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ABSTRACT The risk of COVID-19 transmission increases when an uninfected person is less than 6 ft
from an infected person for longer than 15 minutes. Infectious disease experts working on the COVID-
19 pandemic call this high-risk situation being Too Close for Too Long (TCTL). Consequently, the problem
of detecting the TCTL situation in order to maintain appropriate social distance has attracted considerable
attention recently. One of the most prominent TCTL detection ideas being explored involves utilizing the
Bluetooth Low-Energy (BLE) Received Signal Strength Indicator (RSSI) to determine whether the owners
of two smartphones are observing the acceptable social distance of 6 ft. However, using RSSI measurements
to detect the TCTL situation is extremely challenging due to the significant signal variance caused by
multipath fading in indoor radio channel, carrying the smartphone in different pockets or positions, and
differences in smartphone manufacturer and type of the device. In this study we utilize the Mitre Range
Angle Structured (MRAS) Private Automated Contact Tracing (PACT) dataset to extensively evaluate the
effectiveness of Machine Learning (ML) algorithms in comparison to classical estimation theory techniques
to solve the TCTL problem. We provide a comparative performance evaluation of proximity classification
accuracy and the corresponding confidence levels using classical estimation theory and a variety of ML
algorithms. As the classical estimation method utilizes RSSI characteristics models, it is faster to compute,
is more explainable, and drives an analytical solution for the precision bounds proximity estimation. The
ML algorithms, Support Vector Machines (SVM), Random Forest, and Gradient Boosted Machines (GBM)
utilized thirteen spatial, time-domain, frequency-domain, and statistical features extracted from the BLE
RSSI data to generate the same results as classical estimation algorithms. We show that ML algorithms can
achieve 3.60%∼19.98% better precision, getting closer to achievable bounds for estimation.

INDEX TERMS COVID-19, proximity detection, RSSI features, PACT, classical estimation theory, BLE,
machine learning.

I. INTRODUCTION
With the threat of COVID-19, a highly infectious virus,
maintaining social distance is an effective way to prevent
infection. Specifically, the risk of Covid-19 transmission
increases when an uninfected person is less than 6 ft from
an infected person for longer than 15 minutes (also called
Too Close for Too Long (TCTL)). If the list of people who
are TCTL to each smartphone user can be detected and
tracked passively, they can be notified if the smartphone user
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tests positive for COVID-19. Existing opportunistic Radio
Frequency (RF) positioning technologies can be used to track
the infected smartphone user’s daily motion trajectory. The
owners of neighboring smart devices can then be notified
so that they can maintain social distance or get tested if
they are in found to have been TCTL. Although the tradeoff
between the benefits of COVID-19 mitigation using contact
tracing and the intrusion on users’ privacy remains a difficult
social political problem, scientific research in this area has
recently gained momentum. With its short range and low
energy consumption, the use of the ubiquitous Bluetooth Low
Energy (BLE) signal has attracted significant attention. This
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led Massachusetts Institute of Technology (MIT), Boston,
MA, to lead the Private Automated Contact Tracing (PACT)
consortium [1] to make available several high quality BLE
Received Signal Strength Indicator (RSSI) datasets, which
were gathered in a variety of proximity scenarios. Their goal
was to challenge research and development community to
discover a solution to this timely and important problem.
The reliability analysis of RSSI based BLE ranging is a
complex problem because of the significant variance in the
measured RSSI signal due to the complexity of the multipath
indoor radio propagation causing extensive signal attenu-
ations, fading and interference from other devices operat-
ing in unlicensed 2.4 GHz ISM bands. In prior work, real
world measurements studies and characterization of prox-
imity detection using BLE RSSI have been conducted in
a variety of scenarios [2]. Some prior work has proposed
approaches to improve RSSI-based proximity estimation
by integrating data from other sensors including light [3],
accelerometer and gyroscope [4], and user-sensedmotion [5].
Some other authors have incorporated information on the
place type [6], user context [7], sensed crowd [8], social con-
text [5], [9], social circles [10], indoor-outdoor detection [11]
and place co-location [12]. A modified path loss model has
also been utilized [13]. Beyond proximity other authors used
RSSI to estimate the mutual orientation between users [14]
and the energy consumption of BLE RSSI proximity detec-
tion [15]. In this paper, we present the results of our extensive
comparative performance evaluation of classical estimation
theory and Machine Learning (ML) algorithms for social
distance estimation using the BLE RSSI data. We utilized the
MITRE Corporation Structured Angle dataset of the PACT
project to share generate results and make our observations
from this experiment. We begin by describing the MITRE
Range Angle Structured (MRAS) PACT dataset followed
by a review of RSSI features that are useful for distance
estimation. Then, we present the classical estimation theory,
which facilitates faster proximity computation in a more
logically explainable manner, and ML algorithms that can be
used to estimate user proximity with all the RSSI features.
Finally, we provide our quantitative comparative performance
evaluation of traditional andML algorithms to solve the social
distance estimation problem using the BLE signal. For the
classical estimation theory results, we present the method
for computing the confidence associated with the distance
estimated using the BLE RSSI behavior models. We also
derive bounds on the confidence of range estimation using the
Cramer-Rao Lower Bound (CRLB). For the ML estimations,
we classified thirteen spatial, time, frequency, and general
statistical features of the BLE RSSI using three different
algorithms: Support Vector Machine (SVM), Random Forest
and Gradient Boosted Machines (GBM). The final outcome
of this extensive study is the comparison of theoretical achiev-
able bounds for social distance range estimation using BLE
RSSI with the empirical results obtained using two theo-
retical RSSI behavior models and three ML classification
algorithms. The RF cloud around wireless devices present

an opportunity for designing novel cyberspace applications.
The RF cloud contains features of the signal that reflect
the multipath characteristics of the environment at each
location. As a device moves, these multipath characteristics
change rapidly opening an opportunity for other devices to
observe these variations in characteristics and relate them to
a location-dependent cyberspace application [16], [17]. The
PACT project is a new opportunistic cyberspace application
focused on an opportunistic proximity check application ben-
efiting from the RF cloud of the BLE. The Center for Wire-
less Information Network Studies (CWINS) at the Worcester
Polytechnic Institute (WPI), Worcester, MA has previous
engagement in the PACT project and is now exploring sys-
tematic research in this field. Short term, the proximity detec-
tion BLE RSSI application can be investigated. Longer term
research could involve extending the BLE signal by including
other sensors. We build on our prior RSSI based positioning
and motion and gesture detection research [18]–[20] for the
current time. In future, we are planning to extend BLE by
incorporating other opportunistic wireless signals including
those fromWi-Fi and Ultra-wideband devices to increase the
precision of range estimation.

