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ABSTRACT Most traditional software reliability growth models (SRGMs) assume immediate fault correc-
tion upon detection and therefore only consider fault detection process (FDP). In order to be more realistic,
some researchers have tried to incorporate fault correction process (FCP) and fault introduction process (FIP)
into the software reliability models. However, it is still difficult to incorporate into the analytical software
reliability models some other factors, such as the different fault detection and correction capabilities of
debuggers. In this paper, a simulation approach is proposed to model FDP, FIP, and FCP together considering
debuggers with different contributions to fault detection rate, different fault correction rate and different
fault introduction rate. Besides, this paper also constructed a cost calculation method to optimize the testing
design including debuggers assignment and software release time. Some numerical examples are provided
to illustrate the proposed model. The results show that the trends of FDP, FCP and FIP are consistent with
the intuition to the practice of software testing, and the optimal testing resources allocation and the optimal
release time can be obtained according to the proposed model.

INDEX TERMS Fault detection, optimization, reliability, simulation, software debugging.

I. INTRODUCTION
Since the computer era, software has been playing an essen-
tially important role in many complex, sophisticated and
safety-critical systems of a variety of significant and multi-
faceted areas, such as air traffic analysis and control, nuclear
reactor testing and management, military and defense ser-
vices, etc. [1]–[7]. The failure of software may lead to signif-
icant losses. For example, 228 casualties that resulted from
the crash of the AF-447 in the Atlantic on June 1, 2009 are
one of the tragic consequences of aircraft accidents in which
software was involved [8].

As a result, the reliability of the software is a common
concern for its developers and users. In order to ensure high
reliability, developers usually need to conduct testing before
they launch the software on public market. Related studies
of software testing and reliability have been on-going for
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thirty years and the increasing dependability of various fields
on software creates a need to make the software field more
accurate and reliable [9]–[14]. Besides, in order to track the
growth of software reliability during testing and make some
important decisions, such as the optimal software release time
and the staffing level, numerous software reliability growth
models (SRGMs) have been proposed during the past four
decades.

Most analytical models of SRGM only studied the fault
detection process, and ignored the time needed from detection
of a fault to the correction of a fault. In practice, a detected
fault needs to be reported, confirmed and finally corrected,
which may need a few days or even a few weeks. Thus fault
correction process (FCP) can be regarded as a delayed pro-
cess after fault detection process (FDP) and can be modeled
together with FDP using a queuing system [15]–[19]. In [15]
and [17], some software reliability models were proposed
considering different types of debugging delay, which is the
time between fault detection and fault correction. In [20],
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some paired models of fault detection and fault correction are
proposed with consideration of the uneven testing resource
allocation during software testing phase. Moreover, the fault
introduction process (FIP) is also incorporated. In [19], the
reliability growth of open sourced software is studied consid-
ering both fault detection and fault corrections.

Though the analytical models of SRGM have been incor-
porating more factors in order to be more realistic, it is
still difficult to incorporate into the analytical models some
important information, such as the different debugging capa-
bilities of different debuggers. In [21], the number of debug-
gers is incorporated into FDP and FCP through a rate-based
simulation approach. However, it is assumed that all the
debuggers share the same fault correction ability. In [22], the
influence of the different debuggers on the fault correction
process is simulated. However, it is assumed that the no new
faults are introduced during fault correction. Besides, it is
assumed that the fault detection rate does not depend on the
number of debuggers, which is not realistic.

In practice, the debuggers need to edit the code during the
fault correction process, thus it is possible to introduce new
faults into the code [23], [24]. Also, the fault detection rate
tends to increase if there are more debuggers available. The
two factors will influence the software reliability so that the
decision making on the basis of software reliability will also
be altered. Thus, considering the two points, the framework
of SRGM needs to be reconstructed, that is, heterogeneous
debuggers with different capabilities and the FIP from these
debuggers should be introduced into the SRGM.

