
Received February 15, 2021, accepted March 3, 2021, date of publication March 8, 2021, date of current version March 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3064249

A Relational Abstraction of Structure and
Behavior for Cyber-Physical System Design
CHAO WANG 1, LI WAN1, TIFAN XIONG1, YUANLONG XIE 1,2, (Member, IEEE),
AND SHUTING WANG1,2
1School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2Guangdong Intelligent Robotics Institute, Dongguan 523808, China

Corresponding author: Tifan Xiong (xiongtf@hust.edu.cn)

This work was supported in part by the National High Technology Research and Development Program of China under Grant
2018YFB-17008, in part by the China Postdoctoral Science Foundation under Grant 2019M650179, in part by the Guangdong Innovative
and Entrepreneurial Research Team Program under Grant 2019ZT08Z780, in part by the Guangdong Huazhong University of Science and
Technology (HUST) Industrial Technology Research Institute, in part by the Guangdong Provincial Key Laboratory of Digital
Manufacturing Equipment under Grant 2020B1212060014, and in part by the Guangdong Basic and Applied Basic Research Foundation
under Grant 2020A1515110464.

ABSTRACT Model-based approaches are essential for designing cyber-physical systems, which adopt the
formal models to simultaneously form the specifications and enable the verification at an early stage. Aimed
to model the complex structure and continuous-discrete hybrid behavior of cyber-physical systems, this
paper mathematically defines a dynamic relational system so that the cyber-physical system can be regarded
as dynamic relational systems in a hierarchical structure and each dynamical relational system is a triple
of dynamic attributes, subsystems, and hybrid relations between attributes and subsystems. Every hybrid
relation contains a tuple and a predicate to govern the system behaviors. By utilizing the dynamic relational
system, a parametric abstraction is then performed to specify the design requirements and schemes. It can
represent the structure and behaviors of multiple cyber-physical system design schemes in an integrated
manner. With a mathematical foundation, the constructed relational models are beneficial for structural
analysis and behavior verification. An implementation case of a friction-driven plate conveyor is presented
to illustrate the design specification with relational models, and the connectivity analysis and behavior
verifications are carried out to show the effectiveness and engineering practicability of the achieved models.

INDEX TERMS Formal specification, cyber-physical system, cyber-physical system modeling, system
design, dynamic relational system, dynamic structure and behavior.

I. INTRODUCTION
The expanding demands for intelligent services and net-
work interconnections in modern life have made indus-
trial products increasingly present with the characteristics
of the cyber-physical system (CPS). Compared with indus-
trial concept such as Internet of Things (IoT), Industrial
Internet, and smart products, CPS is an academic term
emphasizing the interconnection and synergy between the
cyber and physical worlds [1]. By applying information tech-
nologies (e.g., embedded computing, network communica-
tion, and distributed control) to physical systems, a CPS
could adaptively change its behavior logic according to the
applied environment, thus moving towards building trusted

The associate editor coordinating the review of this manuscript and

approving it for publication was Engang Tian .

autonomy. The notable features of a CPS can be summarized
as follows.
• Multidomain and heterogeneous. As the integrations of
the cyber and physical worlds, CPS involves multiple
domains of computation, communication, control, elec-
tric, and machine [2]–[4]. The sequential computation
in virtual space and the concurrent evolution in physical
world result in heterogeneous behaviors, interactions,
and architectures [3]–[6].

• Continuous-discrete hybrid dynamic. The discrete com-
putation steps in software, and continuous evolution of
physical behaviors take time and are coordinated tempo-
rally in a hybrid manner [1], [4], [7].

• Complex structure and large-scale. The various het-
erogeneous subsystems in a CPS are associated with
the compositions and interactions between them,

40388 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7398-1127
https://orcid.org/0000-0003-1158-1587
https://orcid.org/0000-0002-8169-5347

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

leading to a complex, large-scale, and hierarchical
structure [1], [3], [6].

• Interactive. Through control and feedback, the physical
and cyber subsystems are tightly coupled, and synergy
is produced by the close interactions [5], [6], [8].

• Free to join and exit. A subsystem is free to join or exit,
and the CPS can adjust its behavior according to the
participating subsystems [3], [5].

These intrinsic complexities impose new challenges for
the design of CPS, which is always addressed with model-
based approaches [6]. In model-based design, formal models
are used to precisely specify system schemes and enable
early verification and simulation [4]. Subsystems in a CPS
often have domain-specific modeling techniques due to their
multidomain and heterogeneous nature [6], [9]. The capac-
ity of rigorously modeling the heterogeneous subsystems is
important for guaranteeing an efficient CPS design. Further-
more, these heterogeneous subsystems are closely coupled in
a complex (even dynamic) structure. In this regard, a separate
design and analyses manner are not sufficient for a practical
implementation of these subsystems. To enable the systemic
design, their structure and behavior must be properly repre-
sented in an integrated way.

A natural idea to describe the structure and hybrid behav-
iors of CPS is to integrate the heterogeneous models into
a framework. Some works achieve this goal by sharing
data [10], [11] or transforming [12] between different models.
With the abstraction of interactions between them, the com-
position of multiple heterogeneous models can be realized
under different integration frameworks [13]–[15]. Then, var-
ious modeling languages [16]–[21] and toolsets [4], [16],
[20] are proposed and demonstrated for the integration-based
design of CPS. Most of these languages are variants of
XML [22].

Applying the established modeling methods or their vari-
ants is another major approach for CPS representation during
design. In the past decade, lots of studies have extended the
existing modeling languages with new features to represent
more aspects of CPS. Note that some contributions [23]–[26]
attempt to achieve system-level architecture modeling based
on domain-specific languages, such as SystemJ [27], Petri
net [10], and AADL+ [26]. More attention is paid to extend
the behavior expression ability of the model in cyber and
physical spaces. For example, physical processes are incor-
porated into cyber models with discrete abstraction of hybrid
behavior or vice versa [9], [27]–[30]. Transition systems [9],
[31] and hybrid systems [11], [29], [32] are the most common
semantic fundamentals for modeling the continuous-discrete
hybrid behavior in the CPS. There are also several extension
efforts for multi-paradigm modeling languages in engineer-
ing, such as Modelica, to model the structure and behavior of
CPS [33]–[35].

The works above can practically represent the structure
and behavior of the CPS during design. However, the inte-
gration approaches are always too complicated since the
system designers must be familiar with multiple languages

and the coordination between different tools. The extension
approaches of supplementary features are defective in most
situations due to the difficulty in expressing all intrinsic char-
acteristics of a CPS. For example, existing approaches can
hardly model the dynamic structures of a bouncing ball and
cellular net, such as Modelica, due to the discrete interaction
and dynamic structure of the system of ball and ground,
mobile and station. Considering the complex structure and
interactions of heterogeneous subsystems, the design of a
CPS requires a layered abstraction for systemic and unifying
specifications and behavior at different levels.

This paper represents a CPS with a triple of attributes,
subsystems, and relations between the attributes and subsys-
tems. The subsystems at different abstraction levels form a
hierarchical structure, and their behavior is implied by the
hierarchical models abstracting the structure and interactions
of these subsystems. In this perspective, we rigorously define
a formal abstraction of a CPS, called dynamic relational
system, tomodel its dynamic behavior and complex structure.
A parametric form of the dynamic relational system is pro-
posed to specify the requirements and schemes during design.
The proposed abstraction provides an integrated manner to
express and analyze the complex structure of CPS, as well as
its discrete-continuous behaviors.

The rest of this paper is governed as follows. Section II
offers the related work. Section III defines a dynamic rela-
tional system and explains how it expresses the structure
and behaviors of a CPS. The parametric abstraction of
the dynamic relational system is proposed in Section IV.
Section V provides a case study of a friction-drive plate
conveyor (FDPC) to illustrate the CPS design with relational
representation and to verify the achieved model. Finally,
Section VI gives the conclusions and presents future research
directions.

II. RELATED WORK
The main challenge to implement CPS design is how to
achieve the unified formal representation of such a mul-
tidomain, heterogeneous, and continuous-discrete hybrid
system [36]. Over the past decade, there have been many
theoretical and practical efforts relating to this research area.
Depending on themainmodeling interests, there are three cat-
egories ofmethods tomodel the CPS during design: structure-
oriented, behavior-oriented, and comprehensive methods.
In the following, we introduce researches and typical methods
in each category, and give a brief critical appraisal of these
methods.

