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ABSTRACT The soil system is complex and dynamic, making it difficult to understand using traditional
statistical approaches. In this paper, we analyze the causal relationship of soil temperature and moisture
content at different depths in summer and winter based on dynamic empirical modelling. Specifically,
we describe the complexity of soil temperature and moisture content system through mathematical methods.
Moreover, we demonstrate the direction and magnitude of causal relationship between soil moisture content
and temperature at different depths by equation-free methods. Besides, we describe the difference of soil
system properties in summer and winter through causal research. The experiments show that results obtained
are consistent with the actual soil environment. The causality is described by dynamic empirical modelling
rather than prior soil knowledge. The paper may provide a new idea for soil dynamics research.

INDEX TERMS Machine learning, soil science, causal research, dynamic empirical modelling.

I. INTRODUCTION
Soil is considered to be the skin of the earth and the medium
for crop growth. Soil science is closely related to agricul-
ture [1], [2]. Soil temperature and moisture content are two
important factors affecting crop growth. It is significant to
study soil temperature and moisture content for analyzing
crop growth.

Farmland is a kind of natural system, and natural sys-
tems are often complex and nonlinear, making them diffi-
cult to understand using linear statistical approaches. Linear
approaches such as linear regression are fundamentally based
on correlation [3], [4]. However, these are ill-posed for natural
systems, where correlation can occur in the absence of cau-
sation, and causation may also occur without correlation [5].
For example, there are many microorganisms in the soil. In a
certain temperature range, the activity of microorganismswill
increase with the increase of ambient temperature. However,
when the temperature reaches a certain level, the activity of
microorganisms will decrease with the increase of tempera-
ture. In hot summer, soil moisture content and air temperature
show a very obvious inverse relationship, because the higher
the temperature, the faster the water evaporation. In the cold
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winter, this inverse relationship will become weak, because
the temperature in winter is low, then the soil may freeze, and
the water evaporation will be very slow. The two phenom-
ena above belong to the very typical ‘‘mirage correlation’’.
Mirage correlation means the sign and magnitude of the
correlation between different variablesmay changewith time.
Mirage correlation is the hallmark of nonlinear systems that
results from state dependency [6]. State dependency means
that the relationships among interacting variables changewith
different states of the system, as the relationship between soil
temperature and microbial activity mentioned above. Such
state-dependent behavior is a defining hallmark of complex
nonlinear systems [7]. With increasing recognition that non-
linear systems are ubiquitous, and that relationships among
variables will depend on system state, the use of correlation
to infer causation becomes truly difficult.

According to our daily prior knowledge, the soil heat
mainly comes from solar energy, and the moisture comes
from precipitation and irrigation [2]. According to the sta-
tistical data, the temperature and moisture content in the
shallow layer of soil are in direct proportion to these in the
deep layer, because the shallow soil will top-down transfer
the heat and water to the deep layer according to general
knowledge. However, these analyses are only based on the
correlation between the data. For example, it can be seen
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from the statistical data that the above two variables present a
positive correlation, but this correlation does not indicate that
there is a causation between the two variables [7].

In recent years, causal analysis has become one of the most
challenging fields in machine learning [8]–[14]. For exam-
ples, some researchers proposed causal analysis methods in
medical diagnosis [15], [16] and social sciences [17], [18].
Causal analysis plays an important role in revealing the essen-
tial relationship of things and identifying causal relationship
is important for effective management recommendations on
climate, agriculture, epidemiology, financial regulation, and
much else [6]. At present, machine learning algorithms com-
monly used in artificial intelligence are based on correlation
rather than causation. Causal analysis is considered to be
an important factor in the realization of ‘‘artificial general
intelligence’’ [5]. Causal analysis methods commonly used
in natural systems include Granger causality [19], nonlinear
state-space methods, causal network learning algorithms [8]
and so on. Empirical dynamic modelling (EDM) is an impor-
tant algorithm [3], and is especially suitable for the analysis
of natural systems [4], [20].

To effectively manage available water and heat resources,
it is important to understand the causal processes of water and
heat in soil system [1]. In this paper, empirical dynamic mod-
elling is used to analyze the soil temperature and moisture
system at different depths. The experimental results show that
the conclusions obtained by dynamic empirical modelling are
consistent with the actual soil environment. The causality
between soil temperature and moisture content at different
depths is described by scientific methods.

