns

ns∑
i1=1

· · ·

ns∑
iS=1

ξi1i2···iS = 1; i2 = 1, · · · ns

...
...

ns∑
i1=1

· · ·

ns∑
iS−1=1

ξi1i2···iS = 1; iS = 1, · · · ns

where, ξi1i2···iS are binary association variables such that
ξi1i2···iS = 1 if the S-tuple is associated with true target
or spoof target. Otherwise, it is set to zero. The above
assignment problem (24) solved using the murthy assignment
algorithm [37], [38], and M-best costs are selected in this
algorithm which in turn results in M-best positions.

Now the position estimates
{
x̂l
}M
l=1 evolved at a given

epoch are the observations to the KF based estimator. Hence,
these position estimates are being redefined, as observations
to avoid the confusion in the next section, i.e., y = {yl}Ml=1 ={
x̂l
}M
l=1. This M-best gives results of robust positioning by

giving value of M equals to KCL .

IV. KALMAN FILTERING AND DATA ASSOCIATION
In this section, trajectory spoofing problem is presented.
Initially, how the spoofer misleads the true trajectory of the
target is explored and then the navigation filter solution is
presented.

A. TRAJECTORY SPOOFING
The final goal of spoofer in trajectory spoofing is to mis-
lead the true target trajectory by continuously imposing the
false measurements and change the destination of the target.
An abrupt positioning by the spoofing effect can be easily
detected by using a normalized innovation square test (NIS)
or gating technique. So the ideal spoofer must possess a strat-
egy to mislead the target. Here, we are dealing with the spoof-
ing technique namely position gate pull-off [39]. The stealthy
trajectory spoofing involves three phases, i.e., carry-off,
deceive, and hand-off. In the carry-off phase, the projected
spoofed location and the true location of the target almost

coincide with each other for a certain duration of the time.
The spoofing starts at t(o), replicates the target position for
the time duration of T , as shown in Fig. 3. During this
interval, the spoofer boosts the spoofed signal to capture the
receiver. Once the target is captured by the spoofer, the second
phase of spoofing is called as deceiving starts. Deceiving is
slightly moving the spoofed location from the actual true
location with lower turn rates. After a time duration of T ,
the spoofer generates measurements in such a fashion so as
to separate the target from the planned path with any realistic
trajectory models. During this phase, if the autonomous vehi-
cles are more reliable on the inertial navigation system (INS)
rather than the GPS, one canmove the spoofed trajectory with
very small deviations because the IMU sensors are incapable
of detecting the lower turn rates for successful spoofing in
such cases [40]. Once the target totally relies on the spoofed
trajectory, the target can lead to a phase called hand-off,
as shown in Fig. 3. The algorithms should be intelligent
enough to resolve the issue during this deception phase.

FIGURE 3. Different stages of spoofing attack to deceive the navigation
track.

The mathematical model for position pull-off based trajec-
tory generation [39] is given by

xf (m) =

{
xt (m); t(m) ≤ t(o)+ T ,
xf (m− 1)+ vo(1t); t(m) > t(o)+ T ,

(26)

where m is a discrete time index, v0 is velocity vector. Here
sampling time1t = t(m)− t(m−1). For a selected values of
vector v0, the spoofed target can follow any trajectorymodels.
Let the spoofed trajectory state be X f =

[
xf ẋf

]′
, where ẋf

is the velocity vector. The dynamic state equation is given by

X f (m) = FX f (m− 1)+ 0u(m− 1), (27)

where F is a state transition matrix and 0 is a noise gain
matrix. The F can follow constant velocity (CV) model FCV
or constant turn (CT) model FCT as given in [41]. The u
follows Gaussian with zero mean and covariance Q.

FCV =


1 0 0 1t 0 0
0 1 0 0 1t 0
0 0 1 0 0 1t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,
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where 1t is the sampling time.

FCT =



1 0
sinω1t
ω

−
1− cosω1t

ω
0

0 1 −
1− cosω1t

ω

sinω1t
ω

0

0 0 cosω1t − sinω1t 0
0 0 sinω1t cosω1t 0
0 0 0 0 1


,

where ω is the turn rate. The noise gain matrix is given by

0 =



1t2

2
0 0

0
1t2

2
0

0 0 1t2
2

1t 0 0
0 1t 0
0 0 1t


,

the covariance corresponding to this noise gain matrix is
Q = 0′σ 20.