A. STRUCTURE-ORIENTED METHODS
Structure-oriented methods focus on the CPS structure and
interactions between heterogeneous subsystems. Under an
integration framework, multiple heterogeneous models are
composed into one based on the formal description of
their structures and interactions. Several attempts [14], [37]
have been made for modeling the heterogeneous subsys-
tems under well-defined interaction semantics, such as the

VOLUME 9, 2021 40389

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

behavior composition semantics [37], and Behavior Inter-
action Priority [14]. There also exist architecture descrip-
tion languages [18], [25], [26], most of which are based
on XML or its variants [22], including UML [19], [20],
CyPhyML [16], and SysML [4], [17], [21], [38].

As a typical structure-oriented method, SysML has many
features potential for CPS modeling [4]. It provides useful
extensions for representing the CPS architectures [39] and
an alternative approach to facilitate integrating multidomain
models into a unifying one. Sangiovanni et al. adopt SysML
for the inspired CPS design to represent the architectural
decomposition [40]. With the composite structure diagram
and the flow ports, the internal block diagram notation of
SysML has great potential for modeling the interactions
in CPS [4], [39]. Then, Passerone et al. propose a frame-
work called SPEEDS for metamodel building, simulation,
and analysis of system models [41]. This framework forms
an important part of the metamodel-based interoperability
concepts. Palachi et al. present a simulation framework for
models of CPS based on SysML and numerical solvers [38].
Based on the formal specification from requirements to
architectural, Derler et al. interlink a family of tools using
SysML to co-model and co-simulation via FMI interface
definitions [4], [17].

Structure-oriented methods can well represent the com-
plicated structure and interactions in the integration of het-
erogeneous subsystems. Heterogeneous subsystems are often
separately modeled in different views by various tools. For
a consistent implementation in various tools, it demands a
strictly defined and well-considered semantics of interactions
between heterogeneous models in multiple forms. In addi-
tion, the deepening of multi-domain integration in a CPS
makes the structure and interactions of the subsystems more
and more complex, demanding the collaborative design pro-
cess and data exchange of different toolsets. The absence of
explicit/standard semantics and its complexity limit its ability
to address the CPS design problems.

B. BEHAVIOR-ORIENTED METHODS
The behavior-oriented methods focus on the representation
of continuous-discrete hybrid behavior in CPS. Typically, the
unifying representation of the hybrid behavior is achieved by
using discrete modeling methods [23], [24], [32], [33], [42],
such as Petri net [23], [32], [42], Simulink [33], transition
system [9], based on the discrete abstraction of the underlying
continuous evolution, or by modeling method for hybrid sys-
tem, such as timed automata [34], [43], hybrid automata [36],
and hybrid program [29], [30], [44].

Due to the feature of continuous-discrete mixing, CPS is
often modeled as hybrid systems with formal methods like
hybrid automata [11]. Note that hybrid automata represent
an extension of finite-state automata with continuous vari-
ables, which evolve dynamics specified at each discrete con-
trol mode. The ODEs in each location represent continuous
dynamics, whereas the transitions between locations repre-
sent discrete dynamics [45]. They are generally described by

using denotational semantics in terms of the piecewise contin-
uous function. Hybrid automata support the specification and
formal verification of the behavior of complex systems with a
graphical modeling formalization [46]. Platzer et al. propose
a hybrid program method to characterize interacting discrete
and continuous dynamics of CPS [30], which can be veri-
fied with differential dynamic logic [29], [44]. Nuzzo et al.
propose a design method for CPS by specifying the design
with an A/G contract and analyzing the design at different
abstraction levels with the differential dynamic logic and the
hybrid automata [36].

Behavior-oriented modeling methods, such as transition
systems, differential dynamic logic, and hybrid automata,
havewell-defined semantics tomodel the continuous-discrete
hybrid behavior of CPS. Unfortunately, they provide limited
support for model composition and have difficulty in model-
ing the complex structure of the CPS.

C. COMPREHENSIVE METHODS
The previous two categories of methods are involved in
each other more or less, but with different concerns. The
comprehensive methods pay relatively balanced attention to
the structure and behavior of the CPS. Instead of apply-
ing established modeling techniques, these methods are
mostly tailored-modeling techniques, such as Modelica and
AADL+ [22]. This is the present trend of CPS modeling
methods as the understanding of CPS becomes more and
more profound.

As the first step to combine the multi-paradigm into one
formalization, Amrani et. al. presents a comprehensive for-
mal framework of multi-paradigmmodeling for the CPS [35].
Engineering modeling languages, such as Modelica, and
their variant may be potentially comprehensive methods that
describes both the structure and behavior of the CPS [37].
They can express the dynamic behavior in different domains
mathematically and achieve seamless integration of them [47]
based on DAEs (differential algebraic equations) combined
with an event-handling mechanism. Fritzson et. al. and
Junjie et. al. discuss the abilities of Modelica in the unified
expression of multidomain, continuous-discrete hybrid, and
heterogeneous subsystems in CPS [48], [49]. By extending
Modelica with temporal logic, Garro et al. presents a new
modeling language called Form-L for CPS designs [37].

There is relatively little research on the comprehensive
modeling languages and tools. Most of established com-
prehensive methods, such as Modelica, and Form-L, satisfy
engineering needs of modeling in most situations. However,
these methods lack systematic consideration of CPS design
and a formal definition of behavior semantics. This may
cause the difference in the tool implementation and defect
of modeling features of CPS. For example, the system with
dynamic structure, such as a bouncing ball and cellular net, is
hard to be represented naturally with existing comprehensive
methods due to the lack of discrete interactions modeling.

In this paper, we propose a relational abstraction to syn-
thesize the advantages of SysML, hybrid automata, and

40390 VOLUME 9, 2021

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

Modelica. Compared with the existing modeling methods,
this approach can understand the CPS from a more general
perspective, which has a mathematical semantic definition
and realizes the unified formal representation of the dynamic
structure and behavior of the CPS. Additionally, the relational
abstraction is design-oriented and beneficial for supporting
the specification of requirements and design schemes.

III. DYNAMIC RELATIONAL SYSTEM
Mathematical formalizations are often used to realize the
unified representation of systems [50]. This paper designs
a relational formalism from a systemic perspective on CPS,
which naturally expresses the structure and the interactions
between each part of the system. Inspired by the relational
structure of general systems [51], it provides a mathematical
foundation to develop the rigorous representation for CPS
design. It has a layered structure, and in each layer, it contains
a set of attributes, subsystems, and relations between the
attributes and subsystems.
Definition: A dynamic relational system is formally

defined as a triple S = (A,M ,R), where:

• A is a finite set of dynamic attributes, representing the
continuous -discrete hybrid states;

• M is a finite set of subsystems at a specific abstraction
level;

• and R is a finite set of hybrid relations, representing the
interactions between the attributes and subsystems.

Both the attributes in A and the subsystems inM are elements
constructing the system S. If the attributes set A = ∅, the sys-
tem S is a composition of subsystems, which is called com-
posited dynamic relational system. The subsystem setM = ∅
means that S has no subsystems. Such a system consisting of
attributes and relations is called a primary dynamic relational
system.
A subsystem S1 =

(
A1,M1,R1

)
∈ M is called a 1st-level

subsystem of S. If there exists a sequence S i =
(
Ai,M i,Ri

)
∈

M i−1 for i = 1 . . . n, the system Sn = (An,Mn,Rn) ∈ Mn−1

is called an nth-level subsystem of S. Correspondingly, if all
nth-level subsystems of a system S are primary systems,
S is called n level system. The subsystems in each level
are associated with hybrid relations, forming a hierarchical
structure.

The semantics of the dynamic attribute, hybrid relation and
dynamic relational system are mathematically explicated in
the remainder of this section.

A. DYNAMIC ATTRIBUTE
A dynamic attribute is a real variable representing a sequence
of states. It is defined as the fundamental object to unify the
representation of the continuous physical states and discrete
cyber states in the hierarchical system structure. It evolutes
on a hyper-real time domain [13], [43] T = [t0, t1] ⊆ R+
of interest. For any instant t ∈ T and t 6= t0, t1, there exist
a predecessor t− = limε→0t − ε ∈ T and a successor t+ =
limε→0t + ε ∈ T. The value of an attribute a at each instant

FIGURE 1. Dynamic attribute always has a value.

is given by an evaluation function va : T→ R. The function
va (t) always has a real value on time domain T, as the value
of attribute a1, a2, and a3 shown in Figure 1. In particular,
an attribute representing a piecewise state a2 or discrete state
a3 preserves its last defined value at the instants where the
evaluation function is undefined. The value sequence Va of a
on time domain T is called the trajectory of attribute a, which
is formally defined as Va = {va (t) | t ∈ T}.
Theorem 1: For an arbitrary dynamic relational system S,

there exists exactly one set Â (S) consisting of all attributes
in S.

