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ABSTRACT At present, in order to improve the safety performance of power battery, a safety vent is welded
on the battery cover to avoid unpredictable explosions. It is vital to detect the laser welding defects on safety
vent effectively for product quality. In this paper, a lightweight multiscale attention semantic segmentation
algorithm with high accuracy and efficiency was proposed. We built an experimental dataset of safety vent
welding defects with a total of 7263 original images, which were collected from a battery manufacturing
production line. The main framework of the proposed model consists of four modules: the improved Res2Net
serving as the feature extraction sub-module, an attention mechanism, a localization block and a boundary
anti-aliasing module. This architecture can segment defects of different sizes and shapes in real-time and
get more refined segmentation results simultaneously. To evaluate the method, experiments concerning
mean IOU and pixel accuracy were conducted, and an average validation accuracy of 99.4% and the mean
IOU of 84.67% were achieved respectively. Furthermore, comparison experiments using some outstanding
algorithms on safety vent’s welding defects test dataset were performed. It proves that our method achieved
the best performance in terms of model size, computational complexity, efficiency and detection accuracy.
Specifically, the model size is only 3.8 MB, and the frames per second (FPS) is 132.3. In brief, the proposed
model is suitable for laser welding quality detection on safety vent in an industrial environment. Additionally,
our study can provide a reference for designing relevant defect detection tasks using semantic segmentation
method.

INDEX TERMS Laser welding defects, convolutional neural network (CNN), multiscale attention, semantic

segmentation.

I. INTRODUCTION

In recent years, as our country attaches great importance
to environmental protection and adopts the corresponding
strong national policies, the technology of power battery
for new energy vehicles has been developed rapidly. Power
battery is one of the most important core components of new
energy vehicles, whose quality is directly related to the users’
life and security, as well as the service life of the vehicle [1].
Therefore, the safety performance of power battery requires
special attention. To avoid the potential explosion hazard
of the power battery during use, a safety vent is usually
fixed on the battery cover. When the internal pressure of the
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power battery exceeds the threshold value, the safety vent will
burst to release the pressure, thus avoiding an accident [2].
Currently, due to the fast, accurate, delicate weld seam char-
acteristics, laser welding is the mainly adopted technique for
safety vent welding. In actual production, laser welding for
the safety vent of the power battery and its battery cover is
completed in the automatic production line.

However, due to equipment or human reasons, the sur-
face of the safety vent after welding will inevitably present
some appearance defects such as cracks, collapse, holes,
and incomplete welding during manufacturing process. These
defects appear unaesthetic, also may cause potential dan-
gers for battery usage. Consequently, the detection of weld-
ing defects on the surface of safety vent is very important.
At present, some factories still use manual vision to conduct
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detection tasks, which consumes a lot of labor but is inef-
ficient and behaves poorly in real time. Simultaneously, the
detection accuracy is easily influenced by human experience
and subjective judgment, and it is quite prone to lead to
miss detection or misjudgment. To overcome the problems
of manual inspection, some new automatic detection tech-
niques like pattern recognition and machine vision, are grad-
ually replacing the manual inspection of product’s surface
defects [3]. Generally, defect detection based on machine
vision is to identify whether the image of the product contains
defects. In the past few decades, some image processing
methods have been widely used in image defect detection,
for example, thresholding based [4], segmentation based [5],
edge detection [6], Sobel or Canny operator [7], [8] and neural
networks [9], support vector machines [10], KNN (K Nearest
Neighbor) [11], etc. A similar approach is adopted in [12],
[13]. However, there are still some problems to be resolved
with these approaches, for instance, being susceptible to light,
environment or noise can result in poor anti-interference abil-
ity. Additionally, the diversity of the product defects, complex
background, and other factors make it difficult to identify the
defect target and the recognition rate is low, which requires
extensive testing and experienced engineers for further fea-
ture selection. Recently, with the great increase in computing
power and the rapid development of artificial intelligence,
deep learning is making a splash in the field of computer
vision [14]. Deep learning can use multi-layer deep neural
networks and a large number of data samples to automatically
learn implicit relationships in data. It can combine low-level
data features to obtain high-level feature representations,
thereby improving the accuracy of subsequent recognition
and classification. Compared with manual inspection and
machine vision detection, deep learning learns characteristics
of the defects from a deeper level and can adapt to more com-
plex and changeable production environments, now, it has
surpassed human and machine vision methods in some defect
detection tasks. As a result, more and more deep learning
methods are being applied to product defect detection field
and have achieved remarkable success.

