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ABSTRACT Measuring the space area of obstacles is one of the important problems in obstacle localizing
fields. Most of the existing research works on the localization of obstacles focus on where the obstacles
are, and few of them measure both the positions and the areas of the obstacles. In this paper, we propose a
Minimum convex bounding Polygon localizing algorithm based onVisible light Tracking (MPVT) in order to
rapidly and accurately locate the position and area of a 2D obstacle in the environment of sparsely-deployed
sensors. MPVT first determines the initial localization light by Visible Light Tracing method (VLT). Second,
it searches for the first side of the Minimum Convex Bounding Polygon (MCBP) of the obstacle. Third,
MPVT calculates the subsequent other sides and the vertexes of MCBP until the next side coincides with
the first side. In order to evaluate the approximation degree between the actual values and the localization
values in terms of areas, positions and shapes, we propose two performance evaluation indexes, i.e., the area
ratio and the ratio of equivalent radius. We conducted experiments on the influence of obstacle orientation
and sparseness of sensor deployment, the accuracy comparison with the existing methods, and the time
complexity. Experiment results show that MPVT can accurately locate the position and area of the obstacle
in the environment of sparsely-deployed sensors with low time overhead, and is suitable for low-cost obstacle
localization applications.

INDEX TERMS Minimum convex bounding polygon, obstacle localization, ratio of equivalent radius, sparse
environment, visible light tracking.

I. INTRODUCTION
With the development of society, the applications of wire-
less sensor networks are becoming pervasive, such as area
monitoring, biological detection, home care, object tracking,
etc. [1]. There may be various obstacles in the areas where
sensor networks are deployed, which not only hinder data
transmission and reception between sensor nodes, but also
cause a series of security problems. Therefore, it is very
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important to locate the position and size of obstacles in order
to take preventive measures in time [2], [3].

There are a number of positioning technologies in the
existing research. According to the difference of the technical
means used for the first time, this paper classifies the existing
research related to obstacle localization into the range-based
method, the image-based method, the wireless sensing-based
method, and the light-based method.

In the range-based method, ultrasonic (or infrared)
rangefinders and lasers are usually used to measure the dis-
tance between observation points and obstacles. This method
only locates the positions of obstacles, but cannot locate

39884 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7727-3072
https://orcid.org/0000-0002-0979-6514
https://orcid.org/0000-0002-1325-4275
https://orcid.org/0000-0003-1620-0560


Z. Gao et al.: Position and Area Localization Algorithm for Obstacles

the shape and size of obstacles. When using ultrasonic (or
infrared) rangefinders, the reflection effect is easy to be
affected by the surface conditions of different objects, and
the ultrasonic auxiliary equipment is easy to be interfered
by the ultrasonic source [4]. When using lasers, the equip-
ment cost is very high and the resolution is easy to be
affected by environment [5]. In the wireless sensing-based
method, considering the space constraints, the organization
of paper, and the relationship with the obstacle position-
ing, we only include the literal based on fingerprints and
anchors. The fingerprints of wireless signals or the posi-
tions of anchor points are used to detect the positions of
obstacles, and it has the advantage of wide applicability
(e.g., it can be used indoors or outdoors, and there can be
walls or other objects in the measurement area.) [6]–[8].
Due to the characteristics of radio waves, this method only
locates the positions or recognizes the behaviors of obstacles,
and usually need complex equipment. In the image-based
method, monocular or binocular cameras are usually used
to capture the surrounding environment, and then machine
learning algorithms (e.g., the deformable grid method [9], the
convolutional neural network [10], the image segmentation
[11], the support vector machine (SVM) [12], or the Markov
chain [13], etc.) are used to process and extract the informa-
tion of obstacles in the images, thereby locating the position
and size of the obstacle. However, the localization effect
of this method is susceptible to the motion tracking errors
of cameras, and has the disadvantages of high calculation
overhead and costs. In the light-basedmethod, LED is usually
used to locate the positions. During LED localization, LED
lights are used as light sources, and the photoelectric sensors
are used as receivers. LED lights are located above objects,
and receivers can receive lights within the range covered
by LED lights. This method can obtain the relative position
between receivers and LED lights by analyzing the intensity
and angle of the received optical signals [14], [15], or the
received light beams marked with labels [16]. This method
has the disadvantage that the intensity of the lights received by
each receiver is different, resulting in a large deviation when
locating the receiver. Therefore, this method is suitable for
indoor localization.