Proof: Consider an n level system S = (A,M ,R).
Define A∗0 = A and M∗0 = M . For indices i ∈ {1 . . . n},
the sequence

{
A∗i
}
of attributes in each level and the sequence{

M∗i
}
of subsystems in each level can be defined such that

A∗i =
⋃{

As | s = (As,Ms,Rs) ∈ M∗i−1
}
,

M∗i =
⋃{

Ms | s = (As,Ms,Rs) ∈ M∗i−1
}
.

Let Â (S) =
⋃{

A∗i
}
. For the finite level of S, Â (S) is the set

consisting of all attributes in S, and from the uniqueness of
each A∗i , it follows that Â (S) is uniquely determined by S.
The behaviors of S can be described by the trajectory

VÂ(S), which is the union trajectories of its attributes and
1st-level subsystems, formally denoted as VÂ(S) = VA ∪(⋃
{VA(Si)|Si ∈ M}

)
. Conversely, the behavior of a 1st-level

subsystem Si could be considered as the projection of VÂ(S)
onto attributes set Â (Si) of Si.

B. HYBRID RELATION
A hybrid relation represents the interactions between objects
in a CPS, such as a power transfer in physical systems or a
signal connection in cyber systems. It extends the relation
expressing coupling between objects in general system [51]
with temporal characteristics to model the continuous-
discrete hybrid interactions between objects in a CPS.

1) RELATION BETWEEN ATTRIBUTES
As the basis of the hybrid relation, the relation between
attributes is discussed here. An attribute relation r on a
non-empty attribute set A is a tuple of attributes semanti-
cally related to a mathematical predicate. An n-ary attribute

VOLUME 9, 2021 40391

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

TABLE 1. Representation forms and semantics of attribute relations.

relation r is denoted as

(x1, x2, . . . ,xn)|P (x1, x2, . . . ,xn) ,

where the n-ary tuple (x1, x2, . . . , xn) is an element in An

declaring the structure of attributes; P (x1, x2, . . . , xn) is a
mathematical predicate interpreting the temporal character-
istics of r .
For an attribute relation r = X |P(X), the predicate P (X)

constrains the trajectory of attributes in X . The trajectory
VX = (Vx1,Vx2, . . . ,Vxn) of X is a projection of VA onto
X . It satisfies the predicate of r at any instant, i.e., each value
vX (t) , t ∈ T in VX holds the predicate P (X) true, denoted
as VX |H r .
The predicate P (X) is an arithmetic formula, such as an

assignment function, equation, or inequality. It is built over
attributes in tuple X and their first-order differences, real
number, parentheses, binary operators (such as +, −, ∗, /,
and exp), evaluation operator :=, and relation operators (such
as =, <, ≤, ≥, >), with extension of event expressions. An
event expression is a predicate indicating if vX (t) satisfies
some conditions connected with logical connectives, such as
y > x − 3, x > 0 ∧ x < 1.

Four types of attribute relations are defined in this paper
according to the characteristics of interactions, as shown
in Table 1. Causal relations often represent the input-output
interactions in cyber space, whereas acausal relations repre-
sent bidirectional interactions in physical space. Beside them,
bound relations represent the ambiguous interactions from
human, random algorithm, or system cannot be predicted.
Event relations are used to model the discrete characteristics
in the event-triggered interactions. An event relation has two
predicate branches, which are separated by colons. When the
event expression is satisfied, the predicate governing attribute
values switches from one branch to another.

2) RELATION BETWEEN ATTRIBUTES AND SUBSYSTEMS
Consider an attribute a ∈ A and a 1st-level subsystem S1 in
the system S. A hybrid relation between them is a synthesis
of attribute relations between a and the attributes in S1.
Similarly, a hybrid relation between two subsystems
S11 and S12 is a synthesis of attribute relations between their

attributes. Without loss of generality, a hybrid relation can

TABLE 2. Typical interactions between subsystems of CPS and their
relational representation.

be defined as a synthesis of attribute relations between the
attributes in them.
DefinitionAn n-ary hybrid relation r is defined as X |P(X),

where X = (x1, x2, . . . , xn) ∈ (A ∪M)n is the tuple of r ,
in which each xi can be an attribute or a subsystem; and P(X)
is a set of predicates whose variables are from xi or attributes
in xi.

It is intuitive that an n-ary hybrid relation is equivalent to
a set of n-ary attribute relations. The tuple of each attribute
relation is an element in

∏
A (xi), satisfying that

• The attributes in tuple are from xi, i = 1 . . . n;
• For each xi, there exists an attribute a in the tuple.
Consider a 1-D spring oscillator consisting of a spring s and

a mass body m; the hybrid relation between s and m could be
represented as (s,m) | {fs + fm = 0, psr − pm = 0}, where fs
and fm are the forces on the spring and mass body, respec-
tively, and psr and pm are the corresponding positions. This
hybrid relation can be considered as two attribute relations
(fs, fm) |fs + fm = 0 and (psr , pm) |psr − pm = 0. Typical
hybrid relations in CPS, as well as attributes involved, are
summarized in Table 2.

Like the construction of Â (S), the set of attribute relations
in an n level system S can be constructed.
Theorem 2: There exists a unique attribute relation set R̂ (S)

containing all the attribute relations in S.
Proof: According to the definition of hybrid relation,

each hybrid relation is equivalent to a set of attribute relations.
Define R∗0 =

⋃
{rH | rH ∈ R0} as the union of equivalent

attribute relation sets of each hybrid relation in S, M∗0 =
M0 as the set of the 1st-level subsystems in S, and R̃0 =⋃{

Rs | s = (As,Ms,Rs) ∈ M∗0
}
as the union of hybrid rela-

tion set in the 1st-level subsystems. For i ∈ {1, . . . , n}, three
sequences {R∗i }, {M

∗
i } and {R̃i} can be defined such that

R∗i =
⋃{

r | ∀rH ∈ R̃i−1(r ∈ rH)
}
,

M∗i =
⋃{

Ms | s = (As,Ms,Rs) ∈ M∗i−1
}
,

R̃i =
⋃{

Rs | s = (As,Ms,Rs) ∈ M∗i
}
.

40392 VOLUME 9, 2021

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

Let R̂ (S) =
⋃{

R∗i |i ∈ {0, . . . , n}
}
, then R̂ (S) is the exactly

unique attribute relation set equivalent to all the hybrid rela-
tions in S.

C. SEMANTICS OF DYNAMIC RELATIONAL SYSTEM
A dynamic relational system models a CPS in different
abstraction levels, forming a hierarchical structure. The sys-
tem S = (A,M ,R) is a triple of a dynamic attribute set, a
lower-level subsystem set, and a hybrid relation set. Suppose
thatE is the event expression set of all event attribute relations
in R. When an event expression e ∈ E is satisfied, the
predicate switches from one branch to another. This leads
to the change in system structure and behavior. The discrete
transition of the system structure and behavior could be
described by the mapping le : S

(
t−e
)
→ S (te), where t−e

is the instant before the event is triggered. S
(
t−e
)
and S (te)

represent different system modes of S. In each system mode,
the structure are static, and the evolutions are constrained
by continuous functions or equations from causal relations,
acausal relations, bound relations, or activated branches of
event relations.

A hierarchical dynamic relational system can be flattened
into a primary system to interpret its continuous-discrete
hybrid behavior.
Theorem 3: An arbitrary dynamic relational system S =

(A,M ,R) can be written as a primary system without sub-
systems, denoted as Ŝ =

(
Â (S) ,∅, R̂ (S)

)
.

Proof: Theorem 1 and theorem 2 states that all the
attributes and all the hybrid relations in S can be written as the
attribute set Â (S) and the attribute relation set R̂ (S). By trans-
finite induction of layers in the hierarchical structure, S can
be represented as the primary system Ŝ =

(
Â (S) ,∅, R̂ (S)

)
without subsystems.

Based on theorem 3, the behavior of S is the same with the
behavior of Ŝ due to the equivalent of relations governing the
attributes. The attributes in Ŝ evolve dynamics specified at
each discrete system mode. The transitions between different
systemmodes and continuous behaviors in each systemmode
can be interpreted by a hybrid automaton

H = (Loc,Edge, 6,X , Init, Inv,Flow, Jump) ,

where:
• Loc ⊆ 26 is the finite set of locations representing
behavior modes of S, and 6 = Ê is the finite set of
event expressions in R̂ (S);

• Edge ⊆ Loc × 6 × Loc is the finite set of edges rep-
resenting the discrete transitions in the behavior modes,
and each transition is a linkage mapping in {le | e ∈ 6};

• X is the finite set of real-valued variables representing
attribute set Â (S);

• Init , Inv, and Flow are three sets of predicates in the
initial relations, the bound relations, and the rest attribute
relations included in R̂ (S), respectively.