To summarize, the main contributions of this work are in
four-fold as follows: 1) The complexity of soil temperature
and moisture content system is described through simple pro-
jection algorithm; 2) The direction and magnitude of causal
relationship between soil temperature and moisture content at
different depths are demonstrated by equation-free methods
rather than prior soil knowledge; 3) The difference of soil
properties in summer and winter is described through causal
research; 4) The paper may provide a new idea for soil
dynamics research.

II. RELATED WORK
A. DATA SOURCES
Farmland soil temperature and moisture content can be
seen as a series of data that change with time, which can
be collected by various sensors in farmland. For example,
Fig.1 shows the time-varying temperature of soil surface,
10 cm depth, 20 cm depth and 30 cm depth over a period
of time. It can be seen from the figure that the soil temper-
ature changes periodically, with the highest temperature and
the lowest temperature occurring once in a cycle. With the
increase of depth, the change of soil temperature in the lower
layer lags behind the surface temperature more obviously,
and the temperature amplitude is weakening. As the energy
must be conducted to the subsoil, the fluctuation in daily

FIGURE 1. The time-varying temperature of soil surface, 10 cm depth,
20 cm depth and 30 cm depth over a period of time.

FIGURE 2. The specific location where the data were collected.

temperature is progressively less in deeper sections of the
profile [1]. Research on this kind of data can be seen as a
kind of time series analysis.

We used special sensors to collect soil data in the Tea
Valley (36◦11’N 117◦06’E) of Taian, Shandong Province,
China. The specific location is shown in Fig.2. The data
were collected in August (representing summer) and Decem-
ber (representing winter). The crop grown in this area is
Longjing Tea.

The acquisition interval is set to one hour, and there are
about 720 sets of data in a month. It includes nine kinds
of data: surface temperature (T00), 10cm soil temperature
(T10), 20cm soil temperature (T20), 30cm soil temperature
(T30), 40cm soil temperature (T40), 10cm soil moisture
content (M10), 20cm soil moisture content (M20), 30cm
soil moisture content (M30) and 40cm soil moisture content
(M40). Some of the data are shown in Table 1 and Table 2.
The unit of temperature is ◦. The soil moisture content is
expressed by the volume water content, and the unit is %,
which refers to the proportion of water in the total soil
volume.

The statistical information of soil temperature and mois-
ture content in the original data is shown in Table 3, including
mean and standard deviation. The units in the table refer to
Table 1 and Table 2. Sign (s) represents the data in summer,
and sign (w) represents the data in winter in Table 3. The
arrows in the table indicate the direction in which the values
increase.
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TABLE 1. Some examples of data used in the experiment (August, summer).

TABLE 2. Some examples of data used in the experiment (December, winter).

TABLE 3. The statistical information of soil temperature and moisture
content at different depths in the original data.

In summer, the average soil temperature at all depths is
about 22 degrees, and the temperature difference between
different depths is small. The average moisture content in
summer is about 26%-28%, and the difference between dif-
ferent depths is also small. Note that surface temperature and
moisture content is higher than subsoil. In winter, the average
soil temperature changes greatly with the depth, the surface
average temperature (T00) is only about 7.4 degrees, but the
average temperature of 40 cm depth (T40) can reach 10.5
degrees. The soil moisture content also increases with the
depth significantly. It can be seen that the system properties
of soil temperature and moisture content are different in
different seasons. Note that surface temperature and moisture
content is low than subsoil. Moreover, the standard deviation
of surface soil is high than subsoil, which indicates the change
amplitude of temperature and moisture content is greater.

In this paper, we use dynamic empirical modelling to
describe the causality between these data. Note that soil

temperature and moisture content may be affected by some
interference factors. For examples, The Longjing tea planted
in this field is dormant in winter, but active in summer. The
average root length of Longjing tea is about 15 cm which
is smaller than 40cm. Microorganisms are more active in
summer than winter. In this paper, we mainly study causal
relationship between soil temperature and moisture content
at different depths.