II. THE PACT PROMIXITY DATASETS AND
MEASUREMENT SCENARIOS
There are seven datasets made publicly available by the
PACT consortium [1]. Compared with the other datasets,
MRAS dataset is well documented. Moreover, it contains
measurements in various testing scenarios at different dis-
tances, which are relevant to our study goals of comparing
the performance of classical and ML algorithms using var-
ious features extracted from BLE RSSI measurements. The
MRAS dataset also contains different environment and tester
pose settings. Environment settings specify the properties of
testing area, such as the room size and the tester’s location
in the room. Tester settings defines the way devices are used
by testers, in which way they hold the smartphones, and the
poses of testers. Fig. 1 shows the location of device and
8 selected relative distances between testers for the MRAS
database. Fig. 1.a shows the five scenarios emulating real life
scenarios for position of the smartphone: in hand, in purse,
in shirt pocket, in front pants pocket, and in the back pants
pocket. Fig. 1.b shows the BLE RSSI measurement scenarios
for short range of operation of up to 15 ft. The eight stationary
locations for measurements begin at 3 ft, are increased at
intervals, and end at 15 ft. The distances are identified with
respect to a person who holds the smartphone with BLE bea-
cons. The RSSI measurement data are collected by another
person (a receiver) positioned at the eight labeled distances.
In each test location identified in Fig. 1.b, 5-10 seconds
measurements of BLE RSSI containing 300-400 samples of
the RSSI are measured:

s(k) = RSSI(t)
∣∣
t=kTs
; k = 1, . . . ,N , (1)
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FIGURE 1. PACT measurement scenario for the MITRE Range Angle
Structured dataset, (a) five scenarios for location of the smartphone,
(b) eight distances for measurements of the RSSI data base. (Source: PACT
website).

where N is the number of samples in a location and Ts is
the time interval between two adjacent RSSI measurement
samples.

Table 1 summarizes various operation scenarios reported
in the MRAS measurement database for collecting 300-
400 samples of RSSI in each stationary dataset. The first
two rows capture variations in the room size and locations
of testers in the area. The detailed room size setting is not
provided in the dataset, but a description of the scenarios
is available. For example, the entrance to the bathroom of
apartment is defined as small room, the kitchen is defined
as medium room, and large living room is defined as large
room [2]. The next two rows identify the types of the smart-
phone and the location of the smartphone on the tester body.
The last row identifies testers pose that is either ‘‘sit’’ or
‘‘stand’’ at themarked location. These datasets were collected
using three versions of Range-Angle Collection Protocol [1]:
Short, Mid and Full. The Full protocol consists of 40 datasets
with RSSI measurements at eight different distances shown
in Fig. 1.b and we used these datasets for our performance
evaluation for different proximity algorithms. We did not
include the Short and Mid versions, which had only two
different distances of 3 ft and 8 ft and did not offer adequate
diversity in measurement distances.

In our selected MRAS dataset, multipath fading charac-
teristics and variation in the environment caused close to
30 dB difference in the values of RSSI in each measurement
set and up to 30 dB variations in average RSSI in individ-
ual sets. The RSSI measurements in each location, defined
by (1), are post-processed before feeding them into classical
and ML algorithms respectively. In the classical estimation
algorithms, the training data for RSSI behavior at each loca-
tion (1), are averaged at each distance. The average RSSI at

TABLE 1. Scenarios for MITRE-Range-Angle-Structured dataset.

each location is then defined by:

Pr =
1
N

N∑
k=1

s(k). (2)

This data post-processing for classical algorithms asso-
ciates a single average RSSI measurement, Pr , to each loca-
tion.

For ML techniques, the RSSI measurements at each loca-
tion is grouped in overlapping windows of RSSI measure-
ment vectors of length L, whose elements are defined by

y(n) = {s(k + n); k = 0, 1, . . .L − 1}; n = 1, . . . ,N − L.

(3)

This processing associates an N − L set of L dimensional
vectors with each location. We utilized these post-processed
RSSI data to perform our comparative performance evalua-
tions for various classical and ML algorithms. Our perfor-
mance criterion is the confidence in the decision made by the
algorithm for the task of detecting the social distance of 6 ft
using BLE RSSI measurements gathered using a smartphone
at a given location.

III. FEATURES OF RSSI SHORT RANGE FADING
Motion in the environment affects RF propagation in multi-
path indoor and urban areas and causes fading in the mea-
sured RSSI, which seriously challenges the precision of
RSSI-based ranging [21]. The channel impulse response for
two wireless devices communicating with a range r in a
multipath, indoor, or urban area with N -paths, is represented
by [23]:

hr (αi; τi; θi) =
N∑
i=1

αiejθiδ(t − τi),

where (αi, τi, θi) are the magnitude, time of arrival, phase, and
DOA of the i-th path.

RSSI(t) =
N∑
i=1

|hr (αi; τi; θi)|2 =

∣∣∣∣∣
N∑
i=1

αiejθiδ(t − τi)

∣∣∣∣∣
2

=

∣∣∣∣∣
N∑
i=1

αiejθi

∣∣∣∣∣
2
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FIGURE 2. Variation of the received power in dB as a function of the logarithmic distance
between the transmitter and the receiver and how we approach to model them for different
purposes.