• Jump is the finite set of event expressions related to
events in 6, stating when a transition is possible.

In this interpretation, the events in Ê divide S into a set
S = {S0} ∪

{
Se | e ∈ Ê

}
of continuous systems with static

structure, where S0 is the initial mode of S, and Se represents
the mode just after event e is triggered. The system S evolves
as the discrete transitions between these system modes and
the continuous evolutions constrained by the predicates in
relations.

D. EXAMPLE OF DYNAMIC RELATIONAL SYSTEM
A water heater, as shown in Figure 2(a), is a typical example
to illustrate the semantics of a dynamic relational system.
It maintains the water temperature in a range and mainly
contains a controller, a heater, a tank filled by water, and a
temperature sensor.

The controller switches the working mode of the heater
between ‘‘ON’’ and ‘‘OFF’’ according to the temperature
feedback from the sensor. It can be represented as the
dynamic relational system SC in (1), where sCin is the feed-
back signal from the temperature sensor, and sCout is the
control signal with two values: ‘‘1’’ representing the ‘‘ON’’
state and ‘‘0’’ representing the ‘‘OFF’’ state. Note that the
attribute set enclosed in parentheses and the attribute tuple
enclosed in braces are different. The former indicates the
set of attributes in the controller, whereas the latter means
the attributes sequentially involving in the relation of the
controller.

The power of the heater is 300 W. It can be represented
as SH in (2), where sH , and fH are the input signal, and the
output heating flow, respectively.

The environment temperature is 20 ◦C, and the coefficient
of heat dissipation is assumed as 0.2 in this example. The tank
can be represented as (3), where tpT is the temperature of the
water, which starts at 20 ◦C and should not exceed 100 ◦C;
and fT is the input heating flow to the water.

The temperature sensor is represented as (4), where tpS ,
and sS are the temperature sensed and the feedback signal,
respectively.

Based on these models of subsystems, the water heater can
be represented as a system shown in (5). When the events
sCin < 60 and sCin >
mathrm90 are triggered, the water heater switches its
behavior mode between ‘‘ON’’ and ‘‘OFF’’, as the hybrid
automaton shown in Figure 2(b). In each system mode,
the water heater continuously evolves following hybrid rela-
tions between attributes and subsystems. For example, the
relation between the temperature and heating power is

(TT , fT) |
d (TT)
dt
−
fT − 0.2 ∗ (TT − 20)

4.2 ∗ 103
= 0.

It constrains the temperature evolves following the differen-
tial equation in its predication, i.e., the water temperature
vT (t) satisfies

dvT (t)
dt

=
300− 0.2 ∗ (vT (t)− 20)

4.2 ∗ 103
.

VOLUME 9, 2021 40393

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

IV. DESIGN SPECIFICATION BASED ON DYNAMIC
RELATIONAL SYSTEM
A dynamic relational system could be used to represent the
design schemes of the CPS. In this section, a parametric
abstraction of the dynamic relational system is defined for
specifying a family of possible design schemes satisfying the
design requirements.
Definition: A design model is defined as a tuple D =

(SP,P,CP), where:
• SP = (A,M ,RP) is a parametric dynamic relational
system with RP being the set of parametric relations;

• P is a finite set of parameters, which can affect the
definition of relation;

• CP is a finite set of predicates whose free variables are
from P. CP states the constraints to the values of P.

The relational design model abstracts the suppressed
details that are not of interest, and can be used to pre-
dict the states and behaviors of the designed system. For a
design model D = (SP,P,CP), CP states the design space
of a system. Given a parameter value vP, the evaluation
CP (vP) ∈ {True,False} indicates whether the design scheme
at vP is feasible. The notation [[CP]] is the set of all possible
values satisfying the predicates CP. Each parameter value
vP ∈ [[CP]] stating a dynamic relational system S (vP) =
(A,M ,RP (vP)) specifying a feasible scheme of the puta-
tive system. To state it clear, a design can be denoted as
D = (A,M ,RP,P,CP) by expanding the dynamic relational
system SP. For example, the design of the tank in the previ-
ous can be represented with relational design model as (6),
where δ, Te, and M are design parameters representing the
coefficient of heat dissipation, the environment temperature,
and the mass of the water, respectively. The predicate set
‘‘{δ = 0.2,Te = 20,M ≤ 5,M ≥ 0.1}’’ is the constraints to
parameters. Each value vP ∈ [[CP]] decides a design scheme
for the tank. The water tank in section III.D is a scheme of
the model DT at vP = {0.2, 20, 1}, (1)–(6), as shown at the
bottom of this page.

A complex CPS is always designed as the composition of
some subsystems, and these subsystems are designed as the
composition of some simpler subsystems. The hierarchical

structure of the dynamic relational system can naturally
express the composition of subsystem in CPS design. A set of
relational models can compose the model of a more complex
system with proper relations between them. Consider a finite
set of relational models {Di}, where i ∈ I = {1, 2, . . . , n},
Di = (Ai,Mi,Ri,Pi,CPi), the composition of them with a
set of hybrid relations R{mi} between them is a new design
D6 =

(
∅, {mi} ,R{mi},∅,∅

)
. Therefore, the design of a CPS

can be performed by composing the design of subsystems
layer by layer.

The premise that a relational model can represent some
design schemes of a system is that there exist some possible
trajectories for each parameter value vP ∈ [[CP]]. To ensure a
design is concrete enough to implement, the relational model
must be deterministic, which means it indicates a unique
system behavior and all attributes of interest can be described
by a certain trajectory at each parameter value vP ∈ [[CP]]. For
cyber processes described by cause-effect relations, the deter-
minacy means that given an input, it will always produce an
output and the same inputs cause same outputs. For physical
interactions described by acausal relations, the determinacy
means that the behavior is definitive and can be used to
verify the safety of a system. A deterministic relational model
states an implementable design scheme for each parameter
value.

Verifying the compatibility and determinacy of a relational
model is its mathematical analysis. According to theorem 3,
the hierarchical model of FDPC can be written as a primary
dynamic system over parameter setP by transfinite induction.
The predicates of attribute relations in the primary dynamic
system forms a mathematic system of inequations and equa-
tions extended with event expression. As the semantics states
in section III.D, the mathematic system can be divided into
different modes linked by event transitions. In each mode, the
behavior is constrained by continuous DAEs and inequalities.
The compatibility of a relational model is equivalent to that
there exists some solutions satisfying constraints in each
mode, and the determinacymeans that there exists exactly one
solution satisfying the constraints in each mode. Therefore,
the verification of compatibility and determinacy equals the

SC =
(
{sCin, sCout } ,∅,

{
(sCin, sCout) | sCin < 60?sCout := 1 : sCin > 90?sCout := 0

})
(1)

SH = ({sH , fH } ,∅, {(sH , fH) | fH = sH ∗ 300}) (2)

ST =
(
{tpT , fT } ,∅,

{
(tpT) | tpT ≤ 100,
(tpT , fT) | d (tpT) /dt − (fT − 0.2 ∗ (tpT − 20)) /

(
4.2 ∗ 103

)
= 0

})
(3)

SS = ({tpS , sS} ,∅, {(tpS , sS) | sS := tpS}) (4)

S =

∅, {SC , SH , ST , SS} ,

(SC , SH) | sH := sCout ,
(SH , ST) | {TH − TT = 0, fH + fT = 0},
(ST , SS) | TS − TT = 0,
(SS , SC) | sCin := sS

 (5)

DT =
({

tpT , fT
}
,∅,

{(
tpT , fT

)
| fT − δ ∗

(
tpT − Te

)
/
(
4.2× 103 ×M

)
−
(
d
(
tpT
))
/ (dt) = 0

}
,

{D,Te,M} , {δ = 0.2,Te = 20,M ≤ 5,M ≥ 0.1}

)
(6)

40394 VOLUME 9, 2021

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

FIGURE 2. A water heater maintains the temperature in 60 ∼ 90 ◦C. The heating power is 300 W. There is 1 Kg of water in the
tank. (a) The structure of the water heater. It consists of a controller, a heater, a temperature sensor, and a water tank. (b) The
hybrid automata illustrating the behavior of the water heater.

analysis of the existence and uniqueness of the solution in
each mode.

A basic idea of verifying such an equations and inequalities
mixing system is solving the equation part and validating the
inequality part. Structure analysis methods, such as consis-
tence analysis [52], [53], and deduction methods, such as
dynamic difference logic [29], [44], can be used to speed up
the solving procedure of the equations. Alternatively, from
the perspective of piecewise continuous systems the relation
model could be verified with verification tools for hybrid
automata, such as HYCOMP [54], by transforming it into
hybrid automata.