B. KALMAN FILTERING
For a discrete time linear dynamic system the plant equation
is consider as

X (m+ 1) = F(m)X (m)+ 0u(m). (28)

Here m is a discrete time instant. X (m) is a state with nX
dimension, and u(m) is process noise which is Gaussian with
mean zero whose covariance is given as E

[
u (m) u (m)′

]
=

Q (m).Where,E[·] is an expectation. The observation is given
by

y(m) =

{
H (m)X (m)+ w(0,R(m)), true origin,
{FAl(m)}

M−1
l=1 , spoofed.

(29)

where y(m) consists of positions related to true, spoofed, and
bias. FA is false alarms representing the spoofed positions.
Since the observations and state are in positions, the mea-
surement transition matrix is linear. w is zero-mean white
Gaussian with covariance R(m) as derived in (15). The val-
ues of F (state transition matrix), H (measurement matrix),
R (measurement noise covariance), and Q (process noise
covariance) are assumed to be known and vary with time. The
state prediction is

X̂ (m+ 1|m) = F (m) X̂ (m|m) . (30)

The measurement prediction is

ŷ (m+ 1|m) = H (m+ 1) X̂ (m+ 1|m) . (31)

The Covariance of the predicted state is

P (m+ 1|m) = F (m)P (m|m)F (m)′ + Q (m) . (32)

Similarly, the innovation covariance is given by

S (m+ 1) = H (m+ 1)P (m+ 1|m)H (m+ 1)′ (33)

+R (m+ 1) . (34)

The Kalman gain is given by

G(m+ 1) = P(m+ 1|m)H (m+ 1)S(m+ 1)−1. (35)

All the above equations are the same as in standard KF used
in navigation. Nevertheless, in navigation, only one measure-
ment is available to update the state and covariance. Either all
possible positions or M-best positions are calculated; in both
cases, a large number of observations are evolved, as is the
case of a typical tracking scenario. Consider a scenario with
four authentic measurements, four spoofed measurements,
and four appended dummy variables. Evaluating the combi-
nations (based on four authentic, four spoofed measurements,
and four appended dummy variables) yields to eighty-one
combinations. Out of these, only fifteen best positions are
taken and plotted as seen in Fig. 4.

FIGURE 4. Navigation tracks in spoofing (I=4, J=4, K=4, and M-best=15).

In the initial phase of carry-off, all the M-best estimates
forms a single cluster, hence there is no ambiguity for
measurement-to-track association. Whereas, it is clearly evi-
dent that evolvedM-best estimates during the deceiving phase
are not forming a single cluster, which leads to ambiguity of
measurement-to-track association. Further, once the track is
associated with wrong measurements, true trajectory follows
the fake estimate and carried away by the spoofer. A gating
technique is performed with in the filter framework to resolve
this issue of selecting few estimates from the M-best esti-
mates. The validation region (gate) is ellipsoid given by

V (m+ 1) =
{
y : v(m+ 1)′S (m+ 1)−1 v(m+ 1) ≤ ξ2ny

}
,

(36)

where ξ is the gate threshold determined by the chosen gate
probability PG. The ξ follows a chi-square distribution with
a ny degree of freedom and given tail probability. For 2D
and 3D case ny is equal to two and three respectively. The
valid measurements falling within the gate are {yl}L

∗

l=1. In a
given M observations, only L∗ observations falling within
the gate, at the given discrete time instant. The innovation
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corresponding to the l th validatedmeasurement is represented
as

v (m+ 1)=yl − ŷ (m+1|m) ; l=1, . . . ,L∗ (m+ 1) . (37)

The updated state is given by

X̂ (m+ 1|m+1)= X̂ (m+1|m)+G (m+ 1) v (m+ 1) . (38)

Similarly, the updated covariance corresponding to the state
is given by

P(m+1|m+1)=P(m+1|m)−G(m+1)S(m+1)G(m+1)−1.