In this paper, a framework of SRGM is proposed to sim-
ulate the software testing process considering heterogeneous
debuggers with different contributions to the fault detection
rate, different fault correction rate and fault introduction rate.
Testing also consumes a large amount of resources, such as
human power and CPU hours, which are usually not con-
stantly allocated during testing phase. Besides, uncorrected
faults in the software of released version may result in eco-
nomic loss. Herein, in order to minimize the total cost during
the testing phase and the operational phase, testing design
including the personnel assignment of debuggers and the
release time of software are also of great concern. Thus, a cost
calculation method is proposed to optimize the testing design
in this paper. Specifically, all the processes are simulated with
a queuing system adopting the Simulink toolbox of Matlab
and all the calculations are done with Matlab. The numbers
of detected faults, corrected faults, and introduced faults in
different time intervals can be collected and the total cost can
be calculated accordingly.

The contribution of this study is threefold. Firstly, this
study uses a new framework of SRGM to simulate the soft-
ware testing process in order to improve the prediction accu-
racy of the detected faults and corrected faults in each period.
Secondly, the heterogeneous debuggers with different capa-
bilities is considered in the proposed model where debuggers
are not only an important factor to software reliability but
also a testing resource to be allocated optimally. Lastly, this

study incorporates FIP which is related with heterogeneous
debuggers into our proposed model. As demonstrated by
the case study using real data, the prediction results of our
proposed model can help the decision maker in reliability
assessment, cost prediction and determination of the optimal
release time.

The remaining of this paper is arranged as follows. The
general framework of the queuing model and cost calculation
is proposed in Section II, with description of the simulation
framework. Specifically, all the boxes used in the Simulink
are explained. Numerical examples are shown in Section III
to illustrate the simulation approach. Section IV illustrates
the testing design optimizing. Section V concludes and points
out some future directions.

The abbreviations, acronyms and nomenclature used in this
paper are shown in Table 1.

II. MODELLING FRAMEWORK
In this section, the modelling framework of the software
reliability is proposed.

A. ASSUMPTION
In order to provide mathematical tractability, SRGMs are
often derived under some restrictive assumptions [25]–[27].
The fault detection, correction and introduction processes can
be described as a whole using a queuing system, with FDP
being the arrival process, FCP being the departure process and
FIP being the feedback. Then, to briefly depict the problem,
this study uses the following assumptions:

(1) FDP corresponds to the arrival process
(2) FCP corresponds to the departure process
(3) FIP corresponds to the feedback
(4) the FDP is described as a NHPP characterized with

intensity function λd(t) andmean value functionmd(t)
(5) the FCP is described as a NHPP characterized with

intensity function λc(t) and mean value functionmc(t)
(6) the FCP can be simulated based on the simulated FDP

and the fault correction time
(7) there are totally k types of debuggers and the number

of the i-th type debuggers is SN(i)
(8) the fault detection rate is assumed to be constant and it

is a function of SN = [SN(1), . . . , SN(k)], denoted as
b = f (SN(1), . . . , SN(k))

(9) the form of b = f (SN(1), . . . , SN(k)) can be estimated
from similar projects or by experts

(10) the time for a type-i debugger to correct a fault is ran-
dom, and it is allowed to observe arbitrary distribution

(11) The cost of software testing includes the fixed cost,
labor cost, bonus for fault correction and the economic
loss of uncorrected faults

(12) the fixed cost increases in a constant speed with the
time of software testing process

(13) the labor cost comes from the wages of debuggers,
which is paid based on the working hours
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TABLE 1. Abbreviations, acronyms and nomenclature.

(14) for the debugger with stronger capability, the wage per
unit time is higher

(15) every time a debugger corrects a fault, the debugger is
awarded a fixed bonus

(16) the economic loss is great if the fault is uncorrected at
the end of software testing process

(17) the software is immediately released and operated
when the testing is finished

Assumptions (1)-(3) connect FDP, FCP and FIP with queu-
ing system. When a fault is detected, it arrives debuggers
for correction; once this fault is corrected, it departs the
debuggers with a probability of introducing new faults as a
kind of feedback. Implied by this discussion, assumptions
(1)-(3) are proposed.

On basis of assumptions (1)-(3), it is needed to determine
the processes for the detection and correction of the faults
initially embedded in the software. In previous studies, there
are mainly four types of models that used to model this pro-
cess, which are Markov models, data-driven models, simula-
tion models, and non-homogeneous Poisson process (NHPP)
models.