V. AN ILLUSTRATIVE DESIGN CASE
The goal of CPS design is to obtain a proper scheme for
system implementation. The design process starts with the
requirements and ends with an established relational model.
In this section, a FDPC is taken as an example to illustrate the
CPS design based on the relational representation.

A. CONSTRAINTS TO FDPC
The FDPC is a common piece of equipment in the mod-
ern industry. It is widely used in manufacturing due to
its large driving force, low noise, and the absence of oil
pollution.

An FDPC in practice has multiple drive units, which would
join or exit the motion system as the plate moves. As shown
in Figure 3, the FDPC in this example has two driver units.
It is used to deliver workpieces within a range (0∼1 m)
in an assembly line. The weight of the workpiece is in the
range 1500 ∼ 2000 kg. To ensure sufficient time for pro-
cessing, the velocity of the plate should be slower than 0.3
m·s−1. When the plate moves too slowly, the ‘‘creeping’’
phenomenon may easily appear, i.e., the plate moves in the
pattern of ‘‘fast-slow’’ or ‘‘jump-stop’’. Therefore, the veloc-
ity should be greater than 0.05 m·s−1. We assume that there
is no slip between the drive wheel and the plate if the velocity
satisfies the conditions above. The requirements of this FDPC
can be summarized as Table 3.

FIGURE 3. The FDPC in the design case. (a) The structure of the FDPC. The
considered FDPC mainly consists of a controller running on a computer,
a plate carrying the workpiece, a rail that the plate moves on, and some
drive units arranged along the rail. The controller receives feedback
signals from the sensors at two ends of the rail and sends control signals
to drive units to change their rotate direction in modes of ’clockwise’,
’anticlockwise’, or ’stop’. A driver unit consists of a rotor, two proximate
sensors, a switch decide ‘‘rotate’’ or ‘‘stop’’, and a wheel pressed to the
plate by an elastic arm. It drives the plate to move along the rail by the
friction. (b) The motion of the plate. The plate could move
forward or backward. When the plate arrives at the first sensor (the left
sensor when moves forward or the right sensor when moves backward)
of a driver unit, the rotor joins the system and rotates. Here, ‘‘arrive’’
means that one part of the plate enters the region between two sensors,
such as B and D in the figure. When it leaves the second sensor of a
driver unit, the rotor stop rotation and exits the system. If the plate
arrives at the sensor near the ends of the rail, i.e. the plate exceeds
region A or E, all rotors switch their rotation direction. The plate starts
slow down until the direction is reversed.

B. SPECIFICATION OF FDPC DESIGN
The design process of FDPC starts with the formal specifi-
cation of ambiguous requirements in Table 1. As the model
shown in the (7), the model DFDPC formally specifies the
requirements of the FDPC, whereM and kR are design param-

VOLUME 9, 2021 40395

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

TABLE 3. Requirements of an FDPC design.

eters representing the mass of the load, and the friction factor
between the plate and the rail; vP and pP are the attributes
representing the velocity and position of the plate. (8)–(15)
specify the design scheme of the FDPC, as shown at the
bottom of the page.

As shown in Figure 3, the FDPC consists of a con-
troller, a set of driver units, a rail, two end sensors of
the rail, and a plate moving on the rail. The controller

decides the rotate direction of the driver units. When the
plate reaches a driver unit, it is subjected to the friction
force between them. The requirements of the FDPC can
be partitioned into design constraints to these subsystems.
The subsystems and hybrid relations between them can be
represented as the model DFDPC in (8). The structure of
these subsystems is shown as the 1st-level of the FDPC in
Figure 4.

For the plate, its acceleration aP is the difference in its
velocity vP. Let fl and fr represent the forces from the left and
right driver unit, respectively. According to Newton’s second
law, aP satisfiesM ∗ aP = fl + fr + fb−M ∗ g ∗ kR, where g
is the gravity, and M ∗ g ∗ kR is the frictional force from the
rail. In addition, the safety of the FDPC requires that the plate
remains in contact with at least one drive unit, which means
that the position satisfies pP ≥ pDL−l/2 and pP ≤ pDR+l/2.
The design of the plate can be represented asDP in (9), where
pDL , pDR are the positions of two driver units.

DFDPC =

 {vP, aP} ,∅,

(vP) | vP ≥ 0.05,
(vP) | vP ≤ 0.3,
(pP)|pP ≥ 0,
(pP)|pP ≤ 1

 , {M , kR} ,
{
M ≥ 1500 ∧M ≤ 2000,
kR = 0.15 ∨ kR = 0.2

} (7)

DFDPC =

∅, {SP, SDL , SDR, SC , SSL , SSR}

(SP, SSL) | pSL = pSP ,
(SP, SSR) | pSR = pSP ,
(SC , SSL) | siCL := soSL ,
(SC , SSR) | siCR := soSR,
(SDL , SC) | sdir := soC ,
(SDR, SC) | sdir := soC ,
(SP, SDL) | pP − l/2 < pDL ∧ pP + l/2 > pDL?fl + fDL = 0 : fl = 0
(SP, SDR) | pP − l/2 < pDR ∧ pP + l/2 > pDR?fr + fDR = 0 : fr = 0

{M , kR, pDL , pDR, l} , {M ≥ 1500 ∧M ≤ 2000, kR = 0.15 ∨ kR = 0.2}

(8)

DP =

{pP, vP, aP,fl, fr} ,∅,

(pP, vP) | dpP
/
dt − vP = 0,

(vP, aP) | dvP
/
dt − aP = 0,

(fl, fr, fb, aP) | fl + fr −M ∗ g ∗ kR −M ∗ aP = 0,
(pP)|pP ≥ 0,
(pP)|pP ≤ 1,
(vP) | vP ≥ 0.05,
(vP) | vP ≤ 0.3

,

{M , g, kR, pDL , pDR, l} , {M ≥ 1500 ∧M ≤ 2000, g = 9.8, kR = 0.15 ∨ kR = 0.2}

(9)

DSENSOR =
(
{pP, soS} ,∅,

{
(pP, soS) | pP − l

/
2 > pS ∧ pP + l

/
2 > pS?soS := 1 : soS := 0

}
, {pS , l} ,∅

)
(10)

DCONTR = ({silC , sirC , soC } ,∅, {(silC , sirC , soC) |silC > 0?soC = −1 :sirC > 0?soC = 1} ,∅,∅) (11)

DDRIVERUNIT =

{sdir } , {SS , SSL , SSR, SR, SW } ,

(SS , SSL) |siSL := soSL ,
(SS , SSR) |siSR := soSR,
(SS , SR) | {sdir := soS} ,
(SR, SW) |{tR + tW = 0,wR − wW = 0}

 , {pD},∅
 (12)

DSWITCH = ({sL , sR, sdir , so} ,∅, {(sL , sR, sdir , so) | sL = 1 ∨ sR = 1?so := sdir : so := 0} ,∅,∅) (13)

DROTATOR = ({sdir , tR,wR} ,∅, {(sdir , tR,wR) | η ∗ Pe − sdir ∗ tR ∗ wR = 0} , {η,Pe} ,∅) (14)

DWHEEL =
(
{fW , vW , tW ,wW } ,∅,

{
(vW ,wW) | vW − wW ∗ RW = 0,
(fW , vW ,w, tW) | tW ∗ w− fW ∗ vW = 0

}
, {RW } ,∅

)
(15)

40396 VOLUME 9, 2021

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

FIGURE 4. The hierarchical structure of FDPC design. Eclipses with name represent systems in different level. Lines with arrows represent relations
between systems. The direction and style of a line states causality and continuity. The attributes connected by a relation can identity which interaction
in Table 2 the relation represents. The predicates in eclipse are constraints to the design parameters.

A sensor’s output switches to ‘‘1’’ when the plate reaches,
and switches to ‘‘0’’ when the plate leaves. The design of
a sensor can be represented by DS in (10), where pP is the
attribute representing the plate’s position, and pS and l are
the parameters representing the sensor’s position and the
length of plate, respectively. Each sensor in the FDPC can be
represented as an instance of DSENSOR by reconfiguring the
parameter pS .

The controller sends signals ‘‘1’’, ‘‘0’’, and ‘‘−1’’ to switch
the system mode between ‘‘clockwise’’, ‘‘stop’’, and ‘‘anti-
clockwise’’. The design of the controller can be specified
as the model DCONTR in (11), where silC and sirC are the
feedback signals from two end sensors; and soC is the control
signal.