Few of the existing research efforts on the localization of
obstacles consider both the position and the area of the obsta-
cle. Aiming at the problem of obstacle localization in two-
dimensional (2D) areas, this paper presents a new method
named MPVT (Minimum convex bounding Polygon localiz-
ing algorithm based onVisible light Tracking).MPVT locates
the positions and areas of obstacles by using the visible areas
of LED lights from different viewpoints. The application
scenarios ofMPVT are that light-emitting nodes are deployed
along the sides of a rectangular, and a light-receiving node
moves around the rectangular sides and detects the lights.
The light-emitting nodes are sparsely distributed on the rect-
angular sides with a fixed gap, and the light-receiving node
can receive the light signals. In the process of localizing,
at each light-receiving position (i.e., viewpoint), MPVT will

find two lights that bound and are closest to the outer surfaces
of the obstacle, and then it derives MCBP (Minimum Convex
Bounding Polygon) of the obstacle from all the viewpoints.
The position and area of the minimum surrounded polygon
are regarded as where the obstacle lies.

The contributions of this paper are twofold. First,
it presents MPVT, a new localization algorithm and its imple-
mentation process in sensor-sparse environment. Second,
it presents two indexes for localization performance evalu-
ation, i.e., the area ratio Sr , and the ratio of equivalent radius
Lr . Compared to the existing localization methods, MPVT
can accurately locate not only the position, but also the area of
the obstacle in the environment of sparsely-deployed sensors
while has low time overhead.

The rest of this paper is organized as follows. Section II
introduces the related work in the field of obstacle detection.
Section III gives the research scenario of this paper and the
definitions of related terms. Section IV details the implemen-
tation process of MPVT. Section V conducts the experiments
and analyses. Finally, Section VI summarizes this paper.

II. RELATED WORK
In this section, we introduce the related work in the range-
based method, the wireless sensing-based method, the image-
based method and the light-based method.

In the range-based method, in order to solve the prob-
lem of obstacle avoidance during the flight of a drone,
Gageik et al. [4] proposed to use ultrasonic sensors and
infrared rangefinders to detect the distance and the position
between the drone and the obstacles. In order to make the
mobile robot avoid obstacles, Peng et al. [5] placed a 2D
lidar on the robot for distance measurement, and obtained the
position information of obstacles by filtering and clustering
the laser point cloud data. Hussein et al. [17] adopted a
combination of stereo vision and laser rangefinder for obsta-
cle avoidance of ground vehicles. They first measured the
approximate position of the obstacle by the laser rangefinder,
and then took an image by using a binocular camera to
identify the obstacle in the image. Zhang et al. [18] first used
millimeter-wave radar to obtain rough position information
of obstacles, and filtered data to extract effective targets.
Second, they used coordinate system conversion and camera
parameter calibration to project effective targets to the image
plane and generate ROI (Region of Interest). Finally, they
detected and tracked the vehicle targets in the ROI based on
image processing and machine learning techniques.

In the wireless sensing-based method, Yang et al. [6] pre-
sented a multi-dimensional RSS feature fuzzy mapping and
clustering method with high positioning accuracy and low
positioning overhead. This method first obtained the Maxi-
mum Information Coefficient (MIC) between different APs
(Access Points), the set of the correlated APs, and the RSS
feature fuzzy weight in the online phase, and then selected the
non-redundant APs with the high location resolution for the
target positioning. Singh et al. [19] proposed a localization
method based on analytical geometry. This method used three
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positions of non-collinear beacon points to derive the position
of a sensor node, and it could archive high localization
accuracy because an adaptive mechanism was used to select
random points with different sizes of the constraint area.
Xiong et al. [20] proposed a positioning method of hybrid
received signal strength (RSS) and time-of-arrival (TOA) in
order to locate multiple targets in a 3-D cooperative wireless
sensor network. This method first derived the coarse coor-
dinates of targets’ positions, and then optimized the targets’
positions through the communication information between
the targets and the specific sensors. Zhou et al. [8] modeled
the relationship between sample capacity and localization
errors, and constructed an energy-efficient location finger-
print database by sampling the minimal number of indepen-
dent and non-redundant signals with the expected localization
accuracy.