We can easily measure this RSSI from a transmitting
wireless device without any synchronization with the source.
Multipath arrival of the signal in indoor and urban areas,
where the applications discussed in this paper operate, causes
extensive fluctuations of the amplitude of the received sig-
nal in time. Fig. 2 illustrates the variation of the amplitude
in dBm (RSSI) as a function of the logarithmic distance
between the transmitter and the receiver, r , as a receiver
moves away from a transmitter. This figure also shows how
we approach the modeling of these variations of the RSSI for
different applications. The instantaneous RSSI in a multipath
environment always varies over time and with small local
changes in distance or movement of objects located around
the transmitter and the receiver antennas. The average of the
RSSI decays as the distance increases and we use an RSSI
model to predict the average received RSSI for calculating
the coverage and interference of wireless networks and for
RSSI-based cyberspace applications [23]. The distribution
function of temporal changes in the signal is modeled with a
few distribution functions to analyze the error rate of wireless
modems. The Fourier Transform of these changes is referred
to as the Doppler Spectrum, which reflects the speed ofmove-
ment of objects or the device in the environment of operation.
As the objects scattered in the area or the wireless devices
move in the environment or we change the frequency of
operation, characteristics of the multipath features fluctuate
drastically and cause fading in measured RSSI. In the wire-
less communication literature, this phenomenon is discussed
under temporal, frequency-selective, and spatial fading [22].
In this body of knowledge, RSSI features in space, time, and
frequency are modelled using a few physical parameters that
can be measured. These features can be utilized to improve
the reliability of estimates generated by RSSI-base range
estimation techniques.

A. RSSI SPATIAL FEATURES
In classical RSSI-base ranging we use the average RSSI
in dBm for calculating the distance between an antenna and
a device, r . The traditional method to model how the RSSI
is related to the distance from the transmitter is to use linear
regression and least square estimation to calculate the param-
eters of the model using empirical data [21]. The traditional
statistical linear regression model for the spatial behavior of
RSSI in dBm is:

RSSI : Pr = P0 − 10αlog10(r)+ X (σ ), (4)

in which r is the distance, X is a Gaussian random vari-
able with variance σ , representing the shadow fading effects,
α is the distance power gradient of the environment, and
P0 is the RSSI at a reference distance from the transmit-
ter. Shadow fading represents variations of the RSSI from
the linear regression line in dB caused by objects shad-
owing radio propagation paths between the transmitter and
the receiver. We can use the traditional Least Square (LS)
method of statistical modeling to estimate the RSSI spa-
tial behavior model parameters, (P0, α, σ ), using measured
RSSI data in different scenarios provided by the PACT
(section II) [21].

An alternative model for short range BLE RSSI is also
reported in the literature [24], which we tested on the PACT
database. Based on empirical measurements of BLE, this
model suggests that the RSSI has an additional sinusoidal
component:

RSSI : Pr=P0 − A cos
(
2πr
λ

)
+ 10α log(r) +X (σ ).

(5)

Therefore, in addition to traditional model parameters,
(P0, α, σ ), this model has two new parameters (A, λ), A
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FIGURE 3. RSSI estimation using traditional RSSI behavior model and the alternative BLE specific model for a set of MRAS RSSI
data.

is the amplitude scale of the sinusoidal part and λ is its
spatial wavelength, which we can also estimate using the LS
algorithm. In this paper, we expand the effective range of
this alternative BLE specific model to about 4.5 m (15 ft)
and compare the results with produced using the traditional
linear regression model described by (4). Fig. 3 shows the
difference between classical linear regression RSSI model
described by (4) and the alternative BLE-specific RSSImodel
described by (5) using a set of Mitre Corporation MRAS
PACT data in eight distances. The BLE-specific RSSI model
on the average provides a slightly better fit to data for
predicting the measured RSSI values. In section V.A we
compare the performance of classical range estimation algo-
rithms when we used the MRAS RSSI database with both
RSSI models.

B. RSSI FEATURES IN TIME DOMAIN
In RSSI ranging, we measure a sequence of RSSI values in
time at each location and estimate the range of these collective
measurements. Because the person measuring the BLE RSSI
at a location has slight body motions and the objects in the
environment also move, the measured RSSI fluctuations in
amplitude even when the transmitter and the receiver are
held in specific locations. In the multipath RF propagation
literature, these fluctuations are referred to as short range
multipath fading and their characteristics are modelled for
performance evaluation of wireless communications tech-
niques [23]. By using a ML system designed for ranging,
we can benefit from physical parameters of these fadingmod-
els as features for training the algorithm. Traditionally in data
science we use the mathematical statistics as features of these
signals, the new features extracted from our understanding
of the behavior of RF propagation in multipath environment
can potentially improve the performance of the system. These
features have been demonstrated to be very instrumental in
RSSI-based gesture and motion detection [18], [19]. In this
study, we evaluate the effectiveness of thirteen features of

RSSI in estimating the social distancing between smartphone
users utilizing BLE RSSI. Table 2 is a summary of the radio
propagation and statistical features that we have selected to
train the ML algorithms in our study. We calculated these
features for all BLE RSSI measurements, y(n), defined by
(3) to form a vector that is used to train the ML algo-
rithms in section IV.B.We have divide them into time-domain
(section III.B), frequency domain (section III.C), and tradi-
tional statistical features (section III.D). The time domain
RSSI features benefit from classical radio propagation mod-
elling of these fluctuations, which includes fading rate, aver-
age fade duration, coherence time, and shape of distribution
of fading, which we describe in the remaining subsection of
this section.