(39)

C. POSITION TO TRACK ASSOCIATION
The data associations employed in this KF is the near-
est neighbor (NN) and probabilistic data association (PDA)
[41]. In NN, the nearest observation to the predicted track
is considered, and the innovation is carried out using this
observation. Whereas, in PDA probability of l th validated
measurements considered, to find the correct one be

βl (m+ 1)

=


el

1− PDPG +
∑L∗(m+1)

l=1 el
, l = 1, . . . ,L∗(m+ 1),

1− PDPG

1− PDPG +
∑L∗(m+1)

l=1 el
, l = 0.

(40)

β0 (m+ 1) is association probability, which shows that none
of the measurement is correct. The likelihood ratio el is given
by

el
a

= exp
(
−
1
2
vl (m+ 1)′ S (m+ 1)−1 vl (m+ 1)

)
. (41)

whereasPD is the probability of detection andPG is the gating
probability. The updated state is given by

X̂ (m+ 1|m+ 1) = X̂ (m+ 1|m)+ G (m+ 1) v (m+ 1) .

(42)

with the combined innovation as

v (m+ 1)
a

=

L∗(m+1)∑
i=1

βi (m+ 1) vi (m+ 1) . (43)

The Updated covariance is given as

P (m+ 1|m+ 1) = P (m+ 1|m)− [1− β0 (m+ 1)]

×G (m+ 1) S (m+ 1)G (m+ 1)′ . (44)

V. RESULTS AND DISCUSSIONS
This section presents scenario generation, design parameters,
and robustness of the proposed algorithm. To illustrate the
robustness of the proposed algorithm, different scenarios like
open space (LOS measurements with I = 4 to I = 6)
and a multi-path environment (Non-LOS measurements with
I = 4) are examined.

A. SCENARIO GENERATION
The satellite trajectories are modeled using WGS-84, and
follows an assumption of circular orbits as

X (t) = R
[
cos θ (t) cos�(t)− sin θ (t) sin�(t) cos 55o

]
Y (t) = R

[
cos θ (t) sin�(t)+ sin θ (t) cos�(t) cos 55o

]
Z (t) = R sin θ (t) sin 55o.

Here X = [X ,Y ,Z ]′ is the satellite positional information,
R is the radius (R = 26, 560 Km) of circular orbit, � and
θ are right ascension and angular phase in the circular orbit
respectively.

�(t) = �(0)− (t − t(0))
(

360
86164

)o
θ (t) = θ (0)+ (t − t(0))

(
360
43082

)o
The true satellite positions are collected at t(0) instant, pro-
cessed and re-transmitted at the same instant. Hence, the anti-
spoofing algorithm like constellation check cannot detect the
spoofing effect [11]. The initial positions of the satellite are
given in Table 1

TABLE 1. The satellite initial positions (angles θ(0) and �(0)).

We consider a position pull-off spoofing technique test
bench trajectory [39] to evaluate the proposed algorithm. The
initial state vector of the true target is xt (0) = [10, 10, 10]′

and its velocity vector ẋt (0) = [30, 0, 0]′. The target moves
towards the east (x) throughout the simulation with 30 m/s for
80 s with a CV model. The target trajectory consists of ideal
trajectory and turbulence; the turbulence is modeled as pro-
cess noise, follows Gaussian with zero mean and the standard
deviation vector is given by [0.05, 0.05, 0, 0.02, 0.02, 0]′.
The first three elements of the standard deviation vector rep-
resent the position, and the other three elements correspond
to velocity. The process noise exists along x and y directions,
and absent in z direction due to the ground moving target
assumption.

The spoofing process starts at t = 21 s and follows
till the end. Since the target is not being influenced until
t = 21 s, the standard navigation solution exists during this
non-spoofing phase. The spoofed trajectory follows both CV
and CT models, as presented in critical examples [22]. From
21 s, the carry-off phase starts with CVmodel and carried out
for a further duration of 20 s. After that, the deceiving phase
starts and lasts for 20 s, by taking left CT with ω = 1o/s.
Thereafter, the hand-off phase is carried out with the CV
model for another 20 s duration as shown in Fig. 5.