In Markov-based SRGMs, the cumulative number of fail-
ures is described as a pure birth process with state-dependent
transition rates when one counts the number of software
failures experienced during the testing phase [28], [29]. For
data-driven SRGMs, the software process is viewed as a time
series and it is assumed that a software failure is strongly
correlated with the most recent failures [30]–[32]. In real-
ity, this assumption may not be valid and hence the model
performance would be affected [33]. In contrast, simulation
approaches can relax certain impractical assumptions that
are common in model-based approaches [34], [35]. How-
ever, most simulation approaches assume that each time a
failure occurs, the corresponding fault will be removed with
absolute certainty, which simplifies the simulation process
significantly [36], [37].

Among all the models, the NHPP models can be regarded
as the most effective [38], [20], [39]–[41]. It is proposed
by Goel and Okumoto in 1979, and their framework of
NHPP models is called Goel–Okumoto (GO) model [42].
Thus, this study also uses NHPP to describe the processes of
the detection and correction of faults, which forms assump-
tions (4) and (5). Since the fault correction time is considered
in this study, assumption (6) is also proposed after assump-
tions (4) and (5).

Assumption (7) gives status of debuggers including the
number of debugger types and the number of debuggers
of each type. Assumption (8) defines the relation between
the fault detection rate and the status of debuggers, while
assumption (9) provides an approach to estimate this rela-
tion. Assumption (10) defines the correction time for differ-
ent types of debugger, which is the main characteristic of
debuggers.

The statement related to cost are given in assumptions
(11)-(13). Assumption (11) defines the area of the cost con-
cerned in this study. Assumptions (12)-(16) describe the fixed
cost, the labor cost, the fixed bonus and the economic loss
respectively.

Finally, the last assumption determines the release time of
the software. In practice, the software may not be released
immediately after the testing is finished. However, there are
too many factors that may influence the decision of release
time. Considering these factors will make the model much
more complex and difficult to analyze. Moreover, once the
software testing is finished, it should be ready to be used at
any following time. If there are some faults in the software
at that time, the software will still bring economic loss to
its developer, operator and user. Thus, to facilitate the mod-
elling, assumption (17) states that the software is immediately
released and operated when the testing is finished.
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B. SOFTWARE TESTING PROCESS FORMULATION
First, a NHPP process is introduced for the detection of the
faults initially embedded in the software [43]. This study uses
a counting process {N (t), t ≥ 0}, to represent the cumulative
number of detected original faults by time t . Since there are
no faults detected at beginning, we have N (0) = 0.
By using the NHPP failure process, it is assumed that the

number of faults detected during non-overlapped time inter-
vals are independent. In other words, the n random variables
N (t1), N (t2)−N (t1), . . . , N (tn)−N (tn−1) are s-independent
increments for any finite collection of times t1 < t2 < . . . <

tn.
Let m(t) represent the s-expected detected number of soft-

ware faults by time t . If the fault introduction is not consid-
ered, then the s-expected number of faults remaining in the
system at any time is finite. Thus, m(t) is a bounded, non-
decreasing function of t . If we use a to denote the expected
number of faults initially embedded in the software to be
eventually detected, m(t) follows the boundary condition:

m(t) =

{
0, t = 0
a, t →∞.

(1)

Assume that the s-expected number of software faults dur-
ing (t, t +1t) is essentially in proportion to the s-expected
number of undetected original faults at t , that is

m (t, t +1t)− m (t) = b {a− m (t)}1t + o (1t) , (2)

where b is the fault detection rate, and o (1t) /1t infinitely
approaches 0 as 1t → 0. Using Equation (2), by letting
1t → 0, we have:

λ(t) = m′ (t) = ab− bm (t) , (3)

where λ(t) is the fault intensity function.
Solving Equation (3) under boundary conditions shown in

Equation (1) yields

m(t) = a(1− e−bt ). (4)

As discussed above, the FDP of the original faults needs to
be simulated from work space, instead of in Simulink. Then
for the FDP, the mean value function can be given as

md (t) = a(1− e−bt ). (5)

and the intensity function can be calculated to be

λd (t) = m′d (t) = abe−bt . (6)