In the image-based method, researchers usually take a
photo or video for the obstacle areas by cameras or cam-
corders, and then extract obstacles in the image by image
processing techniques. Pham et al. [21] used the Kinect
sensor to collect the color depth data in front of the user,
and then used the 3D sensing OpenNI framework to process
and extract accurate 3D information of the obstacles by the
PCL library. Kang et al. [9] adopted a DG (Deformable Grid)
method to detect obstacles in order to help persons with
visual impairment. DG initially has a regular grid shape. This
grid will gradually deform with the movement of objects
in the scene captured by the camera, and returns to the
original shape when the object leaves the scene. The DG
method detects the position and size of objects which have
collision risks by the deformation degree of DG. In order
to detect the nearest obstacle from a driving vehicle, some
researchers [10], [22]–[24] first used the measured dataset
to train a convolutional neural network, and then input the
image data captured by the monochrome camera into the
trained convolutional neural network to extract the position
of obstacles. Kristan et al. [11] used the Markov random
field frame to segment the single video stream, and then
extracted the texture features of the obstacle to identify the
position of the obstacle in order to avoid collision between
ships and obstacles during navigation. Abiyev et al. [12]
proposed an obstacle detection and pathfinding algorithm
using SVM (Support Vector Machine) and A∗ algorithms
in mobile robots. Gupta et al. [13] integrated the appearance
of the image and 3D cues (e.g. image gradient, curvature
potential, and depth variance) into theMRF (MarkovRandom
Field) formula to identify the area of obstacles.

In the light-basedmethod, some researchers [14], [15] used
the photoelectric sensor as a receiver to receive the signals
emitted by the LED light, and estimated the position of the
LED light relative to the receiver from the received signal
strength and reception angle in order to locate indoor obsta-
cles. Xie et al. [16] used the light sensor deployed around the
object as a receiver, labeled each beam, and then counted the
labeled beams received by the receiver to identify the posi-
tions of indoor objects. Guan et al. [25] presented a double-

light positioning system based on image sensors. This system
first identified the IDs (IDentities) of LED lights by utilizing
the rolling shutter mechanism of the CMOS (Complementary
Metal Oxide Semiconductor) image sensors and machine
learning algorithms such as the Fisher classifier and the linear
support vector machine, and then it located the position of an
object by coordinate transformation. This system had high
real-time performance and positioning accuracy, and low
complexity. Moreover, Guan et al. [26] proposed an indoor
robot VLP (Visible Light Positioning) localization system
based on Robot Operating System (ROS). They designed
a VLP localization package, and implemented a prototype
system on a Turtlebot3 Robot which achieved the indoor
positioning accuracy within 1 centimeter and the average
computational time of only 0.08 second.

III. PROBLEM DESCRIPTION
In this section, we will give the definitions of localization
scenarios and some related terms used in this paper.

A. LOCALIZATION SCENARIOS
The purpose of this paper is to identify obstacles by using the
light-based method in a sparse environment. In the following
parts of this paper, an obstacle refers to an object which
lies in the measurement area. The obstacle has no com-
munication function and indication function, and can affect
the normal work within the measurement area (e.g. signal
transmission, or robot cruise). The deployment positions of
the LED emitters are called the light-emitting points, and the
light acquisition positions of the light receivers are called the
light-receiving points. To the best of our knowledge, there
is no uniform definition of sparseness, and how to define
sparseness is related to the research goals [27]–[30]. In this
paper, if the permitted localization error is α meter, we must
set the deployment distance between sensor nodes to no more
than α/2 meter. We can define α/2 meter as one unit of the
x axis and the y axis. We define that the sensors are spar-
ely deployed when the distance between two light-emitting
points is m∗α/2 meter (m≥2), i.e., the distance between two
light-emitting points is m units along the sides of the mea-
surement area. Besides, we assume that the measurement
area is a square, the length and width of the obstacle are
all not less than 1 and the obstacle is a convex polygon.
Note that although an obstacle is a 3D object, this paper only
aims at the 2D localization problem where the measurement
area is a horizontal plane, and it does not consider the pose
of the obstacle. The position and shape of the obstacle that
MPVT derives is the crosscut between the obstacle and the
horizontal plane where the light-emitting points and light-
receiving points lie. In this paper, we believe that the obstacle
is opaque and its surfaces only block lights but not reflect
lights, and do not consider the influence of emitting-receiving
devices on the performance or sparseness.