Each driver unit starts to work when the plate reaches
and stops when the plate leaves. It can be decomposed into

VOLUME 9, 2021 40397

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

a switch, a rotor, a wheel, and two proximate sensors to
reduce the complexity of design. The switch turns on/off
(represented as ‘‘1’’/ ‘‘0’’) the rotor according to the feedback
signals from sensor, which indicates whether the plate is near
the sensor. The rotor drives the plate moving with the friction
between the wheel and the plate. The composition of the
subsystems in a driver unit can be represented asDDRIVERUNIT
shown in (12).

As shown in Figure 4, the subsystems in a driver unit are
the second-level subsystems of the FDPC. The switch turns
on the rotor and makes it rotate in the direction decided
by the controller when any of the two sensors gives ‘‘1’’
signal. Otherwise, it turns off the rotor. The design of the
switch can be represented as DSWITCH in (13), where sL , sR,
sdir , and so are the signal from the left sensor, the signal
from the right sensor, the direction signal from the controller,
and the output signal, respectively. Assume that the power-
torque relation is tR = η ∗ Pe/wR, where tR, Pe, wR are
the torque, nominal power and rotate speed. The design of
rotor can be specified as DROTOR in (14), where sdir is the
signal stating rotate direction; η < 1 is the efficiency of
the rotor. The wheel is driven by the rotor. It is designed as
DWHEEL in (15), where fW , vW , tW , wW are the frictions from
the plate, the velocity, the drive torque, and the rotate speed,
respectively. The sensors in a driver unit can be represented
with the design model of the end sensors by reconfiguring the
parameter pS .

C. RESULTS ANALYSES
The design of the FDPC is specified with the relational mod-
els in the last section as our expectation. It is a 2-level system
with a hierarchical structure in Figure 4. Its 1st-level consists
of six subsystems, where the driver units can be decomposed
into simpler subsystems in the 2nd-level.

Based on the relational model obtained in last section,
some conclusions in general system science [51] can be
adopted to analyze the structure of the designed FDPC,
such as the connectivity of subsystems. Define the connect
degree of two objects O1,O2 ∈ A ∪ M as |Rc|. Rc ={
r ∈ R̂P | ∃α, β < n (r) r (α) = O1 ∧ r (β) = O2

}
is the set

of attribute relations between O1 and O2, where r (α), r (β)
is the αth, βth element in tuple of r . The connect degree mea-
sures the coupling of two subsystems, guiding how to decom-
pose a system and assign tasks in a multi-designer design.
With a dynamic structure, the connection degree between
the 1st-level subsystems of the FDPC can be evaluated by
counting attribute relations of each pair of subsystems in each
systemmode. The connect degree of each pair system (shown
in Figure 6) indicates that the left/right driver unit and the
plate couple more closely than other subsystems.

The behavior of the designed system DFDPC can be illus-
trated by the hybrid automaton in Figure 5. Let E be the
set of event expressions in DFDPC . When an event in E is
triggered, e.g., the plate arrives at driver units or ends of the
rail, the hybrid automaton transmits from one behavior mode
to another. Each behavior mode equals to a continuous system

FIGURE 5. The hybrid automata illustrating behavior of designed FDPC.
Given the initial conditions p

(
0
)
, v

(
0
)
, sdir , the system evolves under

the constraints of DEAs Fi
(
A
)
= 0, where i ∈ 2E is one mode of FDPC, E is

the event set. When event p < PSL (p > PSR) is triggered, the rotor starts
to rotate clockwise (anticlockwise). When event pDL − l/2 ≤ p < pDL + l/2
(pDR − l/2 ≤ p < pDR + l/2) is triggered, the plate begins to receive
friction from the left (right) drive wheel. When event pDL + l/2 ≤ p
(p ≤ pDR − l/2) is triggered, the plate is no longer subject to the friction
from the left (right) drive wheel.

FIGURE 6. Connect degree between 1st-level subsystems of FDPC. The
map between the table headers and subsystems in S is as follows:
A - ‘‘Controller’’, B - ‘‘SensorL’’, C - ‘‘DriverUnitL’’, D - ‘‘SensorR’’,
E - ‘‘DriverUnitR’’, F - ‘‘Plate’’. The number in a cell represents the count of
attribute relations between the row object and column object in a
behavior mode. These three tables correspond to the three behavior
modes in Figure 5.

following the DAEs Fi (A) , corresponding to a system mode
of DFDPC . Equations (16) to (18) are the DAEs at the modes
when the plate is driven by the left driver unit, by both driver
units, and by the right driver unit. Given an initial state p (0),
v (0), and sdir , the designed FDPC evolves as the hybrid
automata states.

ṗ = v
v̇ = a
fl −M ∗ g ∗ kR −M ∗ a = 0
η ∗ Pe − sdir ∗ t ∗ w = 0
t ∗ w− fDL ∗ v = 0
fl = −fDL

(16)

ṗ = v
v̇ = a
fl + fr −M ∗ g ∗ kR −M ∗ a = 0
η ∗ Pe − sdir ∗ t ∗ w = 0
t ∗ w− fDL ∗ v = 0
fl + fDL = 0
t ∗ w− fDR ∗ v = 0
fr + fDR = 0

(17)

ṗ = v
v̇ = a
fr −M ∗ g ∗ kR −M ∗ a = 0
η ∗ Pe − sdir ∗ t ∗ w = 0
t ∗ w− fDR ∗ v = 0
fl = −fDR

(18)

By transfinite induction, the hierarchical model of
FDPC can be written as a primary dynamic system over

40398 VOLUME 9, 2021

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

FIGURE 7. The dynamic position and velocity of the plate at different parameter values. The left two columns and the right two columns are the plots
of the position pP and velocity vP at different value of parameter Pe and kR . Each plot includes two lines indicates the dynamics at minimum load
M = 1500 kg and maximum load M = 2000 kg. These plots are generated at the values of other parameters as, = 9.8m • s−2, η = 0.95, pDL = 0.3 m,
pDR = 0.7 m, pSL = 0.15 m, pSR = 0.85 m, l = 0.5 m.

parameter set P. After eliminating simple equations of
two attributes, the equations in attribute relations form
three DAEs stitched by (16) to (18), with a parameter set
P = {M , g, kR, η,Pe, pDL , pDR,PSL ,PSR, l}. The dynamics
of each DAEs should satisfies the inequalities 0 ≤ p ≤ 1 and
0.05 ≤ v ≤ 0.2 constraining variables p and v. We can find
the feasible parameter scheme by solving the DAEs with
numerical solvers, such as Matlab and SciPy, and verify
if it satisfies the constraints. A better feasible scheme can
be obtained by comparing state performance. Generated by
Matlab,1 Figure 7 shows the dynamic position and veloc-
ity of the plate in designed FDPC at different values of
parameter M , kR, Pe. According the simulation result, when
(kR,Pe) ∈ {(0.15, 50) , (0.15, 100), (0.2, 50) ,(0.2, 100),
(0.2, 200), (0.2, 300)}, the position and velocity at both mini-
mum and maximum loads satisfy the pre-defined constraints.
Comparing these feasible parameter schemes, when kR =
0.2, Pe = 300 W, the position and velocity have a stabler and
more efficient performance. Therefore, the scheme of friction
rate at 0.2 and the rotor with 300 W rate power is a better
choice for practical implementation

VI. CONCLUSION
This paper proposed a relational abstraction named dynamic
relational system to model the structure and behaviors
of CPS during design. It has a mathematical definition
and synthesizes the specification of complex structure and
continuous-discrete hybrid behavior in an integrated manner.
The dynamic relational model can imply the discrete pro-
cesses in cyber space with the sequences of triggered events,

1Simulation scripts and data are available at https://github.com/
wangchustcad/FDPCSimulation.git

and describe the continuous evolution in physical space with
DAEs. A parametric representation is defined to specify the
design schemes of CPS. A design case of FDPC is given
to suggest that relational models can be used to specify the
requirements and schemes at different abstraction level.

With well-defined semantics, the constructed models can
be used as an abstraction of CPS design for structure anal-
yses and behavior verification. The relational model has
advantages of structure-oriented approach such as SysML on
structure modeling, and hybrid approaches such as hybrid
automata or hybrid program on hybrid behavior modeling.
In other words, it is more expressive in hybrid behavior than
SysML, and more expressive in system structure than hybrid
automata and hybrid program. Compared with comprehen-
sive modeling methods, such as Modelica, the relational
abstraction has a rigorously defined mathematical seman-
tics of structure and behavior, leading a good expression
of discrete interactions in dynamic structure systems, such
as the bouncing ball, and cellular net mentioned previously.
In addition, the mathematical form discards many linguistic
features in engineering, making it easier to understand and
apply mathematical methods to structure analyses and behav-
ior verification.