Generally, applications of deep learning in surface defect
detection fall into three main categories: image classification,
object detection, and semantic segmentation. For the image-
classification-based method, in [15], T. Wang et al. sliced the
input image and sent it into the deep learning network for
recognition, then obtained high accuracy in the product qual-
ity control task. In [16], X. Xu et al. improved the Inception
v3 model and achieved a top-one accuracy of 99.56% in the
roller defect classification task. Additionally, surface defect
detection can also be conducted using the object detection
method. In [17], W. Choi et al. detected five damage types
including concrete cracks, steel corrosion with two levels
(medium and high), bolt corrosion, and steel delamination
through the Faster RCNN network. In [18], J. Chen et al.
Cascaded two detectors in a rough-to-fine pattern including
SSD, YOLO to localize the fasteners’ defects. Similarly,
in [19], J. Zhang et al. used a modified SSD network for
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automatic detection of paint defects on the vehicle body.
Finally, for high-precision defect detection in industrial appli-
cations, semantic segmentation-based method has a higher
requirement. Compared to the aforementioned two methods,
it needs to detect the content of the input image, as well
as providing pixel-level defect locations. So, this method is
more challenging in that the model needs a trade-off between
accuracy and speed. In [20], J. Long et al. proposed a fully
convolutional networks (FCN), which is considered to be a
breakthrough in deep learning for image segmentation [21].
Unlike the FCN network, the U-net network [22] was pro-
posed in 2015 to segment the cell wall, and the segmentation
details were more precise. Since the advent of the U-net
network, the encoder-decoder architecture is very effective
in the field of image segmentation. So, many segmentation
networks adopted in surface defect detection use it as the
basic network framework. For example, in [23], X. Tao et al.
designed a new auto-encoder structure to locate the pixel-
level defect position and then identified them through a clas-
sification network. Also in [24], J. Jiang et al. applied the
model based on U-net to detect the surface defect on the back
glass of smartphones. In [25], S. Mei et al. used Gaussian
pyramids together with semantic segmentation to reconstruct
textile defects, and the inference stage completed the fusion
by combining contextual information. A similar approach is
adopted in [26]—[28]. These methods realized surface defect
detection by designing a complex network structure, thus lead
to a significant increase in model size and computational
complexity, which is far from lightweight and high efficiency
required by practical applications. Moreover, in addition to
being related to the network structure, an excellent deep
learning defect detection model also needs enough defect
samples for training.

Turn to the safety vent’s welding defect detection, the size
and shape of each weld defect vary. Also, the defect features
have a certain degree of randomness, which makes the precise
segmentation of the safety vent defects a major problem.
Aiming at the current research status and the existing prob-
lems of surface welding defect detection, our group proposed
an optimized VGG (Visual Geometry Group) 16 classifi-
cation algorithm in [29], which achieved 99.89% accuracy
on the task of laser welding defect classification. In [30],
we continued to subdivide the defects into seven classifi-
cations based on two classifications, and by optimizing the
SqueezeNet structure, a top-one accuracy of 95.58% in the
seven classifications task for laser welding defects had been
achieved. In this paper, using welding defect images data col-
lected from factory as an experimental dataset, we proposed a
lightweight multiscale attention semantic segmentation algo-
rithm. As aforementioned, U-net has become a milestone
in the application of deep learning for image segmentation
based on the encoder-decoder symmetric structure network,
our research is also based on U-net. The main contributions
of this paper are as follows. First, we constructed a safety vent
welding defect dataset with a total of 7263 images, and per-
formed relevant preprocessing and labeling of the collected
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FIGURE 1. Four types of welding defects: (a) P. (b) WC. (c) MW. (d) P and
WC. (e) Two sets of WC. (f) P and MW. (d) (e) (f) are mixed defects (MD).

images. A data augmentation strategy is also adopted to
avoid over-fitting and enhance the robustness of the model.
Then, the weld defects were segmented based on a multi-
scale network, and the hole convolution [31] is used in the
downsampling part to propose a segmentation model fused
with multiple receptive fields. Additionally, the network used
the improved Res2Net [32] as the feature extraction sub-
module, which greatly reduced the parameter size and cal-
culation complication of the model. Besides, a multiscale
attention mechanism network is proposed, which is called
MSAN in this paper. It can not only improve the robustness of
features to scale changes, but also be capable of suppressing
the noise and redundancy in the feature map through the
generated mask. Finally, the localization block and boundary
anti-aliasing module are proposed to make the model get
more refined segmentation results.