Fig. 1 shows a measurement area with the side length of 6.
The measurement area is enclosed by four vertices with the
coordinate points of (0, 0), (6, 0), (6, 6), and (0, 6), where
one of the vertices is used as the coordinate origin, and the
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FIGURE 1. Measurement area.

measurement area is in the first quadrant. The square at the
bottom right of the measurement area is an obstacle. At the
side of the measurement area, the light-receiving points and
the light-emitting points are set in the center between two
scales. From the position of (0.5, 0), in the counter-clockwise
direction, we set light-receiving points at every unit. In Fig. 1,
the black diamond points denote the positions of the light-
receiving points, and they are located in the center between
two scales, e.g. (0.5, 0), (1.5, 0), ..., and so on. The light-
emitting points are set according to the degree of sparsity. For
example, if the degree of sparsity is m, the distance between
two emitters will be m units. The red circles in Fig. 1 are the
deployment positions of the light-emitting points when the
sparsity is 2.

In real-world applications, the light-emitting points are
LED emitters, and a small vehicle with a light-receiver moves
around the sides of the measurement area to receive the
signals from LED emitters in order to reduce costs. In order
to avoid the interference between the light-emitting points
and the light-receiver, the light-receiver moves in front of the
light-emitting points (i.e., the inner side of the measurement
area), or keeps a smaller vertical space from the light-emitting
points (although this paper considers them to be on the same
horizontal plane).

B. DEFINITION OF TERMS
We first introduce the concept of viewpoint in order to make
it easy to understand the process of MPVT. Since a light-
receiving point Pi is in fact the point where the lights are
viewed, Pi is also called the viewpoint Vi. Without loss of
generality, we use Vi (1.5, 0) in Fig. 2 as the viewpoint to
illustrate the definition of terms used in the following parts
of this paper.

Visible area at Vi: The area(s) where the passing lights will
not be blocked by obstacles. As shown in Fig. 2, R1 and R3
are the visible areas at Vi.
Blocking area at Vi: The area(s) where the passing lights

will be blocked by obstacles. As shown in Fig. 2, R2 is the
blocking area at Vi.

FIGURE 2. Three areas of viewpoint.

As shown in Fig. 2, the visible area R1 is in the counter-
clockwise direction of the straight line segment Li with end-
points coordinates of (1.5, 0) and (6, 2.5), and Li is defined
as the left side line of the blocking area R2; The visible area
R3 is in the clockwise direction of the straight line segment
L ′i with endpoints coordinates of (1.5, 0) and (6, 0.5), and L ′i
is defined as the right side line of the blocking area R2. When
locating an obstacle, starting from any light-receiving point,
the measurement area can be divided into one blocking area
and one or two visible areas.

Visible surface of the obstacle from Vi: The largest visible
outer surface of an obstacle from a certain viewpoint Vi
is defined as the visible surface of the obstacle at Vi. For
example, in Fig. 2, the visible surfaces of the obstacle at V1
are S1 and S2.
Distance between a viewpoint Vi and an obstacle: The

shortest vertical distance from the visible surface of the obsta-
cle seen from Vi to Li is defined as the distance between Vi
and the obstacle. For example, in Fig. 2, the distance between
V1 and the obstacle O is the length of d1.

Visible Light Tracing method (VLT): VLT is a method
which is used to find the next visible light. The key idea of
VLT is that it starts from one light and then finds the next
visible light according to a specified mean.

In this paper, MPVT uses VLT in the process of searching
for the initial localization light and the sides of MCBP.

It should be noted that, according to the reversibility princi-
ple of lights, when a position Vi is set to both a light-emitting
point and a light-receiving point, Vi can see all other light-
emitting points and light-receiving points. But if Vi only sets
a light-receiving point, Vi can only see other light-emitting
points.

For each viewpoint Vi, there is a left side line Li of the
blocking area and a right side line L ′i of the blocking area.
After obtaining the left and right side lines of all viewpoints,
we can get a MCBP of the obstacle. The purpose of MPVT is
to find MCBP, i.e., the position of the obstacle.
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FIGURE 3. The implementation flow of MPVT.

IV. IMPLEMENTATION PROCESS OF MPVT
In this section, we will detail the implementation process of
MPVT.

As shown in Fig. 3, the MPVT algorithm first finds the
initial localization light. Second, from the initial localization
light, it uses the law of counter-clockwise intersecting lights
to find the first side of MCBP of the obstacle. Third, from
the first side of the minimum polygon, the law of counter-
clockwise intersecting light is used to find the subsequent
sides of MCBP.

A. SEARCHING FOR THE INITIAL LOCALIZATION LIGHT
It includes the following two steps.

Step 1: Find the left side line and right side line of the
blocking area of each viewpoint in the measurement area.