1) CROSSING RATE AND DURATION OF THE FADES
Fig. 4.a shows a sample of the fluctuations of RSSI
sequences, y(n), over time caused by small scale temporal
fading characteristics of the channel. Two interesting fea-
tures of short-range fading for RSSI measurements are the
fading rate and fading durations. We can calculate the rate
of fluctuation of the envelope of the RSSI caused by multi-
path fading with these parameters. It is well known that in
Rayleigh fading channels the threshold crossing rate, N (ρ),
and average duration of fade, τ (ρ), are related to the rms
Doppler spread Brms (see section 3.3). Fig. 4.a shows the
definition of the fade rate and the duration of the fade as well
as equations relating them together on a sample of MRAS
measured data. Defining the normalized crossing threshold
as, ρ = A/Arms, in which A and Arms are the threshold level
and rms amplitude of the RSSI, respectively, these relations
are given by (6a) and (6b) [23] in the top two rows of the
time-domain features in Table 2. Given a set of data in a
location (Fig. 4.a) we find the fading rate and fade duration
for the signal and use these values as features to train the ML
algorithm.
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TABLE 2. Summary of thirteen feature of the RSSI For training machine learning algorithms.

2) COHERENCE TIME
Another feature to determine the speed of fluctuations in
values of RSSI is the coherence time of the signal [23]. The
coherence time is the width of the correlation function of the
samples of the RSSI in a location. For L samples of RSSI
defined by sequence y(n), (3), the normalized autocorrelation

function is given by (6c) in Table 2, in which
my =

1
L

L∑
n=1

y(n)

r(n) =

√√√√ 1
L

L∑
n=1

[y(n)− my]2.
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FIGURE 4. Summary of time- and frequency-domain features extracted from samples of MRAS RSSI data a) level crossing rate and fade
duration and their relation to rms Doppler spectrum for a sample, b) 50% Coherence time using the autocorrelation function, c) Rayleigh fit
for distribution of amplitude fluctuation, and d) Laplacian fit to doppler spectrum.

As shown in Fig. 4.b, the value of the plot at the intersect
with the 50% line is used as the coherence time. We can
use the coherence time as another time-domain feature of the
small scale fading in a location to train a ML algorithm for
ranging.

3) SHAPE OF FADING DISTRIBUTION
Multipath fading results in fluctuations of the signal ampli-
tude because of the addition of signals with different phases
arriving from multiple paths. This phase difference is caused
by the signals traveling different distances along multiple
arriving paths. Since the phase of the arriving signals changes
rapidly, the received signal amplitude undergoes rapid fluc-
tuation that is often modeled as a random variable with a
Rayleigh distribution given by (6d) in Table 2 [23], where
σray, is the standard deviation of the Rayleigh distribution
function. To model these fluctuations, we can generate a
histogram of the amplitude of the received signal in time and
fit it to a Rayleigh distribution function. Fig. 4.c shows a
sample Rayleigh fit to theMRAS data, by fitting the Rayleigh
distributions to a set of MRAS data, y(n), we can determine

σray, the parameters defining the distribution of that data and
then associate that parameter as a feature per-location for
training the ML algorithm.

C. RSSI FEATURE IN FREQUENCY DOMAIN
Traditionally, RSSI of RF signals have been used in Doppler
radars and for GPS signals to measure the speed to correct
the estimated range for moving objects. In recent years, using
RSSI signal in time and in frequency with intelligent algo-
rithms have attracted attention in new emerging fields for big
data such as gesture [26] and motion detection [18], [19].
Parameters associated with the Doppler spectrum can also
be used for range estimation using ML algorithms. Doppler
spectrum, D(λ), is the magnitude square of the Fourier
transform of variation of the signal in time domain For
a discrete sequence, y(n), using the Fast Fourier Trans-
form (FFT), we can calculate samples of Doppler spectrum
function as:{

Y (k) = FFT [y(n)]
D(k) = D(λ)|λ=k/Ts = |Y (k)|

2.
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We extracted three features from the empirical Doppler
spectrum obtained from a set of data at a location, y(n). The
middle part of Table 2 summarizes these frequency domain
features. These parameters are the energy of the signal, E ,
defined by (7a) in Table 2, the RMS Doppler spread, defined
by (7b), and the shape of the Doppler spectrum in indoor
areas, defined by (7c). The RMS Doppler spread is the nor-
malized second moment of the y(n), reflecting the speed of
motions in the environment. We used this parameter in the
previous section for calculating the fade rate and duration as
well. According to the IEEE 802.11 standard organization
model for the RSSI, the Doppler spectrum shape follows
a Laplacian distribution in indoor areas, shown in (7b) of
Table 2 [22]. By normalizing amplitude to one, a = 1. Fitting
with empirical data results in a single parameter, b, reflects
the speed of BLE RSSI fluctuations at a given location.
Fig. 4.d shows a sample of the FFT and the best fit Laplacian
function for the MRAS RSSI data. In this way, we extract
three parameters to represent the frequency domain charac-
teristics of each data sequence y(n), {E , Brms, b}, and use
these three features along with the four time-domain features
and the following six statistical features for training ML
algorithms using the MRAS data.

D. STATISTICAL FEATURES OF RSSI
The features of the signal that we referred to so far in this
section have physical meanings that we borrowed them from
the multipath RF propagation literature [22]. The set of RSSI
data in a location can also be treated as a mathematical
sequence from which we calculate statistical features that are
then fed as inputs to ML algorithms. In this study, we have
included six common statistical features of the RSSI samples
at a location, shown in the last six columns of Table 2, for
training the ML algorithms. The two top rows of statistical
features are mean and peak-to-peak changes of the RSSI
sample at a location. Other traditional RSSI features are
Interquartile Range (IQR), which shows the spread of RSSI.
Skewness and Kurtosis, which are parameters depicting the
shape of RSSI distribution.

IV. PROXIMITY DETECTION ALGORITHMS
The objective of this study is to investigate the accuracy of
classical estimation theory algorithms for Covid-19 proxim-
ity detection and compare their performance with the results
obtained using ML algorithms. Classical algorithms use the
empirical measurements to model the behavior of RSSI with
(4) and (5), then calculate the confidence on the estima-
tion based on parameters of these models. This approach
enables faster computation in a more logically explainable
manner and it also enables us to calculate the Cramer-Rao
Lower Bound (CRLB) of the performance achievable by any
algorithm. ML algorithms benefitting from all the spatial,
time, frequency, and traditional statistical features of the RSSI
shown in Table 2, solving the same problem, and providing
their level of confidence on these estimates. In the remainder

of this section, we describe the details of these two classes of
algorithms that we have used in this study.