Il. DATASET ACQUISITION

In the actual safety vent welding process, the qualification
rate of the product reaches more than 90%, which makes it
difficult to collect samples with different shapes of defect
types, and the acquisition cost will increase. To address the
problem of data shortage, our group spent two months col-
lecting a total of 7263 original images of safety vent welding
defects from a cooperative factory. An AOI system embedded
in a laser welding machine is applied in the factory, which
consists of a CMOS industrial camera and an LED stable light
source for obtaining high-quality images [29]. According to
the shape of the defects, this paper classifies the obtained
defects into four categories, namely porosity (P), welding col-
lapse (WC), missing weld (MW), and mixed defects (MD),
as shown in Figure 1.

Table 1 exhibits the details of the original dataset.
We divided the images into three parts, with the training set
accounts for 80%, the validation set accounts for 15%, and
the test set accounting for 5%.

The original image has a resolution of 1800 x 1200, which
has been normalized for preprocessing. In virtue of the small
size of the input image, the subtle defects in the image will be
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TABLE 1. The detailed information of the safety vent's defects dataset.

Dataset P wC MW MD Total
Train 1373 1394 1364 1680 5811
Valid 257 261 256 315 1089
Test 86 87 85 105 363

covered, as the example porosity type shown in Figure 1 (a),
which makes up only a small proportion of the entire image.
Conversely, if the input image is too large, the parameter
amount of the model will increase and the training and testing
time will prolong correspondingly. Thus, a letterbox trans-
formation is taken to transform the input image to 576 x
416. After preprocessing, the labeling tool LabelMe is used
to provide a pixel-level annotation for each image. In the
subsequent training phase, a data augmentation strategy is
also applied to improve the detection model’s immunity to
interference, thereby making the application scenario more
practical.

lll. METHODS

A. NETWORK ARCHITECTURE

Attention mechanisms and multiscale features are two impor-
tant means used to optimize convolutional neural network
(CNN) structure and improve the capacity of network fea-
ture expression. At present, most networks based on atten-
tion mechanisms are single scale ones. For example, the
SE (Squeeze-and-Excitation) model [33] only processes the
feature channel dimensions, accordingly, the generated mask
cannot effectively focus on the multiscale information in the
feature. Although ordinary multiscale networks can acquire
multiscale features, the redundancy and noise in the features
will affect the overall performance of the network. To deal
with these problems, we proposed a multiscale attention
network defect detection model based on U-net, which we
called MSAN_Unet, and the main structure of this model is
shown in Figure 2 (a). Figure 2 (b) and Figure 2 (c) depict
the localization block (LB) and the boundary anti-aliasing
module (BA) in the model respectively.

There are two main methods for obtaining multiscale fea-
tures in the convolutional layer. One is to use convolution
kernels of different sizes, and the other is to group features
along channel dimensions and interactively output features
between groups to obtain receptive fields of different scales.
Unlike U-net, which uses ordinary convolutional structures to
extract features, MSAN_Unet replaces it with the improved
Res2Net, named MSAN. Figure 3 (a) presents the original
Res2Net structure while Figure 3 (b) exhibits the improved
MSAN structure.

MSAN enables the extraction of features at different scales
in the downsampling stage, which is responsible for feature
multiplexing and also prevents the gradient disappearance
phenomenon. To better understand the function of MSAN,
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Ground Truth Prediction

W*H*Cls

K*1*C*Cls 1*K*C*Cls

Conv Conv
1*K*Cls*Cls K*1*Cls*Cls

Conv+BN+Relu
3*3*Cls*Cls

Conv+BN+Relu

3*3*Cls*Cls

1*1*Cls*Cls
(b) (©)
FIGURE 2. (a) MSAN_Unet, MSAN is the multiscale attention network, LB
is the Localization block, BA is the boundary anti-aliasing module. (b) LB.
(c) BA, Cls is the pixel type, k is the size of the convolution kernel, BN is

batch normalization module, Conv is the convolutional layer, RelLU is the
RelLU activation function.

| X

Y

(a) (b)
FIGURE 3. (a) Res2Net's network architecture, Conv is the convolutional
layer. (b) MSAN, DW is the depthwise separable convolutional layer, A is

the attention mechanism, as shown in Figure 5. Gelu is the Gelu
activation function.

the architecture details presents here. From Figure 3 (b), after
1*1 convolution, the input feature X will output four sets of
feature subsets X;. Each subset has the same spatial size and
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FIGURE 4. Attention mechanism, Global pool is the global pooling layer,
Gelu is the Gelu activation function, Conv is the convolutional layer,
Sigmoid is the Sigmoid activation function. H and W denote the size of
the input features, C is the number of channels, and r is the channel
compression ratio.