The FDP is simulated in the time interval of (0, T ]. Since
the general order statistics (GOS) models are closely related
to NHPPmodels [44], simulation of FDP can be implemented
through generation of a Poisson number of order statistics
from a fixed cumulative density function [45]. Specifically,
if X1,X2, . . . ,Xn are the points of a NHPP in a fixed interval
(0, T ], and if N (T ) = n, then conditional on having observed
n(>0) points in (0, T ], then Xi are distributed as the order

statistics from a sample of size n from the distribution func-
tion

3(t)−3(0)
3 (T )−3(0)

, 0 < t ≤ T , (7)

where 3(x) is a monotone non-decreasing right-continuous
function and it is bounded in the fixed interval (0, T ] [45].
Then, sincemd (x) is non-decreasing and right-continuous,

we let md (x) = 3(x). Finally, from formula (7), we can
simulate FDP by the fixed cumulative density function shown
as below

F (t) =
md (t)
md (T )

, 0 < t ≤ T . (8)

The simulation of the fault correction time is straightfor-
ward, with traditional inverse transformation approach. The
FCP can be obtained based on the simulated FDP and the fault
correction time. For the case where there are infinite number
of homogeneous debuggers, the mean value function of FCP
can be formulated as shown below.

The correction time of software is often assumed to observe
exponential distribution. Here, consider a special case where
there are infinite debuggers and the correction time of
each debugger observes the same exponential distribution
as 1(t) = exp (µ). Then using the intensity function of
fault detection, λd (t), the correction intensity function can be
calculated as the expectation of λd (t −1(t)), that is

λc(t) = E [λd (t −1(t))] =
∫
∞

0
λd (t − x)µe−µxdx

=

∫
∞

0
abe−b(t−x)µe−µxdx. (9)

Then we can have the mean value function of FCP as

mc(t) =
∫ t

0
λc(t)dt. (10)

Specifically, if the FDP is described by the GO model, the
mean value function for the fault correction process is:

mc(t) =


a
[
1− (1+ bt)e−bt

]
, µ = b

a
[
1−

µ

µ− b
e−bt+

b
µ− b

e−µt
]
, µ 6= b

(11)

where the mc(t) has the same form as the md (t) for an s-
shaped NHPP model with µ = b.
For the debugger, during the correction of each fault,

it is unavoidable that some codes are changed. If the code
is changed, it is likely to introduce new faults. This paper
assumes that the correction of each fault has a probabil-
ity of introducing a new fault. With the FCP and the fault
introduction rate of different types of debuggers, the FIP
can be obtained through the bottom path in Figure 1. The
fault introduction rate is set to be constant for each type of
debuggers.
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FIGURE 1. Software FDP, FCP and FIP simulated with Simulink.

C. COST CALCULATION
According to assumptions listed above, the cost of software
testing includes four parts: fixed cost, labor cost, bonus for
fault correction and economic loss due to uncorrected faults,
as shown below

C = Cf + Cl + Cb + Ce (12)

where Cf indicates the fixed cost, Cl indicates the labor cost,
Cb indicates the bonus for fault correction and Ce indicates
the economic loss due to uncorrected faults.

The fixed cost is mainly concerned with the unchangeable
expenditure for the testing, such as the rental for the office, the
cost of testing equipment or materials, and so on. Assuming
that the fixed cost is monotonously increasing with testing
time in a constant speed, we can have the fixed cost Cf as
shown below

Cf = Cof × t (13)

where Cof is the fixed cost per unit time.
Labor cost is mainly from the wages of debuggers.

Employing debuggers with stronger capability usually needs

to pay higher wages, so the labor costs for different types of
debuggers are different. Besides, since the wages are gener-
ally calculated by working hours, labor cost also increases
with the testing hours. In this case, the labor cost Cl can be
expressed as below.

Cl = Col1 × SN(1)× t + Col2 × SN(2)× t (14)

where Col1 is the labor cost per debuggers of type 1 per unit
time Col2 is the labor cost per debuggers of type 2 per unit
time.

Except the wages, debuggers can also receive bonus if
they successfully correct faults. The bonus of debuggers is
accumulated according to the number of faults they correct,
which is shown as below.