B. DESIGN PARAMETERS
Since the ideal spoofer is considered in this paper, spoofer
can process the spoofed pseudorange measurements with the
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FIGURE 5. True and fake trajectory generation (True - target planned
trajectory, fake - Spoofer imposing trajectory on target).

same noise as of true pseudoranges. Both the pseudorange
measurements are corrupted by white Gaussian noise with
standard deviation, i.e., σ ti = σ

f
j = 1 m. The sampling time

of KF is 1t = 1 s. Two-point initialization method [41]
is used to initialize the filter. If the spoofing is carried out
from the initial timestamp, the same two-point initialization
method can be applied with the values of means of a cluster.
The means of the cluster of positions formed at t(0) and t(1)
epoch are xtµ(0) and xtµ(1) respectively. The state vector is

X (1) =
[
x̂, ŷ, ẑ, ˙̂x, ˙̂y, ˙̂z

]′
=

[
xtµ(1),

xtµ(1)− xtµ(0)

t(1)− t(0)

]′
. (45)

The state transition matrix in the filter design is FCV and
the noise gain is 0. The measurement transition matrix is
given by H = [I3 03], where I3 represents the identity
matrix and 03 is the zero matrix with dimension three. More-
over, the process noise covariance of the filter is initialized
using the CRLB as given in [42]. To resolve the ambigu-
ity of observation to track, NN and PDA techniques are
deployed.

C. ROBUSTNESS OF ALGORITHM
The robustness of the algorithm is verified by varying the
number of authentic signals and spoofed signals available
at the receiver. Here, the robustness is evaluated for open
space environment and urban environment. Open space envi-
ronment implies that there are no multi-path measurements in
the received set. Whereas, the urban environment introduces
multi-path measurements in the authentic set. The position
root mean square error (PRMSE) and track swap (TS) are the
two quantifying measures considered in this paper. The TS
is defined as the deceiving of navigation track from the true
trajectory.

1) OPEN SPACE ENVIRONMENT
Assuming that the GPS receiver is located in low visibility
scenario with I = 4 authentic satellite signals. Here all the
signals are LOS with the receiver without any multi-path. In
this case, a determined solution (number of unknowns to be
estimated, equal to the number of available pseudoranges)
exists for navigation. In the presence of spoofing, in addition
to four true satellite signals, the spoofed signals are intro-
duced with a variable number of J = 1, . . . , 6. Here, during
the initial phase of trajectorym ∈ [1, 20], the navigation filter
follows a true trajectory without any spoofing. Due to the
lack of initial velocity of the filter, two-point initialization
is used, a decrease is seen in PRMSE of navigation filter
after initialization, till m = 20 s. Thereafter, the carry-off
phase is implemented for m ∈ [21, 40], in which both true
and spoofed trajectories follow the same path. Even though
hugemeasurement-to-measurement associations occur in this
interval, insignificant deflection in PRMSE is observed,
as depicted in Fig. 6 (since trajectories are aligned to each
other). Whereas, in the interval of deceiving m ∈ [41, 60],
numerous observations are generated. M-best algorithm pro-
duces only M limited observations. From these M observa-
tions, selecting a single measurement for measurement-to-
track association is a difficult process. Hence, this problem is
addressed by deploying NN data association technique. Since
NN is employed, the filter selects the nearest observation and
updates the filter. In this process, as the number of spoofed
injections increases, PRMSE and TS values increases as
shown in Figs. 6, 7, and 8. This is because, as number of
spoofed injections increases, the measurement-to-track asso-
ciation ambiguity increases. As NN is a hard decision, once
the track is decepted with the false measurement, it is hard
to get back to the true trajectory path, and estimated path
would continue to be with false measurements. Therefore,
the increase in ambiguity of measurement-to-track associa-
tion with number of spoof injections can be intuitively related

FIGURE 6. PRMSE for fixed four authentic satellite signals and variable
number of spoofed signal injections with nearest neighbour association
(MC = 100).
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FIGURE 7. PRMSE for fixed five authentic signals and variable number of
spoofed signal injections with nearest neighbor association (MC = 100).