Global pool

the number of the channels is a quarter of the original feature
except X1, which does not undergo a convolution operation,
thus to maintain the receptive field scale of the input feature,
while other groups of features need to undergo corresponding
3*3 convolution. Then, in order to obtain a large receptive
field, a 3*3 hole convolution with three different dilation rates
are used to convolve the output features of the previous step
in parallel, and the dilation rate parameters are one, two,
and four respectively, followed by a 1*1 convolution to keep
the channels consistent, denoted by f;. Finally, each group of
features is spliced and merged in the channel dimension, and
passes Gelu (Gaussian error linear units) [34] function and a
1*1 convolution to obtain model output features with different
scale receptive field. If an attention model is introduced on
this basis, a mask can be generated based on the features
at a different scale, and the network can pay attention to
the multiscale information in the features when the mask is
fused with the features. However, in the process of generating
multiscale features, there is a lot of noise and redundant
information in the features of the channels due to different
target size and random background interference in the input
image, especially in the initial stage of training, when the net-
work is unable to extract characteristics effectively from the
input image. Furthermore, by adding the features of adjacent
channels, the noise existing in the previous channel will be
superimposed on the next channel, which will increase the
convergence difficulty of the network and affect the perfor-
mance improvement of the network. Since the convolution
operation only fuses channel and spatial information on the
local receptive field during feature extraction, the output
features cannot capture contextual information beyond this
field. To overcome this shortcoming, MSAN introduces the
attention mechanism in the process of inter-group interaction
of feature information, with an attention structure as shown
in Figure 4.

For attention mechanisms, first, the output X of the
convolution layer is used as the input to the model,
where X e RCH'W X = [X,X2,....Xcl.Xc =
[XL. x2,....,XN],N = H*W. Since the convolution oper-
ation can only process local information of the features,
it means that the image is only a collection of a series of
local descriptors, lacking global information. So, directly
processing the convolution output features cannot effectively
model the interrelationship between channels. Usually, this
problem is solved by converting the feature space information
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into channel descriptors using the global average pool-
ing operation. The i-th channel of Z can be expressed as
formula (1) [33]:

A
_ ]
= 5 x] (1)
=0

In order to utilize the information collected from feature Z,
the subsequent operations not only need to be able to obtain
the nonlinear relationship between the feature channels, but
also need to be able to learn a non-mutually exclusive rela-
tionship to ensure that the output mask allows each channel to
get attention. We designed a network based on the bottleneck
layer to extract the mask, and mask A(x) can be calculated as
formula (2) [33]:

AX) = p(W26(W12)) (@)

where ¢ means the Sigmoid activation functlon ¢ represents
the Gelu activation function, W; € R r Cand W, € RC
denote the weights of the 1*1 convolution layer, r denotes the
channel compression ratio.

Then, a high-performance neural network activation func-
tion Gelu is adopted, and it is expressed as formula (3) [34]:

Gelu(x) = xP(X < x) = xp(x) 3)

where x is the input, and X obeys the standard normal distri-
bution, while ¢(x) is the probability function of the normal
distribution. P(X <= x) determines how much information
is retained in x. The feature map is transformed by sigmoid
into a mask with a value domain of (0, 1), which is the
attention coefficient we need. Finally, after upsampling the
mask of size C*1*1 to C*H*W equivalently, the output of
the attention model can be obtained by fusing the mask with
the feature map X through the matrix dot product operation,
which can be expressed as follows [33]:

Y =AX)® X 4

Consequently, the previous set of features (Such as X3) is
converted into a mask by the attention module to suppress the
noise and redundancy of the next subset of features (X3) after
the convolution operation, so, the processed features (X3)
have a stronger feature expression ability and can alleviate the
pressure of feature learning in subsequent 3*3 convolutional
layers. We visualized the area of interest of the input image
on the MSAN network, and the result is shown in Figure 5.
The highlighted portion of the image represents the network’s
focus on the image. It can be seen that MSAN can effectively
focus on the important areas in the picture compared to
not using the attention mechanism. Specifically, the area of
attention can evenly cover the whole defect location, indicat-
ing that MSAN has a stronger multi-scale capability. From
Figure 5 (b) and (c), the feature before mask processing
includes other positions besides the defect positions, which
means that there is a lot of noise in the feature. Comparatively,
the feature after mask processing is highlighted mainly in the
defect positions, which means the noise existing in the feature
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FIGURE 5. Heat map visualization of interest areas of the input image.
(a) Original image. (b) Without attention mechanism. (c) With attention
mechanism.

is weakened. It verified that the MSAN network can reduce
noise and redundancy present in the next grouping features
by using the generated masks.

Briefly, MSAN is more capable of handling multiscale
features and can improve the expression ability of the model’s
output characteristics. The output feature ¥; of MSAN can be
calculated as formula (5).

X;, i=1
Yi = § CB(fi(X)), i=2 ©)
CB(i(X; ® A(Y; — 1)), 2<i<n.

Here, CB represents a 1*1 convolution and batch normaliza-
tion layer. Since the weld defects images of safety vent are
edge-rich ones, and the sizes, shapes of the defects vary, also,
the location of the defects is not fixed, the defect characteris-
tics have a certain degree of randomness. Concerning defect
location, operations like full connection layers or pooling
structures can lose location information, in order to retain
more spatial position information, full convolution layer is
used in our model. In terms of defect classification, we need
a larger convolution kernel to make the link of each point
on the feature map denser. Then, the features obtained in
the downsampling stage pass through the localization block,
as shown in Figure 2 (b). Due to the small receptive field
of the shallow network, large convolution kernel is com-
posed of symmetrical independent convolution kernel. The
convolutions of 1 x k +k x 1 and k x 1 + 1 x k are
used to replace the original k x k large kernel convolution
according to the matrix decomposition. Because large con-
volution kernels allow a larger perceptual area, it is more
conducive to global feature extraction. Compared with the
original large convolution kernel, our design can significantly
reduce the parameters and computation. Simultaneously, due
to the usage of large convolution kernels in the localization
block, the pixel misclassification at the defect boundary is
increased, leading to jaggedness phenomenon at the defect
edges. Therefore, another module using a small convolution
kernel is introduced to do the balance, which is the edge
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FIGURE 6. The ablation experiments comparison between Using LB and
BA modules versus not using them. (a) Original image. (b) Without LB and
BA modules. (c) With LB and BA modules.

(@)

anti-aliasing module designed based on the residual struc-
ture to make the edges of the defect smoother, as shown in
Figure 2 (c). The edge anti-aliasing module allows the model
to get finer segmentation results. We also conducted ablation
experiments on this module, and the results are shown in
Figure 6. Obviously, using LB and BA modules can better
locate the defects, which allow the segmented image edges
smoother and closer to the original image defect positions.

During the upsampling process, transposed convolu-
tion [35] is used to replace the deconvolutional layer, and
skip connections are also utilized in the symmetrical levels.
In this way, the multiple upsampling method allows the final
output feature map to fuse more low-level features, as well as
features at different scales, thus making the recovered edges
finer, consequently, it is suitable for multiscale prediction and
depth supervision.

B. EXPERIMENTAL CONFIGURATION AND

THE LOSS FUNCTION

All the experiments present in this paper were carried out
under Linux Ubuntu 16.04 LTS with CUDA 9.0 library,
an Intel Xeon E5-2683 v4 @ 2.10 GHz CPU with 256G of
RAM, and the GPU is NVIDIA GTX 2080Ti. Keras with
TensorFlow backend is used as the deep learning frame-
work. When designing and training a model, loss function
and optimization algorithm are two important factors to be
considered. The smaller the loss function is, the better the
ability to guide model learning will be. We first consider the
cross-entropy loss function, expressed as formula (6) [36]:

1 N
CE = -5 Z(y, logpi + (1 — y;))log(1l — pi)) (6)
i—1

where y; is the true category of the input instance data, and
pi is the probability that the predicted input instance belongs
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to the correct category. The effect can be improved when the
data is relatively balanced. But the training set segmentation
is not very good for porosity defects (As seen in Figure 1 (a)),
which only occupies a small area of the image. In order to
solve the category imbalance problem, we combined the dice
loss function with equation (7) [37]:

k N
Dice=Z<Z2Zl'=“”’t’+‘S ) )