Cb = Cob × mc(t) (15)

where Cob is the bonus for a fault corrected.
The last item is a punitive expenditure. If the faults are

still uncorrected by the end of the testing process, they will
result in some economic loss. Because once the software is
launched on the market, the faults in it will cause tremendous
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adverse influence. Thus, this economic loss is usually huge in
practice and should be taken into the cost account, as shown
below.

Ce = Coe × (a+ mi(t)− mc(t)) (16)

where Coe is the economic loss of punishment due to an
uncorrected fault. It can be seen from equation (16) that the
number of uncorrected faults equals the number of the faults
in the beginning plus the number of faults introduced and
minus the number of faults corrected.

Finally, by substituting equations (13) - (16) into (12),
we can calculate the total cost, as shown in equation (17).

C = Cof × t + Col1 × SN(1)× t + Col2 × SN(2)× t

+Cob × mc(t)+ Coe × (a+ mi(t)− mc(t)) (17)

By minimizing the cost calculated in equation (17), we can
make the optimal decisions about the software testing pro-
cess, for example, to optimize the debugger numbers of dif-
ferent types or the software release time.

D. SIMULATION
In order to simulate the fault detection and correction pro-
cesses, the Simulink toolbox in Matlab is used. It is a graph-
ical programming environment for modelling simulating
and analyzing multi-domain dynamical systems. Simulink
is widely used in automatic control and digital signal
processing for multi-domain simulation and model-based
design [26], [27]. The whole process can be simulated using
the queuing entities provided by the Simulink toolbox of
Matlab.

In this study, assuming that there are 2 types of debuggers,
Figure 1 illustrates the fault detection, correction, and intro-
duction processes. The left-most entity ‘‘From Workspace’’
in Figure 1 corresponds to the fault detection process gen-
erated without considering the newly introduced faults. The
‘‘Path Combiner’’ entity in the left part of Figure 1 com-
bines the fault detection process of the original faults in
the software and the fault detection process of the newly
introduced faults. The ‘‘Output Switch’’ entity chooses the
first unblocked channel, which means the detected fault will
be handled by the first idle debugger. The ‘‘N-Server1’’ and
‘‘N-Server2’’ correspond to the two types of debuggers. The
‘‘Path Combiner1’’ at the right part of Figure 1 combines the
corrected faults from two types of debuggers to get the fault
correction process. The ‘‘Output Switch1’’ leads to the fault
introduction process through port 2, and the probability of
choosing this port depends on the attribute of the corrected
fault. Note that, the attribute of the corrected fault depends
on it is corrected by which type of debuggers. Therefore,
entities ‘‘Set Attribute’’ and ‘‘Set Attribute1’’ serve to assign
the fault introduction rate to a fault by debuggers of type 1 and
debuggers of type 2.

As for the setting of specifically these two types of debug-
gers considered, there are three four reasons. First, there may
be many types of debugger in practice, but in general they can

be classified into good debuggers and not good debuggers.
Second, the figure of simulation is too big to present in the
paper in terms of the layout, if more types are considered.
Third, the optimal resource allocation is convenient to be
presented in a figure with 3 dimensions. Last, the model
for the case with more types of debuggers can be easily
developed based on the model in this study.

III. TESTING PROCESS SIMULATION
In this section, to present the testing process simulation a
specific model configuration of the testing process and the
simulation results are provided.

A. CALCULATION
A specific model configuration is shown for illustrating the
testing process here. It is assumed that there are totally two
different kinds of debuggers. Parameters used in this model
can be obtained according to experts’ estimation through
Delphi method. Here these parameters are directly given for
the convenience of calculation. The simulation process is
briefly described in the following flow chart.

The parameters for the NHPPmodel of FDP are configured
as a = 100 and b = 0.02SN(1)+ 0.01SN(2). Then the md (t)
can be expressed as

md (t) = 100(1− e−(0.02SN(1)+0.01SN(2))t ), (18)

and the λd (t) can be calculated as

λd (t) = 100× (0.02SN(1)+ 0.01SN(2))

×e−(0.02SN(1)+0.01SN(2))t . (19)

In this study, the exponential distribution is used for the
correction and the introduction rate. In many areas, the expo-
nential distribution is the widely used probability distribution
that describes the time between events in a Poisson point
process, i.e., a process in which events occur continuously
and independently at a constant average rate [46], [47].