FIGURE 8. PRMSE for fixed six authentic signals and variable number of
spoofed signal injections with nearest neighbor association (MC=100).

with the increase in PRMSE value during the deception phase
and is clearly shown in Figs. 6, 7, and 8. In this deceiving
phase, the navigation filter chooses either the true trajectory
or the spoofed trajectory depending on the data association.
If the target tends to follow the spoofed trajectory, it follows
until the end, which is considered as TS. During the hand-off
phase m ∈ [61, 80], the clusters of observations are totally
separable and the filter follows any one of the track, and
hence PRMSE settles down as illustrated in Figs. 6, 7, and 8.
The selection of M value in the algorithm is very crucial.
So always the value of M set to number of available satellite
signals. However one can vary the value of M and see the
overall performance of the algorithm.

In another scenario, the GPS receiver receives I = 5, 6
authentic satellite signals. The available true ranges are
greater than the number of parameters to be estimated, and
the solution becomes over-determined. The spoofed signal
injections vary as J = 1, · · · , 6. During the carry-off
phase, we can observe improved PRMSE compared to the

FIGURE 9. PRMSE for fixed four authentic satellite signals and variable
number of spoofed signal injections with probabilistic data association
(MC = 100).

I = 4 case. This is due to the total number of ranges being
involved in the position estimation and also because of the
dummy variable assignment in the algorithm, the M-best
solution gives positions related to all authentic satellite mea-
surements. Due to the increase of measurements, there is a
huge measurement-to-measurement association in this phase
compared to the I = 4 scenario, and is computationally
expensive. In the Fig. 7 and 8, an improved PRMSE is
observed in the deceiving phase, compared to that of Fig. 6.
The improved PRMSE is due to more number of authentic
satellite signals involved in the ILS solution, compared to the
I = 4 case. During the deception phase, the TS is decreased in
comparison to four authentic satellite cases; this is because of
either an increase in the position integrity or lesser ambiguity
of selecting an observation within the gate. The TS is reported
in Table 2; an increase in true measurements improves the
navigation filter to choose the true trajectory rather than fake
trajectory. The TS rate increases as the number of injections
increase, as shown in Table 2. Similar to the previous case,
the clusters are well separated in the interval of hold off, and
the PRMSE settles down as shown in Fig. 8. The simulations
are carried out for five authentic measurements and its cor-
responding spoofed measurement injection, and the TS are
depicted in Table 2.

The drawback of the NN is its hard decision towards
measurement-to-track association, by considering the nearest
observation. So, the probabilistic data association is used
for the above-stated problem. Interestingly, owing to PDA,
the TS is decreasing compared to NN technique. If wrong
measurement-to-track association is taken place in the initial
stage of deception, there is a highly likelihood that it will
get corrected, since PDA evaluate all weighted measurements
within the gate to form the innovation. The number of TS
by varying the authentic and spoofed signals is presented
in Table 2. But, during the interval of carry-off phase, a little
raise is seen in PRMSE, by using PDA technique. Since
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FIGURE 10. PRMSE for fixed five authentic signals and variable number of
spoofed signal injections with probabilistic data association (MC = 100).

TABLE 2. Track swap number for varied true and spoofed measurements.

true and spoofed follow the same path in the carry-off,
the evolvedM-best position estimates correspond to the same
ground truth, and hence, we observe this raise in PRMSE as
in Figs. 9, 10, and 11. The calculated weighted innovation,
by considering the observations within the gating region is
different from the actual innovation seen in the NN technique.
However, in the deceiving interval, a degraded PRMSE is
observed with PDA as compared to that of the NN tech-
nique. Due to the probabilistic decision during the deceiving
period, the navigation track to follow spoof track decreases.
In Table 2, the algorithm’s TS is presented, where we can
observe that the PDA outperforms NN even as the number
of spoofed measurements injection increases. Furthermore,
the overall computational load of the algorithm depends on
the M-best positions and the total number of measurements
being involved in the ILS. However, due to advancement
in computational algorithms and hardware realizations, it is
possible to achieve a high-speed processing hardware in a
compact form.