A. CLASSICAL ESTIMATION ALGORITMS
Classical estimation theory provides methods for modeling,
estimating, and calculating the performance bounds of an
estimator. In the classical estimation theory terminology,
estimation of the range using the RSSI, Pr , defined by (2),
is referred to as estimation of a single parameter, the range r ,
using observation of the function of the parameter, g(r),
in additive Gaussian noise, the shadow fading X (σ ),

O : Pr = g(r)+ X (σ ). (9a)

In our problem, we have a traditional RSSI linear regres-
sion model, (4), and its alternative BLE specific model,
(5) [25]:{

g1(r) = P0 − 10αlog10(r)
g2(r) = P0 − A cos(2πd/λ)+ 10α log(r).

(9b)

When we establish the model the classical estimation the-
ory provides us with tools for systematic estimate of the range
and the analysis of the accuracy of the estimation. Given
an RSSI value we can estimate the distance and calculate
the confidence on accuracy of that estimation in observing
the social distance. In addition, classical estimation theory
provides tools for calculation of variance of the estimate using
CRLB on accuracy of a single measurement and optimal
confidence expected from estimation using any algorithm.

1) EMPIRICAL RANGE ESTIMATION AND CONFIDENCE
In classical estimation theory the optimal estimate of the
range, r̂ , for an average RSSI measurement of a device, Pr ,
defined in (2) taken at a specific range, r , is found by solving:

r̂ = g−1(O) = g−1(Pr ). (10a)

For a traditional linear regressive model, (4), we have a
closed form answer for the problem:

r̂ = g−1(Pr ) = 10−
Pr−P0
10α . (10b)

For the alternate BLE specific model, (5), we find the
numerical solution to

Pr = P0 − A cos(2πr/λ)+ 10α log(r̂). (10c)

If the estimated range is less than or equal to the admissible
social distance of 6 ft given that the device was also within 6
ft range; or when the estimated range is more than 6 ft
and device range is also more than 6 ft, we are confident
that the algorithm works properly. Therefore, the confidence
on the estimate of the classical algorithms for BLE RSSI
measurements at a given distance r is calculated from [21]:

γ (r) = Pr
{[
r̂ ≤ 6/Pr ≤ P6

]
∩
[
r̂ > 6/Pr > P6

]}
= 1−

1
2
erfc

(
|P6 − Pr |
√
2σ

)
, (10d)
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where P6 = g(6) is the expected RSSI measured at 6 ft
distance obtained from RSSI behavior model and σ is the
standard deviation of the shadow fading. For our empirical
analysis of the classical estimation methods, we have used
(10d) to calculate the confidence on any set of test data.
We will explain these in more details in the introduction to
section V and Fig. 6.

2) BOUNDS ON RANGING AND CONFIDENCE
Another power tool from classical estimation theory is the
CRLB, which is a bound on the variance of the ranging error
and it is the inverse of the Fisher Information Matrix (FIM)
of the dataset [21]:

σ 2(r) = CRLB ≥ FIM−1 =

[
g′(r)

]2
σ 2 , (11a)

σ (r) is the standard deviation of the ranging error, σ , is the
standard deviation of shadow fading at the location, and g(r)
is the function representing the model for the two models of
RSSI behavior we studied. Substituting the two models given
in (9b) in to (11a), we have:
σ1(r) =

√
CRLB ≥

ln 10
√
N10

σ

α
r

σ2(r) =
√
CRLB ≥

σ

√
N (

2πA
λ

sin(
2πr
λ

)+
10α

ln 10 · α
)
.

(11b)

Equation (11a) provide bounds on the variance of estimate
using the twoRSSI behaviormodels at a given location. In our
COVID-19 social distancing problem, we are interested in
measuring our confidence in a distance estimate. The confi-
dent is the probability that the estimated range is less than or
equal to the admissible social distance of 6 ft given that the
device was in fact within the 6 ft range; or probability that
the estimated range is more than 6 ft and device range is also
more than 6 ft. If we assume that distance measurement error
is a zero mean Gaussian random variable, we can model the
distance estimate by

r̂ = r + η [σ (r)] ,

where η [σ (r)] is the measurement noise calculated from the
CRLB of (11a). Therefore, given a distance, r , and assuming
that the distance measurement error is a zero mean Gaussian
random variable, we can calculate our confidence in making
a measurement in one side of 6 ft and estimating it on the
correct side from:

γ (r) = Pr
{[
r̂ ≤ 6/r ≤ 6

]
∩
[
r̂ > 6/r > 6

]}
= 1−

1
2
erfc

(
|6− r|
√
2σ (r)

)
, (12)

where γ (r) is the bound on confidence of estimating the
distance using RSSI observed at a distance r , and σ (r) is
the variance of estimation defined by (11a). Equations (11a)
and (11b) demonstrate the bounds on estimating a location
from classical models for RSSI behavior, an ideal expected

confidence while (12) demonstrates the confidence on actual
measurements. Equations (10d) an algorithm for calculation
of confidence from the empirical data. In section V, we use
these equations to calculate the bounds on the confidence of
range estimation as well as the confidence of the RSSI mea-
surement based ranging using empirical data (see Fig. 6 in
that section).

B. MACHINE LEARNING ALGORITHMS
In classical range estimation, only the spatial characteristics
of RSSI measured values are utilized without considerations
its temporary characteristics in time and in frequency domain.
ML algorithms can benefit from other features of the signal,
providing a better estimate of the range and distance and
improving the confidence of the result of estimation. In this
paper we intend to compare these two approaches quantita-
tively. In practice the ML approach is more computationally
sophisticated, and the classical approach is more analytically
complex but simpler to implement. The classical approach
relies on modelling, which enables faster computation in
a more logically explainable manner. Moreover, classical
approaches generalize better to new, previously unseen sce-
narios. While prior work has typically used either the classi-
cal or ML approaches, we explore combining both methods
creating a third hybrid approach that uses classical models
and parameters as inputs to the ML algorithms, facilitating
model-based ML algorithms. In a sense, this is the best of
both worlds, integrating the temporal characteristics in time
and frequency as well as model parameters (see Fig. 5).
Model based ML has shown to be effective in RSSI based
motion and gesture detections to reduce the complexity and
computational time of the algorithms [18], [19], [27], in this
paper we have examined them for the proximity range esti-
mation for COVID-19 social distancing with BLE signals.