B. TIME SERIES ANALYSIS
Many methods can be used in time series analysis, such as
linear regression, temporal convolutional networks, neural
networks, RNN and empirical dynamic modelling.

Neural networks are the most basic model in deep learn-
ing [21]. Assuming that the neural networks are used to
predict the soil temperature at 30 cm depth (T30) by the
other three variables (T00, T10, T20), in this case, the other
three temperatures at the same time will be input into the
networks, as shown in Fig.3 (a). Then the predicted value
will be output. The neural networks can automatically learn
the relationship between the four variables, and continu-
ously update the network parameters according to the loss
function, so as to improve the prediction accuracy [22].
Although the traditional neural networks can analyze the time
series, this method does not consider the time factor and
ignores the time continuity between variables. Thesemethods
without considering time continuity are called time series
regression.

Traditional neural networks can only input multiple vari-
ables at a certain time point [23]. The previous input and the
subsequent input of the same variable are completely irrele-
vant, although they are related in time. However, the temper-
ature data contains abundant time-series information, and the
temperature in the former moment is closely related to that
in the latter. Recurrent neural networks (RNN) and variants
such as LSTM (long short term memory) are novel neural
networks that can process sequence data [24]–[26], as shown
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FIGURE 3. Traditional neural networks and recurrent neural networks.

in Fig.3 (b). These methods with considering time continuity
are called time series prediction. However, these algorithms
only focus on curve fitting of correlation. Although these
algorithms have good effects on the prediction and classifica-
tion, they lack interpretability and cannot explain the causal
relationship between variables in essence.

At present, machine learning algorithms used commonly in
artificial intelligence are mostly based on correlation rather
than causality [5]. EDM was proposed by Hao Ye et al.
and based on the concept of attractor reconstruction to ana-
lyze time series for causation problems [19], [27]. The goal
of attractor reconstruction is to approximate the originating
dynamic system using time series data. EDM was devel-
oped on the basis of Takens’ Theorem [28], [29]. The EDM
methods mostly include convergent cross mapping (CCM)
algorithm [7], simplex projection algorithm and S-Map algo-
rithm [30].

The traditional linear statistical method is not suitable
for the general nonlinear dynamic systems, because in the
ecosystem dynamics, farmland is easily affected by various
interference factors such as the activities of microorgan-
isms and organic matter in the soil. In recent years, causal-
ity research has developed rapidly. The EDM method is
composed of a series of nonlinear statistical methods that
acknowledge state dependence. These nonlinear methods are
rooted in state space reconstruction, i.e. lagged coordinate
embedding of time series data [6]. These methods do not
assume any set of equations governing the system but recover
the dynamics from time-series data. EDM bears a variety
of utilities to investigating dynamical systems [3]. Some
researchers try to use the EDM to analyze the causal relation-
ship between multiple variables in natural systems and have
achieved good results [31]–[35].

CCM was proposed by Sugihara G et al. In CCM theory,
time series variables such as the soil temperature andmoisture
content are causally linked because they are from the same
soil dynamic system, there are sharing a common attractor
manifoldM , as shown in Fig.4.Mx represents shadow mani-
fold of soil temperature and My represents shadow manifold
of soil moisture content. This algorithm predicts the current
quantity of one variable Mx using the time lags of another
variableMy and vice versa. IfMx andMy belong to the same
dynamical system, the cross-mapping between them shall be

FIGURE 4. Convergent cross mapping tests for the shadow manifolds
Mx (temperature system) and My (moisture system).

convergent. This means that each variable can identify the
state of other variables. Additionally, when one variable A
is a stochastic driver of one variable B, and we can express
it as A → B, information about the states of A can be
recovered from B, but not vice-versa. CCM can test causation
by measuring the extent to which the historical record of B
values can reliably estimate the state of A.

III. RESULTS
A. COMPLEXITY OF SOIL TEMPERATURE DYNAMICAL
SYSTEM
Soil temperature is the result of solar radiation balance, soil
heat balance and soil thermal properties [1]. The most basic
source of soil heat is solar radiation, and the other part mostly
comes from geothermal energy. Since the experimental data
acquisition area is a common field, the geothermal energy
can be ignored. When the soil obtains heat from solar radi-
ation, most of the heat is consumed by the process of water
evaporation and heat exchange between soil and air, while the
other part is transmitted to the subsoil through heat exchange,
and a small part is consumed by soil biological activities [36].
Soil temperature affects almost every physical, chemical, and
biological activity that occurs in the soil. It is very important
for the production of crops.