Herein, we assume that the correction time for the two
types of debuggers both observe exponential distribution with
parameters µ(1) = 0.2 and µ(2) = 0.1 respectively. The
introduction rates for the two types of debuggers both observe
exponential distribution with parameters γ (1)= 0.2 and γ (2)
= 0.1 respectively.
For illustration, we investigate the cases of SN = [5, 3]

and SN = [3, 5]. The fault detection rates for both cases
are respectively b = 1.3 and b = 1.1. The mean value
functions of the fault detection processes for the two cases
are respectively

md (t| SN = [5, 3]) = 100(1− e−1.5t ), (20)

and

md (t| SN = [3, 5]) = 100(1− e−1.3t ). (21)

As there are finite and heterogeneous debuggers, the mean
value function for the fault correction process and the fault
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introduction process is not mathematically tractable. How-
ever, both of them can be obtained through simulation. The
simulation replicates 100 times in the time interval of (0, 100].
Then the collected fault detection, correction, and introduc-
tion time data are grouped into the cumulative fault detection
number d ji , fault correction number cji and fault introduction
number eji, i = 1, 2, . . . , 100, j = 1, . . . , 100. Here j denotes
the number of a simulation run, and i denotes the testing time
till which the fault detection number, fault correction number,
and fault introduction number are cumulated. Finally, we can
have the average cumulative number of detected faults, cor-
rected faults, and introduced faults as

d̄i =
1

100

100∑
j=1

d ji , (22)

c̄i =
1

100

100∑
j=1

cji, (23)

ēi =
1

100

100∑
j=1

eji, (24)

where i = 1, 2, . . . , 100 and j = 1, 2, . . . , 100.
From equations (22)-(24), it can be seen that with the

number of simulation times replicated, the variances of di,
ci and ei will decrease, which illustrates the performance of
the simulation method [48]–[50].

B. SIMULATION RESULTS AND DISCUSSIONS
The simulation results are shown in Figure 2. In both
Figure 2 (a) and Figure 2 (b), the horizontal axis represents
the time and the vertical axis represents the number of faults;
three lines representing the numbers of faults for FDP, FCP
and FIP are plotted in each figure.

It can be seen clearly that when there are more debuggers
of the first type, the mean value functions of FDP, FCP and
FIP are higher, which indicate that more debuggers not only
contribute more to fault detection rate but also correct faults
faster and introduce more faults. This is consistent with the
analytical mean value function of fault detection process,
as given by (18) and (19).

Specifically, in both (a) and (b), the FDP first increases
rapidly to about 100 before a time between 20 and 30. The
reason may be that in the beginning of the test, the fault
detection is easy due to the comparatively great number of
faults in the software. After that, the growth rate suddenly
slows down to the end. Thismeans that as the number of faults
decreases, detecting faults becomes increasingly harder.

In contrast, the slopes of FCP and FIP curves are more
stable in both (a) and (b) in Figure 2. This is mainly because
the capacity of correcting is limited. Though a lot of faults
may be detected at beginning, some may need to wait in the
queue. At the end of the testing process, though the number of
detected faults are smaller, the debuggers are more available
and thus facilitate the fault correction.

FIGURE 2. Simulated FDP, FCP and FIP.

According to the simulation results, it can be seen that the
trends of FDP, FCP and FIP are consistent with the analysis
in Section II as well as the intuition to problem description
and practice. This proves the effectiveness of the method
proposed in this study.

IV. TESTING DESIGN OPTIMIZATION
In general, the system reliability and cost can be obtained
by balanced by optimizing the system resources [51]–[53].
Thus, besides the reliability requirement, the testing design
including optimal personnel assignment of debuggers and
optimal software release time should also be discussed. The
target of testing design optimization is to minimize the total
cost during the software testing phase and the operational
phase. In the testing process, there are mainly two factors,
debuggers and release time, which can be adjusted [54].