In the remainder of this section, we review the three ML
algorithms that we have considered in this study and used
in our comparative performance evaluation among classical:
Random Forest, Gradient Boosted Machines and Support
Vector Machines.

1) RANDOM FOREST
Random Forest is an ML classification algorithm that is an
ensemble of K classifiers Mi, . . .MK , where each classifier
is a decision tree created using a different sub-sample of the
entire dataset [27]. The final classification is obtained by
majority voting of the K decision trees M1 M2, . . .MK . For
a new test point x, the class predicted by the Random Forest
modelMK using majority voting is:

MK (x) = argmax
cj

{
vj|j = 1, . . . .k

}
,

where vj is the number of trees created from the different
dataset sub-samples, which predict the class of x as cj. That
is,

vj(x) = |
{
MK
= cj|t = 1, . . .K

}
.
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FIGURE 5. Overview of hybrid model-based ML proximity detection approach.

2) GRADIENT BOOSTED MACHINES (GBM)
We explored classification using XGBoost, a high-
performance implementation of GBM also called Gradient
Boosted Trees [28]. The GBM classification model is an
ensemble model that uses K additive functions to predict the
output:

ŷ = φ(xi) =
K∑
k=1

fk (xi), fk ∈ F,

where F is the space of regression trees created from different
subsets of the input dataset. To learn the set of functions
utilized by the model, the following regularized objective is
minimized

L(φ) =
∑
i

l(ŷ, yi)+
∑
k

�(fk ),

where l is a differentiable convex loss function, which mea-
sures the difference between the prediction ŷ and target yi,
and

�(f ) = γT +
1
2
λ||wscore||

2,

in which T is the number of leaves in the tree, γ and λ are
regularization parameters, and wscore is the score of corre-
sponding leaves.

3) SUPPORT VECTOR MACHINES (SVM)
SVM is a ML classification algorithm that tries to discover
a hyperplane that maximizes the margin between the target
classes in feature space [29] and it is based on the theory of
maximum linear discriminants. For two classes to be classi-
fied, SVM finds peripheral data points in each class that are
closest to the other class (called support vectors). For a dataset
D with n points xi in a d-dimensional space, a hyperplane
function h(x) can be defined as

h(x) = wTx+ b = w1x1 + w2x2 + . . .+ wdxd + b,

where w is the weight vector. Overall, n points, the margin of
the linear classifier can be defined as the minimum distance

of a point from the separating hyperplane given as:

δ∗ = min
xi

{
yi(wT xi + b)
||w||

}
.

The SVM classifier finds the optimal hyperplane dividing
the two classes by solving the minimization problem with
objective function:

min
wib

{
||w||2

2

}
,

with linear constraints:

h(x) = yi(wT xi + b) ≥ 1, ∀xi ∈ D.

Then, the class of a new point z, is predicted as:

ŷ = sign(h(z)) = sign(wTz+ b).

4) CONFIDENCE CALCULATION
To compare the performance of ML Classifiers with that
of the classical estimation theory, it is necessary to calcu-
late the confidence of the classifications generated by the
SVM, Random Forest, and GBM classifiers. To calculate
this confidence, we split the training data into 8 groups
based on the distance between the transmitter and the
receiver. Then we calculated, the confidence at each distance
from:

γ (r) = Pr
{[
r̂ ≤ 6/r ≤ 6

]
∩
[
r̂ > 6/r > 6

]}
, (13)

which represents the probability of estimating the distance
to be at the correct side of 6 ft social distance barrier. These
results from ML algorithms are comparable with the results
obtained from (13) for the two classical approaches from the
traditional linear regression and the BLE specific models for
RSSI behavior. These experimental results are then compared
with the bounds on confidence in (12) obtained from calcu-
lation of the CRLB.
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FIGURE 6. Bounds on confidence on estimation as a function of distance for MRAS RSSI database (top lines) versus
performance of classical and alternative RSSI behavior modelling range estimation as well as SVM, Random Forest and GBM
ML algorithms.

V. PERFORMANCE OF RANGING WITH BLE SIGNALS
In this section we present the results of applying the algo-
rithms described in section IV, using the BLE RSSI features
described in section III, on the PACT MRAS dataset that
was described in section II. The basic performance criterion
we use is the confidence on correctly estimating the social
distance of 6 ft between smartphone users. That is, the prob-
ability of correctly detecting the distance of a device relative
to the 6 ft threshold using RSSI measurements. We begin
by calculating bounds on confidence of RSSI based rang-
ing (section IV.A2), then we present the results of classical
estimation theory ranging (section IV.A1), and finally results
from ML algorithms (section IV.B4).

As the first step, the training data is used for calculating
parameters of the traditional RSSI behavior models using
the LS algorithm. The model parameters are then used to
calculate the CRLB and then the bounds on the confidence.
Then, the test data and model parameters are used for calcu-
lating results from the test data to determine the confidence
on classical methods with the two RSSI behavior models.
Finally, we trained the threeML algorithms using the training
data and found the confidence on estimation for the test data
to comparewith results of classical methods as well as bounds
on the performance. We refer to the results of calculating the
bounds on the test data using spatial RSSI behavior models as
classical performance evaluation and we present those results
first.