The complexity of dynamic system can be tested using
simple projection algorithm by nonparametric predic-
tions. The complexity of a system can be practically defined
as the number of independent variables needed to reconstruct
the attractor [37], [38]. Based on Takens’ Theorem [28],
the dynamics of the system can be reconstructed from the
time lags of a single time {xt , xt−1τ , xt−2τ , . . . xt−(E−1)τ },
as shown in Fig.5, where τ is time lag and E is the embedding
dimension. Determining embedding dimension E is basic
in EDM. By carrying out simplex projection using different
values of E in library set, the optimal embedding dimension
E can be determined according to the predictive skill ρ such
as the correlation coefficient between the observations Y and
the forecast result Ŷ . The optimal E is selected based on the
criterion that maximizes the predictive skill ρ by evaluating
the correlation coefficients. Note that the higher the best
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FIGURE 5. The diagram of simple projection algorithm.

FIGURE 6. Simplex projection algorithm is used to test the complexity of
soil temperature system (T00, T10) in summer.

embedding dimension E , the more complex the dynamical
system is.

Simple projection algorithm is used in this section to
test the complexity of soil temperature dynamical system.
Some experimental results are shown in Fig.6 (summer) and
Fig.7 (winter). The horizontal axis represents the embedding
dimension E in the algorithm, and the vertical axis represents
the corresponding predictive skill ρ. It can be seen from
Fig. 6 that the best embedding dimension of surface temper-
ature (T00) system in summer is 3, while the best embedding
dimension of 10 cm (T10) depth systems is 2, indicating that
the complexity of soil surface temperature system is higher
than that of soil internal temperature system in summer. The
detailed experimental results are shown in Table 4.

The environment of surface soil is complex because the
surface soil is in direct contact with strong solar radiation,

TABLE 4. The best embedding dimension E of temperature and moisture
content systems at different depths in summer and winter.

FIGURE 7. Simplex projection algorithm is used to test the complexity of
soil temperature system (T00, T10) in winter.

abundant precipitation and water evaporation process in sum-
mer. The embedding dimension E of temperature system in
summer is in the range of 2-3, which is relatively simple.
It can be seen fromFig.7 and Table 4 that in winter the optimal
embedding dimension of soil temperature system at different
depths is 2, which is simpler than summer. This is because
the soil receives less heat and microorganisms are inactive in
winter due to low solar radiation.
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B. COMPLEXITY OF SOIL MOISTURE DYNAMICAL
SYSTEM
Water stored in the soil does several things. It is essential to
plant growth and plays an important role in the moderation
of soil temperatures. Water is one of the most important
components of soil, usually accounting for 20%-30% of soil
volume. Soil water is essential to all forms of life—both
plants and animals. Soil water can evaporate directly from
surface soil [1]. The water in the soil has two main inputs
(i.e. precipitation and irrigation) and outputs (i.e. evaporation
and percolation). Therefore, soil moisture content system is
more complex than soil temperature system.

The simple projection algorithm is used in this section
to test the complexity of soil moisture dynamical systems
at different depths. Some experimental results are shown
in Fig.8 (summer) and Fig.9 (winter). The detailed experi-
mental results are shown in Table 4 above. It can be seen from
Table 4 that the soil moisture system at 10 cm depth (M10)
is simple in summer, while the deeper soil system is complex
relatively. This is due to the mutual influence of many factors
such as the root activity. Compared with soil temperature,
plant roots have a greater impact on soil moisture content [2].
The average root length of Longjing tea planted in this farm-
land is about 15 cm, so the soil moisture content is obviously
affected by plant roots at the depth of 10 cm, and water
can be stored in the root zone. However, when the depth is
more than 15 cm, the soil moisture content system lacks the
influence of plant roots. Moreover, there is more precipita-
tion in summer, which makes the deep soil moisture system
more complex.