On the one hand, if debuggers have different capabilities,
they may ask for different wages. As both debuggers’ capa-
bilities and wages can influence the cost of software testing,
then how many debuggers of type 1 and type 2 should be
employed is an important question for the software testing
design. On the other hand, how long the testing should be
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conducted (software release time), can also influence the cost.
Most faults may be corrected in a comparatively short time,
so if the test lasts too long, many resources may be wasted; on
the contrary, if the testing duration is short, more faults will be
uncorrected and lead to a loss when the software is launched
on the market. Thus, the design optimization simulated here
mainly consider the personnel assignment of debuggers and
the software release time. All the following simulations repli-
cate 100 times. Similar as Section III A, Parameters used in
this section can be obtained according to experts’ estimation
through Delphi method. Here these parameters are directly
given for the convenience of calculation.

A. THE OPTIMIZATION OF DEBUGGERS ASSIGNMENT
First the optimizing for debuggers assignment is discussed.
Generally, there are two situations that need to be optimized.
The first is that debuggers of one type performs absolutely
better than debuggers of the other type. In this case, the
optimization problem mainly comes from the high labor cost
of the better debuggers. The second situation is that different
debugger types have different strengths respectively. Then,
the main job of optimization is to make the best use of their
abilities. The two situations are shown as follows.

1) SITUATION 1
In this situation, debuggers of one type have better abilities
both in detection and correction than the other type

In this Situation, the parameters for the testing process are
set as a = 100, b = 0.02SN(1) + 0.01SN(2), µ(1) = 0.2,
µ(2)= 0.1, γ (1)= 0.1 and γ (2)= 0.15. From the parameter
setting we can see that debuggers of type 1 performs better
than of type 2, so the labor cost for debuggers of type 1 should
be higher than labor cost for type 2. The parameters for the
cost calculation are configured as Cof = 15, Col1 = 4,
Col2 = 2,Cob = 2 andCoe = 50. Specifically,Col1 = 4 and
Col2 = 2 indicate that the labor cost for a type-1 debugger
is twice the labor cost for a type-2 debugger. According to
Equation (17), the total cost can be expressed as below.

C = 15t + 4× SN(1)× t + 2× SN(2)× t

+ 2× mc(t)+ 50× (100+ md (t)− mc(t)) (25)

The testing process is simulated in the time interval of
(0, 100]. From the simulation results, we can have the aver-
age cumulative number of faults corrected and introduced,
as illustrated in Section III. Then, according to equation (25),
we can finally calculate the testing cost for the software.
For this example, we vary the debugger numbers of two
different types respectively from 1 to 10 and compare the
corresponding costs, as shown in Figure 3.

According to our results, the cost reaches its minimum,
4245.68, when there are 5 debuggers of type 1 and 2 debug-
gers of type 2 for the software testing in this case, as shown
in Figure 3. From the shape of the figure, it can also be seen
that the cost generally first decreases and then increases with

FIGURE 3. Costs for different numbers of debuggers of type 1 and type 2
in case 1.

the number of debuggers of one type when the number of the
other type is fixed.

2) SITUATION 2
In this situation, debuggers of one type have better ability in
detection but weaker ability in correction than the other type.

For this situation, the parameters for the testing process are
set as a = 100, b = 0.05SN(1) + 0.01SN(2), µ(1) = 0.15,
µ(2)= 0.2, γ (1)= 0.1 and γ (2)= 0.15. From the parameter
setting we can see that debuggers of type 1 performs better in
faults detection while debuggers of type 2 performs better in
faults correction. The parameters for the cost calculation are
configured as Cof = 15, Col1 = 2, Col2 = 3, Cob = 2
and Coe = 110. It should be noted that compared with
the cost parameters in case 1, we reduced the labor cost
gap between the two types because each type has its own
advantage. According to Equation (17), the total cost can be
expressed as below.

C = 15t + 2× SN(1)× t + 3× SN(2)× t

+ 2× mc(t)+ 110× (100+ md (t)− mc(t)) (26)

The testing process is also simulated in the time interval
of (0, 100]. As in case 1, we can finally have the testing cost
for the software according to equation (26). Figure 4 shows
the results for costs of the different debugger numbers of two
different types respectively from 1 to 10.