All the test scenarios shown in Table 1 are for the Line-
Of-Sight (LOS) propagation condition without any object
obstructing the LOS path between the transmitter and the
receiver and the maximum distance is 15 feet (Fig. 1.b).
We begin by presenting the results for our traditional RSSI
behavior model described by (4). We have 40 sets of data for
five scenarios in eight distances. We utilized 75% of the data
to estimate the parameters of the RSSI behavior model with
LS algorithm. The model is trained for LS estimation with

the RSSI averaged at each distance shown in the measure-
ment scenario of Fig. 1.b. The three parameters of the tradi-
tional RSSI regressive model, power at the reference point,
distance-power gradient, and standard deviation of shadow
fading, were P0 = −54.94 dBm, α = 1.74 and σ = 3.78 dB,
respectively.We repeat the same procedure on training data to
calculate the five parameters of the alternative BLE specific
model. These parameters, power at the reference point, scale
factor, spatial wavelength, distance-power gradient, and the
standard deviation of shadow fading, were calculated as P0 =
−55.88 dBm, A = −0.93, λ = 11.31, α = 1.51, and
σ = 3.78 dB, respectively.

A. EFFECTS OF DISTANCE ON CONFIDENCE
With these parameters of the RSSI behavior models estimated
using LS estimation, we calculated the bound on standard
deviation of the range measurement error using the CRLB
for the two, classical and BLE specific, models from (15a)
and (15b), respectively. These bound are then applied to (16)
to determine the bounds on confidence on the estimate as a
function of distance, γ (r), for the two RSSI behavior models.
The solid line on top of Fig. 6 shows the plot of bounds on
confidence on estimation as a function of range, γ (r), for
the two path loss models. As shown in this figure, although
alternative model was providing a better estimate of the RSSI
values (Fig. 3), the confidence for estimating the range from
either of themodels with the CRLB, remains almost the same.
Alternativemodel provided a slightly better performance than
the classical linear regression model in Fig. 3 because it
fits better to BLE data before 3.5 m. With the BLE RSSI,
for less than 1.5 m, we are almost 100% confident in the
estimate enabling us to overrule the social distance range of 6
ft and for distances of more than 2.5 m we have the same
confidence that we are observing the social distance rule.
Since models are based on zero mean Gaussian modeling of
the noise, at the exact distance of 6 ft the best algorithms can
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only detect the range with 50% confidence. The bounds on
confidence, γ (r), plots in Fig. 6 show us best expected con-
fidence that we obtain from RSSI measurements in our test
dataset.

As the next step, we examined the performance of classical
estimation models from solving (12c) to estimate the distance
from the test data. In this part we use the average RSSI’s for
each distance, r , in the remaining 25% of database to solve
(12c) to find our estimate of the distance, r̂ , with each of the
RSSI behavior models. Then we empirically calculated the
confidence from (17) for any specific data set. The bottom
lines of Fig. 6 show the performance of the range estima-
tion with traditional and BLE specific alternative models
obtained from empirical studies. Performance of the classical
estimation algorithms follow the V-shape of the bounds on
the performance, but the quality of estimate is substantially
lower than the bounds. This encouraged us to examine ML
algorithms to improve the performance. The dashed-lines
in Fig. 6 show the results of applying the three different
ML algorithms examined in this paper (section IV.B). The
three ML algorithms, SVM, Random Forest, and GBM will
improve the performance over the classical methods, when
the social distance of the device is 6 ft or larger. However,
on or in the proximity of 6 ft classical models perform slightly
better.

B. EFFECTS OF ENVIRONMENT AND USER BEHAVIOR
In the last section we presented the results of effects of range
on confidence of estimate with classical and ML algorithms
and we compared that with performance bounds that are
achievable as calculated using CRLB. Now that we estab-
lished the framework for the analysis against the bounds and
trained our algorithmswith the training database, it is possible
to explore the relationship between scenarios of operation
and the behavior of the user on the expected performance.
In section II, Table 1, we partitioned the MRAS database
into five different scenarios for the test. We classified the
top two scenarios in the Table 1, describing the area size and
relative location in the area, as scenarios related to the effects
of the environment, and the last two scenarios, describe the
location inwhich the smartphone is carried and the pose of the
tester, as scenarios describing the user behavior. In this way,
we divide the scenarios into, the environment and user behav-
ior, and analyzed them separately for each of the seven dif-
ferent devices, in the middle column of the Table 1. To make
the comparison more focused and clearer, we first compare
the performance of classical RSSI linear regression model
with that of the GBM ML algorithm. As shown in Fig. 6,
results of confidence analysis with traditional RSSI model
and the BLE specific model are very close. The average of
confidence over all distances for the classical method using
the traditional linear regression in this figure is 69.60% and
the average confidence for the BLE specificmodel is 69.55%.
As the alternative model has almost the same average con-
fidence as the classical model and the traditional algorithm

offers an easier and more physically explainable method for
estimation, we only compared the classical model with the
best ML algorithms. The GBM classifier has highest average
confidence of 89.58% for the entire dataset, the average
for Random Forest is 84.88%, and SVM has an average
of 73.20% in confidence. All three ML algorithms benefitted
from all thirteen features of the RSSI and performed better
than the classical models. Overall, GBM achieves the best
results. Therefore, the comparison of GBM and traditional
RSSI behavior modeling for our specific problem illustrates
the best performance that the classical andML algorithms can
achieve with our existing dataset.