It can be seen from Table 4 that the soil moisture con-
tent system is different in winter from summer. In winter,
the surface soil moisture content system is complex, while the
deep moisture content system is simple relatively. In winter,
the complexities are reverse. This is due to the different
environment of the soil in summer and winter. For example,
Longjing tea is dormant in winter, and metabolism activities
such as water and nutrient absorption are slow. Therefore,
Longjing roots have little effect on soil system. Moreover,
there is less precipitation in winter than summer, and the
surface soil is exposed to precipitation and water evaporation
directly.

C. CAUSAL ANALYSIS OF SOIL TEMPERATURE AT
DIFFERENT DEPTHS
In this section, we selected the temperature data of soil
adjacent layers for causal analysis. EDM can be used to
reveal causation between variables. Convergent cross map-
ping algorithm is used to test the causation between a pair
of temperature variables in dynamical systems [20], [39].
This algorithm predicts the current quantity of one variable
X using the time lags of another variable Y . If X and Y
are causally linked, the cross-mapping between them will
be convergent. Convergence means that the cross-mapping
skill ρ improves with increasing library size. Convergence

FIGURE 8. Simplex projection algorithm is used to test the complexity of
soil moisture content system M10 and M20 in summer.

is the key property that distinguishes causation from simple
correlation [7]. Convergence is a necessary condition for cau-
sation. In practical applications, convergence will be limited
by process noise and time series length. Thus, with limited or
noisy field data causation is demonstrated by predictability
that increases with library size. It is generally considered that
the more significant the convergence, the stronger the causal
relationship.

Thermal energy is transferred as a result of a temperature
difference within or between objects and heat always flows
from a warm object to a cooler one. Only the surface soil is
subject to solar energy input. Once the energy is absorbed by
the surface soil, the soil is attempting to reach equilibrium
with the topsoil above as well as the subsoil below [1].

The experimental results are shown in Fig.10 (summer)
and Fig.11 (winter), where the curve ‘‘X cross mapping Y (X
xmap Y)’’ represents testing Y as a cause of X. It can be seen
from the curve ‘‘T10 xmap T00’’ in Fig.10(a) that the change
of soil surface temperature is the cause of temperature change
at 10 cm depth. This blue curve shows a high convergence
magnitude (ρ = 0.91), while the red curve shows a weak
convergence trend (ρ = 0.85). It can be concluded that
the change of surface temperature leads to the change of
temperature at the depth of 10 cm, rather than the change
of temperature at the depth of 10 cm leading to the change
of surface temperature.

However, the convergence of blue curve and red curve is
very weak in Fig.10(b-d), and the cross-mapping skill ρ ≈ 1,
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FIGURE 9. Simplex projection algorithm is used to test the complexity of
soil moisture content system M10 and M20 in winter.

as show in the figures. It means that the properties of deep
soil and shallow soil are very similar, and there is little causal
relationship. Because the two temperature variables belong
to the same system, i.e. soil temperature system. Moreover,
the difference between the deep soil layers is less obvious
than that between the shallow soil layers, because the environ-
ment of deep soil is simple without plants and precipitation.

In winter, the convergence at different depths is shown in
Fig.11. It can be concluded that the change of T10 leads to
the change of T00, and the change of T20 leads to the change
of T10. The causal relationship is different from summer.
This is because deep soil is warmer than shallow soil in
winter, but shallow soil is warmer than deep soil in summer.
Thermal energy is transferred as a result of the temperature
difference between soil layers and heat always flows from a
warm layer to a cooler layer. The statistical information of
soil temperature at different depths can be seen in Table 3.

Detailed direction and magnitude of causal relationship
between different depths are shown in Fig.12. The brown
arrows in the figure show the direction of causal relation-
ship. The thickness of the line indicates the magnitude of
causal relationship. The dotted rectangle indicates that the
soil temperature properties between the adjacent layers are
very similar and can be considered as the same system.

D. CAUSAL ANALYSIS OF SOIL MOISTURE AT DIFFERENT
DEPTHS
In this section, we selected the soil moisture data of adjacent
layers for causal analysis in summer and winter. The exper-

FIGURE 10. CCM algorithm is used to test the causation between soil
temperatures at different depths in summer.

imental results are shown in Fig.13 (summer) and Fig.14
(winter).