N N
im1 i1 Pit Do ti

where p; represents the predicted value, while #; represents
the true label value, § is the unit constant, so the final loss
function is:

Combine_Loss = 0*CE — (1 — 9)Dice ®)

It is defined as the weighted sum of dice loss and cross-
entropy. Among them, 9 is used to control the effect of
dice loss on Combine Loss function, and the value of
o determines the degree of the effect on Combine_Loss.
In our experiments, plus-one smoothing is used to prevent
zero problems for divide by adding the unit constant § to
both the numerator and the denominator of the Dice loss
term [36]. The experiment uses the SGD optimizer, which
sets the momentum and weight decay coefficients to 0.9 and
0.0001 respectively. The Keras’ built-in LearningRateSched-
uler function is used for selecting the learning rate, which can
dynamically adjust the learning rate at the beginning or the
end of each epoch. The best set we found for model conver-
gence are as follows: the initial learning rate is set to 0.0001,
the epoch is set to 50, and the batch size is set to 4.

C. DATA AUGMENTATION

Usually, the defect detection model for industrial applications
should be adapted to various scenarios, such as different
brightness, diverse targets, etc. Increasing the number and
diversity of the training samples can improve the robust-
ness of the model and reduce the dependence of the model
on certain characteristics. When conduct data augmentation,
we have to ensure that the main features of the augmented
sample remain consistent with the original sample. In our
case, image-space geometric transformations like image flip-
ping and random angle rotation are used. Besides, zero-mean
Gaussian noise, Gamma transformation, and contrast changes
are also added to enhance the generalization of the model.

D. PERFORMANCE METRICS

The performance of our model architecture is evaluated in
terms of mean IOU and pixel accuracy, which are the two
most commonly used indicators to evaluate the performance
of semantic segmentation [38]. Mean IOU outputs the class
prediction accuracy of each pixel, while pixel accuracy mea-
sures the overlap rate between the two targets by calculating
the ratio of the intersection and union with the ground truth
masks. The calculation formulas for the two indicators are as
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FIGURE 7. (a) Loss versus epochs. (b) Accuracy versus epochs.

L0

05%

059

0983

nccuracy

0

0580

0475

0870

0965

Training and validation accuracy

Training and validation accuracy

—
val acc

0.995-

0.990-

Accuracy

0.980-

0975-

5 0985~

=

5
Epochs

(a)

Epachs

(b)

follows [38]:

1 Pii
mean_IOU = — » ————=——— )
C Z ci+ 2. pji — Pii
pixel_accuracy = LiPi (10)

dici
where C denotes the number of categories of all the pixels, ¢;

is the pixels number of category i, and p;; is the pixels number
of the category i predicted to be j.

IV. EXPERIMENTAL RESULTS

After trained for 50 epochs, the average pixel accuracy of
training is 99.6%, and the validation accuracy can reach
99.4%. The loss and pixel-level accuracy of training and
testing versus epoch are plotted as Figure 7. The resulting
loss function curve is smooth and close to each other, which
indicates that the model is fitted basically and has a fine
generalization ability.

We conducted comparative experiments before and after
data augmentation, and the result is shown in Figure 8. From
Figure 8 (a), when data augmentation is not adopted, after a
certain number of iterations, the curve of the verification set
gradually deviated from the curve of the training set, means
overfitting occurs. It can be seen from Figure 8 (b) that the
problem of overfitting is solved after data augmentation.

Table 2 presents the comparisons of the experimental
results of the model before and after data augmentation. Obvi-
ously, mIOU has been significantly improved from 82.6%
to 84.7% after data augmentation, which indicates that data
augmentation is an effective method to avoid overfitting.

Table 3 presents the influence of alpha size on experimental
results. From Table 3, mIOU reaches the best result when o
takes 0.8.

We present the effect of convolution kernel size (K) on
localization block (LB) in Table 4. In the process of K raising
from seven to nine, the number of model parameters increased
but mIOU decreased. Therefore, in the localization block,
the convolution kernel size is selected as seven to obtain the
optimal result of the model.
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FIGURE 8. Accuracy versus epochs (a) Before data augmentation.
(b) After data augmentation.

TABLE 2. Experimental results comparisons before and after data
augmentation.