FIGURE 4. Costs for different numbers of debuggers of type 1 and type 2
in case 2.

According to our results, the cost reaches its minimum,
3553.44, when there are 6 debuggers of type 1 and 3 debug-
gers of type 2 for the software testing in this case, as shown

38656 VOLUME 9, 2021



K. Gao: Simulated Software Testing Process and Its Optimization Considering Heterogeneous Debuggers and Release Time

FIGURE 5. Cost for three different pairs of debuggers in the release time
interval of [1, 200].

FIGURE 6. Costs for different number of type-2 debuggers and software
release time with 9 debuggers of type 1.

in Figure 4. From the shape of the figure, it also can be seen
that the cost generally first decreases and then increases with
the number of debuggers of one type when the number of
debuggers of the other type is fixed.

B. THE OPTIMIZATION OF RELEASE TIME
In this example, we consider the cost model with the same
parameters used in case 2 in section IV A. For illustration,
three pairs of debuggers were selected for the software testing
and the software release time was varied from 1 to 200 unit.
The results of costs for different pairs of debuggers and
different release time are shown in Figure 5, where (x, y) in
the legend indicates that employing x debuggers of type 1 and
y debuggers of type 2.

It can be seen from Figure 5 that all the costs for three
pairs of debuggers first decrease before 75 or thereabout and
then turn to increase. Specifically, the cost for debuggers of
(7, 3) is the highest during the decreasing phase while the cost
for debuggers of (3, 7) is the highest during the increasing
phase. As known in case 2 in section IV A, debuggers of
type 1 performs better in fault detection and debuggers of
type 2 performs better in fault correction. Thus, we can guess
that the fault detection is more important in the beginning
of the test but the fault correction is becoming increasingly
important as there will be fewer faults to be detected with the
time going.

C. THE OPTIMIZATION OF DEBUGGERS ASSIGNMENT
AND RELEASE TIME
In this example, we simultaneously optimize the debug-
ger assignment and release time. In order to compare

FIGURE 7. Costs for different number of type-1 debuggers and software
release time with 2 debuggers of type 2.

FIGURE 8. Costs for different numbers of debuggers of type 1 and type 2
with the release time of 77.

conveniently, the parameters used here are the same with
the example in section IV B. According to our results, the
optimal testing scheme should last 77 units of time and
employ 9 debuggers of type 1 and 2 debuggers of type 2.
In this case, the cost of testing is least, which is only 3335.82.
To illustrate this situation, we give three separate figures
where the numbers of type-1 and type-2 debuggers as well
as the software release time are fixed respectively, as shown
in Figures 6-8.

As shown in Figure 4 and 5, the cost usually reaches
its minimum when the debugger numbers of two types lie
between 1 and 10, and the release time lies between 70 and 80.
Thus, in this example, to present more details, the debugger
number of each type is varied from 1 to 10 and the release
time lays within the range of (65, 85).

V. CONCLUSION
This paper simulates the software fault detection, correction
and introduction processes considering the impact of debug-
gers’ different contributions on the fault detection rate, the
different fault correction rate, and the different fault intro-
duction rate of different debuggers. The whole procedure is
simulated as a queuing process adopting the Simulink toolbox
of Matlab. Based on this procedure, the calculation method
of total cost, the main target of the testing design optimizing,
is also proposed. The application of the proposed approach
is illustrative under certain assumptions of the parameters’
values. The procedure simulation results show that more
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debuggers not only contribute more to fault detection rate
but also correct faults faster and introduce more faults. The
testing design optimization results show that in some practi-
cal situations, reasonably scheduling the debugger types and
software release time can help to reduce the total cost of
software testing. The results implies us that companies should
consider the benefits and the costs of the debuggers and the
release time in order to maximize their profit.

There are several directions that can be further investigated
based on this study: First, the optimal combination of differ-
ent types of debuggers and the optimal software release time,
considering the balance between the software reliability and
the cost function, can be further studied. Second, it would be
interesting to consider the fault dependency between different
faults; Say, some faults may be dependent on other faults,
so that they become detectable only upon correction of other
faults. Last, it is also meaningful to consider that the testing
process of software can be combined with the testing process
of hardware that supports this software.
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