In general, soil water such as precipitation percolates by the
force of gravity until it is adsorbed by drier soil below. Water
flow in the uniform soil will be primarily downward [1].
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FIGURE 11. CCM algorithm is used to test the causation between soil
temperatures at different depths in winter.

However, soil water will flow upward in some cases. For
example, when the temperature is high in summer, the water
in shallow soil evaporates quickly, and the water in subsoil
will permeate upward. Soil water may also move upward or
laterally in the process of furrow irrigation. Therefore, water
can flow down or up in the soil, indicating the bidirectional

FIGURE 12. The direction and magnitude of causal relationship between
different depths in summer and winter.

causal relationship. In Fig.13(a), the red and blue curve both
show obvious convergence. It presents obvious bidirectional
causality between M10 and M20. However, it can be seen
that the blue curve shows a high convergence magnitude
(ρ = 0.93), while the red curve shows a weak convergence
magnitude (ρ = 0.89). It can be concluded that the change
of surface moisture (M10) leads to the change of moisture at
the depth of 20 cm (M20) more significantly. Besides, it can
be seen from Table 4 that the moisture content of shallow soil
is higher than that of deep soil in summer. The convergence
magnitude in Fig.13(b-c) is veryweak, and the cross-mapping
skill ρ ≈ 1. It means that the moisture properties of deep soil
and shallow soil moisture content system are very similar, and
there is little causal relationship.

In winter, the convergence of the red curve (ρ = 0.99)
in Fig. 14(a) is more obvious than blue curve (ρ = 0.97),
indicating that the change of M20 is the cause for the change
of M10. This is because the moisture content of deep soil
is higher than that of shallow soil in winter, as shown in
Table 4. The convergence magnitude in Fig.14(b-c) is very
weak (ρ ≈ 1). It means that the properties of M20, M30,
M40 are very similar, and there is little causal relationship
between them. Due to the low temperature in winter, the
water evaporation and penetration is weak. The curves in
Fig.14(b-c) are almost straight compared with Fig.13(b-c),
which indicate there is almost no causal relationship.

Detailed direction and magnitude of causal relationship
between different depths are shown in Fig.15. The brown
arrows in the figure show the direction of causal relation-
ship. The dotted arrow indicates the bidirectional causal rela-
tionship between M10 and M20. The thickness of the line
indicates the magnitude of causal relationship. The dotted
rectangle indicates that the properties of soil moisture content
inside are very similar and can be considered as the same
system.

E. CAUSAL ANALYSIS BETWEEN SOIL MOISTURE
CONTENTS AT DIFFERENT DEPTHS AND ENVIRONMENT
TEMPERATURE
In this section, the causal relationship between soil moisture
contents at different depths and soil temperature (T00 and
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FIGURE 13. CCM algorithm is used to test the causation between soil
moisture contents at different depths in summer.

T40) is analysed. T00 and T40 can represent the soil sur-
face temperature (environment temperature) and soil internal
temperature respectively. The experimental results are shown
in Fig.16 (summer), Fig.17 (winter) and Fig.18.

It can be seen from Fig.16(a) that the convergence of
the red curve (ρ = 0.62) is more obvious than blue
curve (ρ = 0.39), indicating that the soil surface temper-
ature change (T00) is an important cause for the change
of soil moisture content at 10 cm depth (M10). Moreover,
the causal relationship between T00 and M10 is bidirectional
and the soil moisture content (M10) can also influence soil
surface temperature (T10). There is a similar phenomenon in
Fig.16(b-c). This shows that the soil temperature ‘‘drives’’ the
moisture content to change more significantly. It is because
the temperature has a great influence on water activity. For

FIGURE 14. CCM algorithm is used to test the causation between soil
moisture contents at different depths in winter.

FIGURE 15. The direction and magnitude of causal relationship between
different depths in summer and winter.

example, warm soil conditions can promote water evap-
oration [2]. Note that the blue curve also shows a weak
convergence trend, which indicates that moisture content also
affects soil temperature, because the activity of water in soil
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FIGURE 16. CCM is used to test the causation between soil moisture
contents at different depths and soil surface temperature (T00) in
summer.

is closely related to energy. For example, the process of water
evaporating will absorb heat, creating feedback on the mois-
ture content system. Therefore, soil moisture is an important
factor in controlling the rate of temperature change [1].