The relational representation provides a systemic perspec-
tive for the CPS design specification and leads a seman-
tics foundation for the language and tool implementations.
However, we still need further work to apply the relational
models to achieve a practical CPS design. Future studies
will focus on two aspects, i.e., how to analyze CPS structure
with relational models and use it in practical CPS design
(such as, defining a homeomorphism relation based on the
dynamic relational system to realize model transformation
and design case reasoning); and how to verify the proposed

VOLUME 9, 2021 40399

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

relational models and fit established verification tools to the
models.

REFERENCES
[1] S. A. Seshia, S. Hu, W. Li, and Q. Zhu, ‘‘Design automation of

cyber-physical systems: Challenges, advances, and opportunities,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 9,
pp. 1421–1434, Sep. 2017.

[2] P. J. Mosterman and J. Zander, ‘‘Cyber-physical systems challenges:
A needs analysis for collaborating embedded software systems,’’ Softw.
Syst. Model., vol. 15, no. 1, pp. 5–16, Feb. 2016.

[3] V. Gunes, S. Peter, T. Givargis, and F. Vahid, ‘‘A survey on concepts, appli-
cations, and challenges in cyber-physical systems,’’ KSII Trans. Internet
Inf. Syst., vol. 8, no. 12, pp. 4242–4268, 2014.

[4] P. Derler, E. A. Lee, and A. S. Vincentelli, ‘‘Modeling cyber-physical
systems,’’ Proc. IEEE, vol. 100, no. 1, pp. 13–28, Jan. 2012.

[5] S. K. Khaitan and J. D. McCalley, ‘‘Design techniques and applica-
tions of cyber physical systems: A survey,’’ IEEE Syst. J., vol. 9, no. 2,
pp. 350–365, Jun. 2015.

[6] S. S. Bhattacharyya and M. C. Wolf, ‘‘Research challenges for heteroge-
neous cyberphysical system design,’’ Computer, vol. 53, no. 7, pp. 71–75,
Jul. 2020.

[7] E. A. Lee, ‘‘Cyber physical systems: Design challenges,’’ in Proc. 11th
IEEE Int. Symp. Object Component-Oriented Real-Time Distrib. Com-
put. (ISORC), May 2008, pp. 363–369.

[8] P. Nuzzo, A. Iannopollo, S. Tripakis, and A. Sangiovanni-Vincentelli,
‘‘Are interface theories equivalent to contract theories?’’ in Proc.
12th ACM/IEEE Conf. Formal Methods Models Codesign, Oct. 2014,
pp. 104–113.

[9] G. Pola and M. D. Di Benedetto, ‘‘Control of cyber-physical-systems with
logic specifications: A formal methods approach,’’ Annu. Rev. Control,
vol. 47, pp. 178–192, 2019.

[10] R. Wisniewski, G. Bazydlo, P. Szczesniak, and I. Grobelna, ‘‘Design and
verification of cyber-physical systems specified by Petri nets—A case
study of a direct matrix converter,’’ Mathematics, vol. 7, no. 9, p. 812,
Sep. 2019.

[11] S. Bak, O. A. Beg, S. Bogomolov, T. T. Johnson, L. V. Nguyen, and
C. Schilling, ‘‘Hybrid automata: From verification to implementation,’’
Int. J. Softw. Tools Technol. Transf., vol. 21, no. 1, pp. 87–104, Feb. 2019.

[12] H. S. Son, W. Y. Kim, R. Y. Kim, and H.-G. Min, ‘‘Metamodel design for
model transformation from Simulink to ECML in cyber physical systems,’’
in Computer Applications for Graphics, Grid Computing, and Industrial
Environment. Berlin, Germany: Springer, 2012, pp. 56–60.

[13] G. Simko, T. Levendovszky, M. Maroti, and J. Sztipanovits, ‘‘Towards a
theory for cyber-physical systems modeling,’’ in Proc. 4th ACM SIGBED
Int. Workshop Desing, Modeling, Eval. Cyber-Phys. Syst., New York, NY,
USA, 2014, pp. 56–61.

[14] S. Bliudze and J. Sifakis, ‘‘The algebra of connectors-structuring inter-
action in BIP,’’ IEEE Trans. Comput., vol. 57, no. 10, pp. 1315–1330,
Oct. 2008.

[15] J. C. Willems, ‘‘The behavioral approach to open and interconnected
systems,’’ IEEE Control Syst., vol. 27, no. 6, pp. 46–99, Dec. 2007.

[16] J. Fitzgerald, C. Gamble, P. G. Larsen, K. Pierce, and J. Woodcock,
‘‘Cyber-physical systems design: Formal foundations, methods and inte-
grated tool chains,’’ in Proc. 3rd FME Workshop Formal Methods Softw.
Eng., Piscataway, NJ, USA, 2015, pp. 40–46.

[17] P. Derler, E. A. Lee, S. Tripakis, andM. Törngren, ‘‘Cyber-physical system
design contracts,’’ in Proc. ACM/IEEE 4th Int. Conf. Cyber-Phys. Syst.
(ICCPS), Apr. 2013, pp. 109–118.

[18] Z. Cheng, C. Fulong, L. Chao, and Q. Xuemei, ‘‘XML-based component
modeling and stimulation of cyber physical system,’’ J. Comput. Appl.,
vol. 39, no. 6, pp. 1842–1848, 2019.

[19] M. Hu, W. Duan, M. Zhang, T. Wei, and M. Chen, ‘‘Quantitative tim-
ing analysis for cyber-physical systems using uncertainty-aware scenario-
based specifications,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 39, no. 11, pp. 4006–4017, Nov. 2020.

[20] L. Ordinez, G. Eggly, M. Micheletto, and R. Santos, ‘‘Using UML for
learning how to design and model cyber-physical systems,’’ IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje, vol. 15, no. 1, pp. 50–60,
Feb. 2020.

[21] N. Bombieri, E. Ebeid, F. Fummi, and M. Lora, ‘‘On the reuse of hetero-
geneous IPs into SysML models for integration validation,’’ J. Electron.
Test., vol. 29, no. 5, pp. 647–667, Oct. 2013.

[22] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, ‘‘Modeling
languages in industry 4.0: An extended systematic mapping study,’’ Softw.
Syst. Model., vol. 19, no. 1, pp. 67–94, Jan. 2020.

[23] J. Zeng, L. T. Yang, and J. Ma, ‘‘A system-level modeling and design
for cyber-physical-social systems,’’ ACM Trans. Embedded Comput. Syst.,
vol. 15, no. 2, pp. 1–26, Jun. 2016.

[24] S. S. Setty, H. Yaqoob, A. Malik, K. I.-K. Wang, Z. Salcic, H. Park,
and U. D. Atmojo, ‘‘A unified framework for the design of distributed
cyber-physical systems–industrial automation example,’’ in Proc. IEEE
10th Conf. Ind. Electron. Appl. (ICIEA), New York, NY, USA, Jun. 2015,
pp. 1001–1007.

[25] N. Kaminski, E. Kusmenko, and B. Rumpe, ‘‘Modeling dynamic architec-
tures of self-adaptive cooperative Systems.,’’ J. Object Technol., vol. 18,
no. 2, p. 21, 2019.

[26] J. Liu, T. Li, Z. Ding, Y. Qian, H. Sun, and J. He, ‘‘AADL+: A simulation-
based methodology for cyber-physical systems,’’ Frontiers Comput. Sci.,
vol. 13, no. 3, pp. 516–538, Jun. 2019.

[27] A. Malik, Z. Salcic, P. S. Roop, and A. Girault, ‘‘SystemJ: A GALS
language for system level design,’’ Comput. Lang., Syst. Struct., vol. 36,
no. 4, pp. 317–344, Dec. 2010.

[28] W. Dai, V. Vyatkin, C. Chen, and X. Guan, ‘‘Modeling distributed automa-
tion systems in cyber-physical view,’’ in Proc. IEEE 10th Conf. Ind.
Electron. Appl. (ICIEA), Jun. 2015, pp. 984–989.

[29] A. Platzer, ‘‘Differential-algebraic dynamic logic for differential-algebraic
programs,’’ J. Log. Comput., vol. 20, no. 1, pp. 309–352, Feb. 2010.

[30] A. Platzer, ‘‘Choice & Control,’’ in Logical Foundations of Cyber-Physical
Systems. Cham, Switzerland: Springer, 2018.

[31] S. Zhou, Z. Yu, E. S. A. Nasr, H. A. Mahmoud, E. M. Awwad, and
N. Wu, ‘‘Homomorphic encryption of supervisory control systems using
automata,’’ IEEE Access, vol. 8, pp. 147185–147198, 2020.

[32] Z. Yu, J. Ouyang, S. Li, and X. Peng, ‘‘Formal modeling and control of
cyber-physical manufacturing systems,’’ Adv. Mech. Eng., vol. 9, no. 10,
Oct. 2017, Art. no. 168781401772547.