Data mIOU(%) Pixel
augmentation acc(%)
Before 82.6 99.2
After 84.7 99.4

TABLE 3. The effect of alpha size on experimental results.

o 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mlOU(%) 791 803 817 824 829 847 832

TABLE 4. The effect of K size on LB.

K 3 5 7 9 11 13

mIOU(%) 81.4 82.3 84.7 84.1 82.9 81.7

Parameters(k 409. 413. 417. 421. 425. 428.
) 4 2 2 1 1 9

We also did ablation experiments on each module of
the MSAN_Unet network, including the improved Res2Net
residual module (NewRes2Net), attention mechanism (A),
localization block (LB), and boundary anti-aliasing module
(BA), and the results are shown in Table 5. When using
Res2Net, 77.8% of mIOU was obtained. After replacing
Res2Net with NewRes2Net module, mIOU was 82.5%.
Additionally, we added the aforementioned modules A, LB
and BA successively on the NewRes2Net module based
architecture, the final mIOU reached 84.7%. Therefore, each
improved module is effective and can increase the accuracy
of the network.
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TABLE 5. Ablation experiment results for each module of MSAN_Unet.

Method mIOU(%)
Res2Net 778
NewRes2Net 82.5
NewRes2Net+A 83.9
NewRes2Net+A+LB 84.4
NewRes2Net+A+LB+BA 84.7

TABLE 6. Performance comparison of our model with some
state-of-the-art models.

Model FLOPs Model Parameters FPS mIOU
(M) size(MB) (M) (%)
Unet 14.34 57.6 7.17 - 62.86
FCN-8s 7.22 29.1 3.61 - 80.60
BiSeNet[39]  45.64 91.6 22.81 906  79.87
Enet [40] 0.76 4.0 0.37 1285 7128
ICNet [41] 13.47 54.5 6.74 61.3 61.34
Deeplab- 82.23 329.1 41.06 - 73.95
v3+ [42]
PSPNet [43] 8.89 7.8 0.96 - 79.43
SegNet [44] 5.88 23.7 2.94 147  83.66
HRNet [45] 19.06 77.2 9.52 66.7 6543
Ours 0.83 3.8 0.42 132.3 84.67

Table 6 presents the performance comparisons of our
model with some state-of-the-art models on the safety vent
welding defect test dataset. The image resolution of 576 x416
is utilized. The comparative parameters consist of model
size, computational complexity, mIOU, and FPS (Frames Per
Second). It demonstrated that our model has great advantages
over other models both in speed and accuracy.

We compared the predicted segmentation results with the
ground truth images from the safety vent welding defect test
dataset, and the results are shown in Figure 9. Column (a)
is the original image of the test dataset, column (b) is the
predicted image by our model, while column (c) is the ground
truth image from the test dataset. Clearly, the predicted seg-
mentation image has smooth edges and is close to the manual
labeling result, means that our model can accurately predict
welding defects of safety vent of different sizes and shapes.
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FIGURE 9. The comparison between the predicted segmentation results
and the ground truth images.

V. CONCLUSION

This paper proposes a multiscale attention semantic seg-
mentation network for the segmentation of surface welding
defects of safety vent in the real industry. First, the network
obtains multiscale features by combining feature channel
grouping and information interaction between groups, and
then gets multiscale attention features by adding attention
mechanism in the process of information interaction between
groups. Features from the previous set are converted into
masks by an attention mechanism to fuse with the next set of
features, thereby reducing their presence of noise and redun-
dancy. Second, the network uses the improved Res2Net as
the feature extraction sub-module to obtain different receptive
fields with different dilation rates of the hole convolution,
it improves the perception ability of the network for multiple
targets, also greatly reduces the number of model parameters
and the computational complexity. At last, this paper uses the
localization module and the boundary anti-aliasing module
to make the model get more refined segmentation results.
Additionally, a data augmentation strategy is adopted, which
combines Gaussian noise, Gamma transformations, and spa-
tial geometric transformations to avoid overfitting due to the
small dataset. It enhances the robustness and generalization
ability of the model simultaneously. The comparison experi-
ments results effectively validate the proposed model, which
can segment defects of different shapes and sizes in real-time.
In future work, we plan to continue to expand the welding
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defect dataset of the safety vent, and further improve the
network architecture to achieve higher detection accuracy,
faster test speed, and better detection stability.
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