The experimental results in winter are shown in Fig.17.
The convergence of red curves is still more obvious, which
indicates that soil surface temperature (T00) is also an impor-
tant cause for the change of soil moisture contents at differ-
ent depths. However, the convergence magnitude ρ of the
red curves increases compared with that in summer. This
indicates that soil temperature has a greater influence on the
soil moisture content change in winter than summer. This is
because the soil environment in summer is complex, and there
are many extra factors affecting the soil moisture content

FIGURE 17. CCM is used to test the causation between soil moisture
contents at different depths and soil surface temperature (T00) in winter.

(wind, microorganisms, plant root activity, etc.), while the
soil environment in winter is simple, so the influence of
soil temperature on the moisture content is more obvious,
resulting in the increase of predictive skill ρ.
Then we analyse the causal relationship between soil mois-

ture contents at different depths and soil internal temperature
(T40). The detailed direction and magnitude ρ of causal
relationship are shown in Fig.18.

It can be seen from Fig.18 that the causal effect of T00 on
soil moisture content is more obvious than T40 in summer.
The causal effect of T40 on soil moisture content is more
obvious than T00 in winter by comparing predictive skill ρ.
T00 and T40 can represent the soil surface temperature and
internal temperature respectively. Moreover, the causal effect
of soil temperature on moisture content is more obvious in
winter than in summer.
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FIGURE 18. The direction and magnitude of causal relationship between
different depths and soil temperature (T00, T40) in summer and winter.

FIGURE 19. The causal relationship among moisture contents at different
depths (M10, M20, M30) and T40. The causation is transitive.

It presents significant bidirectional causality between
T40 and moisture contents at different depths (M10, M20,
M30) in summer. This shows that soil moisture content will
have a causal effect on soil internal temperature (T40) in sum-
mer. We analyze that this is partly because the soil moisture
content will affect some intermediate factors such as plant
root and microbial activities in summer, then these activi-
ties will affect the soil temperature. For example, M10 may
influence the microbial activities in soil, and microbial activ-
ities influence soil internal temperature (T40), then M10 and
T40 will be causally linked. It indicates that causality is
transitive, as shown in Fig.19. The intermediate factors are
recessive in this process.

IV. DISCUSSION
Soil is a complex system. Soil temperature and moisture con-
tent will be affected by many factors. We mainly study causal
relationship between soil temperature and moisture content at
different depths through dynamic empirical modelling.

Some causal relationships involved belong to bidirectional
causality in the complex soil system. Themagnitude of causal
relationship is strong in one direction but weak in another
direction. Note that causation is transitive (e.g., if T00 influ-
ence T10, and T10 influence T20, then T00 and T20 are
causally linked, and vice versa). It is proved by real-data
experiments that there is a positive correlation between pre-
dictive skill ρ and causality magnitude in CCM algorithm.
In conclusion, the causal relationship between soil temper-

ature and moisture content system can be divided into three
categories:

1) Unidirectional causality. Its performance is that the
curve convergence is strong in one direction and weak
in the other, such as Fig.16(a).

2) Bidirectional causality. Its performance is that the curve
convergence is strong in one direction and also strong
in the other, such as Fig.13(a).

3) No causality. Its performance is that the convergences
in two directions are both weak, and the predictive skill
ρ ≈ 1, such as Fig.13(b).

V. CONCLUSION
In this paper, the causal relationship of soil temperature
and moisture content at different depths is analyzed based
on dynamic empirical modelling. We study the causal rela-
tionship and find the experimental results are not the same
in summer and winter. We describe the complexity of soil
temperature and moisture content system through simple pro-
jection algorithm. We demonstrate the direction and magni-
tude of causal relationship between soil moisture content and
temperature at different depths by CCM algorithm. Besides,
we describe the difference of soil system properties in sum-
mer and winter through causal research. The experimental
results are consistent with the actual soil environment. The
causality is described by dynamic empirical modelling rather
than prior soil knowledge. The paper may provide a new idea
for soil dynamics research.
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