We began our analyses of the effects of various parameters
on the performance by looking at the results in different envi-
ronments. Table 3 shows the confidence in different environ-
mental settings for all tested smartphones with the classical
RSSI model and GBM. The MRAS dataset utilized in this
study was collected by multiple currently cohabiting testers
and in multiple random scenarios to create a comprehensive
dataset. The tests were conducted in various residential build-
ings or public spaces representing a variety of architecture
and five different space sizes. The testers had to strictly
obey social distancing guidelines if the test was conducted
in publicly accessible locations [1]. The best indoor results
are obtained in medium rooms, near the walls, in congested
areas, by iPhone XS (up to 87.80% for classical and up to
95.77% with GBM) and in outside, the center of the open
areas, by iPhone 8 (86.09% for classical and 97.35% for
GBM). The worst indoor result for the classical is obtained in
medium rooms, the center of room, in open areas, by iPhone
XS Max (50.81%). The worst indoor result for GBM is
obtained in medium rooms, near walls, in congested areas,
and by iPhone 11 (75.88%). The worst outdoor result in open
areas for classical is obtained by iPhone 7 Plus (64.30%).
The worst outdoor result in open areas for GBM is obtained
by iPhone XS(84.41%). The average confidence for indoor
environment is 70.20% for classical, which is about 4.83%
less than that of outdoor (75.03%). The average confidence
for indoor environment is 87.37% for GBM which is 2.24%
less than that of outdoor (89.61). The average confidences are
61.03% and 82.74% in small rooms, 70.05% and 86.38% in
medium rooms, 71.51% and 89.30% in large rooms, 75.08%
and 89.68% in hallways for classical and GBM respectively.
The average confidence increases with the room size. On the
average, GBM shows 17% improvement on confidence over
results achieved by the simple classical regressive model.
Table 4 compares the confidence of estimation using clas-
sical estimation approaches with using GBM ML algorithm
for different user behaviors and with different devices. The
best results are obtained under the scenario that both testers
are standing and holding their phones in their front pants
pocket, and by iPhone 8 (86.09% for classical and 97.35%
for GBM). The worst result for GBM is obtained in the
scenario that both testers are sitting and holding their phones
in hand, by iPhone 11 (75.88%). The worst result for clas-
sical is obtained in the scenario that Tester1 is standing,
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TABLE 3. Effect of environment on confidence.

TABLE 4. Effect of user behavior (Tester’s pose and location of phone) on confidence.

Tester2 is sitting and both testers are holding their phones
in their front pants pocket, by iPhone XS Max (50.81%).
The average confidences are 73.60% (classical) and 88.77%

(GBM) if both testers are standing, 61.37% (classical) and
79.22% (GBM) if both testers are sitting, 66.13% (classical)
and 86.53% (GBM) if the Tester1 is standing and Tester2 is
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FIGURE 7. Bounds on confidence on estimation as a function of distance for MRAS RSSI database (top lines) versus
performance of classical and alternative RSSI behavior modelling range estimation as well as SVM, Random Forest and GBM
ML algorithms.

FIGURE 8. Relation between confidence and number features for SVM, Random Forest, and GBM ML algorithms as the most
important of thirteen features are eliminated from training the algorithms.

sitting, 76.76% (classical) and 89.66% (GBM) if Tester1 is
sitting and Tester2 is standing.

C. EFFECTS OF NUMBER OF FEATURES IN PERFORMANCE
OF MACHINE LEARNING ALGORITHMS
We studied three Machine Learning algorithm, SVM, Ran-
dom Forest, and GBM. For comparative performance eval-
uation of these algorithms, we trained the algorithms using
the 13 features shown in Table 2, classified into three sub-
groups: time-, frequency-domain, and statistical. The ML
algorithms, in addition to confidence, produce measures of
importance of the features. Fig. 7 shows the feature impor-
tance for the ML classifiers that we studied. As shown in
the figure, the average RSSI is the most effective feature.
This is the feature that we also used for classical estimation
modelling. Rayleigh parameter and YP2P reflecting variations
in the RSSI have shown to contribute significantly. Since
the MRAS dataset is collected in static environment and the
Doppler Spectrum is related to the speed of moving antenna
and moving object between antennas, the Frequency domain

features have shown less contribution to the classification
compared with the other two groups. Another traditional
approach in ML is to analyze the direct effect of feature
on the performance criteria, which is the confidence in the
decision regarding the 6 ft threshold necessary to observe
social distance. To implement this procedure, we sort the fea-
tures for any of the algorithms according to their importance
and re-evaluate performance while dropping them one after
another. The intuition here is to demonstrate the importance
of each feature on performance. Fig. 8 shows the result of
gradual removal of features, each time we remove the sin-
gle feature with the highest importance. The confidence of
distance estimation using SVM drops significantly after the
first three features are removed, demonstrating that the first
three features dominate its performance. The performance
of the Random Forest classifier drops gradually up to the
removal of the first five features. For this algorithm, there
is no sharp drop in performance, demonstrating that more
features contribute to the model’s performance. There is no
dominating contribution by certain features. The accuracy
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of the GBM classifier increases with the number of fea-
tures and follows a similar gradual performance degradation
pattern as Random Forest. As both methods are tree-based
ensemble ML methods, the similarity in their performance is
expected.

VI. CONCLUSION
The risk of COVID-19 transmission increases if an uninfected
person is less than 6 ft from an infected person for longer than
15 minutes (also called Too Close for Too Long (TCTL)).
In this paper we have presented research, development, and
comparative analysis of classical estimation theory methods,
which enables faster computation in a more logically explain-
able manner and novel hybrid model-based ML approaches
for proximity distance estimation using the RSSI informa-
tion radiated from the broadcast channels of the BLE. Our
results based on analyses of the Mitre Range Angle Struc-
tured (MRAS) PACT dataset in five different environments,
with five different location for the smartphone, and eight
different smartphones. Our analyses methodology provided a
framework for the empirical analysis of the estimation confi-
dencewhen applying both classical estimation theory andML
algorithms for solving the social distance estimation problem
with BLE RSSI. We derived bounds on the confidence on
estimation using RSSI of BLE as a function of distance. Then,
we compared the performance of classical estimation theory
ranging algorithms with that of the ML algorithms against
the bound and we analyzed the effects of the environment
and user behavior on the performance of the algorithms. The
classical estimation theory algorithms using two models for
RSSI spatial behavior were comparedwith three differentML
algorithms (Random Forest, GBM and SVM) benefiting from
thirteen features of the RSSI. Classical algorithms showed
an average confidence of 69.60% in correctly estimating the
social distance threshold of 6 ft. The GBM ML algorithm
demonstrated that using the thirteen feature it can increase
the confidence in the estimation of this social distance using
BLE RSSI with an average confidence of 89.58%, which was
19.98% higher than the average confidence achieved using
the classical approach.
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