[33] W. Dai, C. Pang, V. Vyatkin, J. H. Christensen, and X. Guan, ‘‘Discrete-
Event-Based deterministic execution semantics with timestamps for indus-
trial cyber-physical systems,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
vol. 50, no. 3, pp. 851–862, Mar. 2020.

[34] N. Canadas, J. Machado, F. Soares, C. Barros, and L. Varela, ‘‘Simulation
of cyber physical systems behaviour using timed plant models,’’ Mecha-
tronics, vol. 54, pp. 175–185, Oct. 2018.

[35] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, and
A. Wortmann, ‘‘Towards a formal specification of multi-paradigm mod-
elling,’’ in Proc. ACM/IEEE 22nd Int. Conf. Model Driven Eng. Lang. Syst.
Companion (MODELS-C), Sep. 2019, pp. 419–424.

[36] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, ‘‘A platform-based design methodology with contracts and related
tools for the design of cyber-physical systems,’’ Proc. IEEE, vol. 103,
no. 11, pp. 2104–2132, Nov. 2015.

[37] A. Garro, A. Tundis, D. Bouskela, A. Jardin, N. Thuy, and M. Otter, ‘‘On
formal cyber physical system properties modeling: A new temporal logic
language and a Modelica-based solution,’’ in Proc. IEEE Int. Symp. Syst.
Eng. (ISSE), Oct. 2016, pp. 1–8.

[38] E. Palachi, C. Cohen, and S. Takashi, ‘‘Simulation of cyber physical
models using SysML and numerical solvers,’’ inProc. IEEE Int. Syst. Conf.
(SysCon), Apr. 2013, pp. 671–675.

[39] M. Wolf and E. Feron, ‘‘What don’t we know about CPS architectures?’’
in Proc. 52nd Annu. Design Autom. Conf., Jun. 2015, p. 80.

[40] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, ‘‘Taming Dr.
Frankenstein: Contract-based design for cyber-physical systems,’’ Eur.
J. Control, vol. 18, no. 3, pp. 217–238, Jan. 2012.

[41] R. Passerone, I. B. Hafaiedh, S. Graf, A. Benveniste, D. Cancila,
A. Cuccuru, S. Gerard, F. Terrier, W. Damm, A. Ferrari, L. Mangeruca,
B. Josko, T. Peikenkamp, and A. Sangiovanni-Vincentelli, ‘‘Metamodels
in Europe: Languages, tools, and applications,’’ IEEE Des. Test. Comput.,
vol. 26, no. 3, pp. 38–53, May 2009.

[42] L. V. Nguyen, K. A. Hoque, S. Bak, S. Drager, and T. T. Johnson,
‘‘Cyber-Physical Specification Mismatches,’’ ACM Trans. Cyber-Phys.
Syst., vol. 2, no. 4, p. 23, Sep. 2018.

[43] P. Bouyer, N. Markey, N. Perrin, and P. Schlehuber-Caissier, ‘‘Timed-
automata abstraction of switched dynamical systems using control invari-
ants,’’ Real-Time Syst., vol. 53, no. 3, pp. 327–353, May 2017.

[44] A. Platzer, ‘‘Differential dynamic logic for hybrid systems,’’ J. Automated
Reasoning, vol. 41, no. 2, pp. 143–189, Aug. 2008.

40400 VOLUME 9, 2021

C. Wang et al.: Relational Abstraction of Structure and Behavior for Cyber-Physical System Design

[45] I. Hasuo, ‘‘Metamathematics for systems design: Comprehensive transfer
of formal methods techniques to cyber-physical systems,’’ New Gener.
Comput., vol. 35, no. 3, pp. 271–305, Jul. 2017.

[46] H. Fang, H. Zhu, and J. Shi, ‘‘An object-oriented language for modeling of
hybrid systems,’’ in Proc. IEEE 16th Int. Symp. High Assurance Syst. Eng.
(HASE), Jan. 2015, pp. 1–9.

[47] A. Elsheikh, M. U. Awais, E. Widl, and P. Palensky, ‘‘Modelica-enabled
rapid prototyping of cyber-physical energy systems via the functional
mockup interface,’’ in Proc. Workshop Modeling Simulation Cyber-Phys.
Energy Syst. (MSCPES), May 2013, pp. 1–6.

[48] P. Fritzson, ‘‘Modelica—A cyber-physical modeling language and the
OpenModelica environment,’’ in Proc. 7th Int. Wireless Commun. Mobile
Comput. Conf., Jul. 2011, pp. 1648–1653.

[49] T. Junjie, Z. Jianjun, D. Jianwan, C. Liping, X. Gang, G. Bin, and
Y. Mengfei, ‘‘Cyber-physical systems modeling method based on model-
ica,’’ in Proc. IEEE 6th Int. Conf. Softw. Secur. Rel. Companion, Jun. 2012,
pp. 188–191.

[50] H. Ye, K. Liu, Q. Mou, and Y. Liu, ‘‘Modeling and formulation of delayed
cyber-physical power system for small-signal stability analysis and con-
trol,’’ IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2419–2432, May 2019.

[51] L. D. Xu, ‘‘The contribution of systems science to industry 4.0,’’ Syst. Res.
Behav. Sci., vol. 37, no. 4, pp. 618–631, Jul. 2020.

[52] R. P. de Soares and A. R. Secchi, ‘‘Structural analysis for static
and dynamic models,’’ Math. Comput. Model., vol. 55, nos. 3–4,
pp. 1051–1067, Feb. 2012.

[53] P. Bunus and P. Fritzson, ‘‘Automated static analysis of equation-based
components,’’ SIMULATION, vol. 80, nos. 7–8, pp. 321–345, Jul. 2004.

[54] A. Cimatti, S. Mover, and S. Tonetta, ‘‘SMT-based scenario verification for
hybrid systems,’’ Formal Methods Syst. Design, vol. 42, no. 1, pp. 46–66,
Feb. 2013.

CHAO WANG received the B.S. degree in
mechanical design, manufacture, and automation,
and the M.S. degree in mechanical design the-
ory from the Huazhong University of Science and
Technology (HUST), Wuhan, China, in 2011 and
2014, respectively, where he is currently pursuing
the Ph.D. degree with the School of Mechanical
Science and Engineering.

He has published two academic articles. His
research interests include intelligent system design
and knowledge-based design.

LI WAN received the B.S. degree in mechani-
cal design, manufacture, and automation, and the
Ph.D. degree in mechanical design theory from
the Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China, in 1985 and 1995,
respectively.

He is currently a Full Professor with the
School of Mechanical Science and Engineering,
HUST, where he is also the Deputy Director of
the National CAD Support Software Engineering

Research Center, Wuhan. He has published more than 50 articles. His
research interests include advanced manufacture technology, collaborative
design, and digital design and manufacture.

TIFAN XIONG received the B.S. degree in
mechanical from the Dalian University of Sci-
ence and Technology (DUST), Dalian, China,
in 1995, and the M.S. degree in mechanical and
the Ph.D. degree in mechanical design theory from
the Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China, in 1998 and 2007,
respectively.

He is currently a Lecturer with the School of
Mechanical Science and Engineering, HUST. He

has published more than 20 articles. His research interests include product
lifecycle management (PLM), knowledge service in crowdsourcing design,
resource planning and optimization, and industrial application of AR/VR.

YUANLONG XIE (Member, IEEE) received the
B.S. degree in electrical engineering and the Ph.D.
degree in mechanical engineering from the
Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China, in 2014 and 2018,
respectively.

From 2017 to 2018, he was an Academic
Visitor with the School of Electronic and Electrical
Engineering, University of Leeds, Leeds, U.K.
Since November 2018, he has been a Postdoctoral

Fellow with HUST. He has published more than 60 academic journal and
conference papers, one book, and held more than 15 patents. His research
interests include robot control, servo control, filed-bus technology, and
networked control systems.

Dr. Xie received the Best Student Paper Award at the 2020 IEEE Region
10 Conference.

SHUTING WANG received the B.S. and M.S.
degrees from the School of Energy and Power
Engineering, Wuhan University of Technology,
Wuhan, China, in 1991 and 1994, respectively, and
the Ph.D. degree from the School of Mechani-
cal Science and Engineering, Huazhong Univer-
sity of Science and Technology (HUST), Wuhan,
in 2002.

He is currently a Full Professor and the Vice-
President with the School of Mechanical Science

and Engineering, HUST, where he is also the Deputy Director of the National
CAD Support Software Engineering Research Center, HUST. He has pub-
lished more than 90 articles. His research interests include mobile robot,
mechanical design, and numerical control.

VOLUME 9, 2021 40401