2) URBAN ENVIRONMENT
If the available authentic measurements are greater than
or equal to number of unknowns in the pseudomeasure-
ment equation. Then unique solution exists and it is
clearly depicted in the open space environment case in
Section-V-C1.

To evaluate the urban environment, we assumed that the
available authenticmeasurement set consists of fourmeasure-
ments, in which multi-path measurements are also present.
The multi-path measurement usually differs from the actual

FIGURE 11. PRMSE for fixed six authentic signals and variable number of
spoofed signal injections with probabilistic data association (MC=100).

FIGURE 12. PRMSE for fixed four authentic measurements (three LOS
measurements and one multi-path measurement) and variable number of
spoofed measurement injections with nearest neighbour data association
(MC=100).

measurement by the phase and distance between source and
receiver. Since this paper dealt with the distance as ameasure-
ment to the estimator, the phase component is ignored. In the
first case, one multi-path measurement exists and it is deflect-
ing with 150 m range, whereas the rest of the three measure-
ments are LOS to the receiver. The simulations are carried
out for this case and the PRMSE is depicted in Fig. 12. In
this case, we can observe that the M-best assignment solution
of (25) is minimum for the authentic measurement set even
though it contains one multi-path measurement. Here, out of
four measurements, one multi-path measurement exist and as
a result of that the PRMSE is increased to 380 m. We can
observe that the cost minimization function is able to mitigate
the effect of spoofing upto three spoof measurements. On the
other hand, the M-best cost minimization of (25) provides
the spoof location as the best location rather than the true
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FIGURE 13. PRMSE for fixed four authentic measurements (two LOS
measurements and two multi-path measurement) and variable number of
spoofed measurement injections with nearest neighbour data association
(MC=100).

location for the case of four spoof measurements, which is
clearly shown in Fig. 12.

However, further investigation of multi-path effect in the
spoofing environment, is performedwith increased number of
multi-path signals. In this case, out of four measurements in
the authentic set, two LOS signals and two multi-path signals
are considered. The multi-path measurements are deflected
by 150 m and 250 m in range respectively, and PRMSE is
plotted in Fig. 13. From the fig. 13, it is observed that the
average PRMSE is raised to 750 m for the spoof injections
of J = 1, 2,&3. Whereas, for J = 4, the M-best cost
minimization function of (25) is getting minimized for the
spoof measurement set and eventually following the spoof
trajectory. It is also observed that, in very few monto carlo
runs, the measurement-to-track association is carried out for
true rather than the spoof(only 7 runs out of 100 runs possess
correct measurement-to-track association). Hence the TS is
not tabulated for this special case.

From the results obtained, it is apparent that, the algorithm
has a limitation to mitigate more than four spoof signals in the
urban environment. Even though, the NN and PDA data asso-
ciations are deployed, we observe insignificant improvement
in the PRMSE value. There is a future scope to formulate a
research problem by using the attributes of the signal (i.e.,
amplitude, phase, power) and solve the constrained optimiza-
tion problem to address spoofing problem in urban scenario.

VI. CONCLUSION
This paper proposes an efficient alleviating method for GPS
spoofing by using M-best likelihood-based optimization and
a Kalman filter with data association. A novel technique
of accepting all the authentic GPS signals and spoofed sig-
nals into the robust positioning algorithm, at every epoch,
is presented in this paper. The robust positioning algorithm
computes all possible combinations of pseudoranges, using
the ILS solution. M-best position algorithm is successfully

deployed to decrease the computational complexity of the
robust positioning algorithm. To further accomplish the per-
formance of the proposed method, Kalman filter followed by
data association, is given and a lower track swapping rate
with probabilistic data association is achieved. Simulations
demonstrate that the proposed methodology is efficiently
working for higher to lower satellite visibility, even with the
increase in spoofed signal injections.

The future works can address the non-ideal spoofer sce-
nario, selection of positioning algorithm for non-Gaussian
measurement noise, development of navigation track for the
non-Gaussian case, development of data association, and low
computation algorithms. Furthermore, one can carry out the
problem of spoofing effect mitigation in urban environment
using the signal attributes and constrained optimization.
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