Suppose the side length of the measurement area is n,
MPVT first creates a 4n × 2 matrix lineList. Second, start-
ing from Vi (0.5, 0), MPVT traverses each viewpoint in a
counterclockwise direction. Third, MPVT finds the left side
line and right side line of each viewpoint, and stores the two
endpoints coordinates of the left side line and right side line
of each viewpoint into lineList.
We take Fig. 4 as an example to explain how to calculate

the left line and right side line of a viewpoint Vi. MPVT first
calculates the minimum angle θmin and the maximum angle
θmax between the connection lines from Vi to each vertex of
the obstacles and the sides of the measurement area where
Vi lies as the x-axis direction. Second, MPVT calculates the
intersection points. Pmin is the intersection point between Vi
and the side of the measurement area when the intersection
angle is θmin. Pmax is the intersection point between the light
from Vi and the side of the measurement area when the
intersection angle is θmax . Third, find the nearest light line in
the counter-clockwise direction of Pmax , i.e., the left side line
Li; similarly, find the nearest light in the clockwise direction
of Pmin, i.e., the right side line L ′i .
Step 2: Use VLT to find the initial localization light.
We use VLT to find the initial localization light according

to the following steps.
First, the line segment stored in lineList[0][0], i.e., the left

side line of the blocking area at V1 (0.5, 0) is defined as the
base line Lb. The other vertex of Lb except V1 is set to V2.
Second, starting from V2, the other vertex of L ′2 (L ′2 is the

FIGURE 4. Localization of the left side line and right side line of obstacles.

FIGURE 5. Example of searching for the initial localization light.

right side line of V2) except V2 is set to V3. Third, starting
from V3, the next vertex of L3 (L3 is the right side line of V3)
except V3 is set to V4. The above process is repeated until the
next new light cannot be found. The final light is the initial
localization light Lp, and the viewpoint is Vp.

For example, in Fig. 5, starting from V1, the L1 is V1V2, and
L ′2 isV2V3. Starting fromV3, L3 isV3V2, which coincideswith
the previous line, so the initial localization light Lp is V3V2,
and the end position Vp is V3.

B. SEARCHING FOR THE FIRST SIDE OF MCBP
In this subsection, we present the law of counter-clockwise
intersecting lights and Theorem 1 to search for the first side
of MCBP of the obstacle.
Law of counter-clockwise intersecting lights: It is the

method of searching for the intersection points between the

39888 VOLUME 9, 2021



Z. Gao et al.: Position and Area Localization Algorithm for Obstacles

left side line Li of Vi and the left side lines of other related
viewpoints. This method includes the following two steps.
First, it starts from Vi, and moves counter-clockwise along
the right side of Vi and the next side of the measurement area
until the corresponding intersection point between Li and the
side of the measurement area arrives. Second, it calculates all
the intersection points between Li and the left side lines of all
the viewpoints that it meets in the last step.
Theorem 1: Taking Vp as the viewpoint, the light Ld whose

intersection point with Lp has the farthest distance from Vp
according to the law of counter-clockwise intersecting lights
must be a part of MCBP of the obstacle.
Proof: It can be concluded from the method of finding

the initial localization light that Lp is the light closest to the
obstacle among all the lights starting from point V1. Assume
that the surface of the obstacle closest to Lp is Si. (If it lies
at the intersection of two surfaces, then we select the surface
in the counter-clockwise direction. For example, in Fig. 5,
the closest point from the obstacle to V2V3 is the intersection
of S1 and S4, so the obstacle surface where the closest point
lies in this case is S1.). According to the law of counter-
clockwise intersecting lights, we can get the left side line
Ld of Vd which has the farthest distance from Vp. Because
the intersection of the inner blocking areas of the left side
lights Ld and Lp has the minimum area, the union of the
visible area at Vp and Vd has the largest visible area, and
Ld must be the light closest to Si. Otherwise, if Ld is not
the light closest to Si, it means that there is a visible area
under the intersection point of Ld and Lp. There is still a light
in the counter-clockwise direction of Ld that is closer to Si,
so Ld is not the initial localization light, which contradicts the
assumption. Therefore, Ld must be the light closest to Si, and
it must be the side of MCBP of the obstacle.

According to the law of counter-clockwise intersecting
lights and Theorem 1, the method to search for the first side
of MCBP of the obstacle is as follows:

Step 1: Create a matrix M1 to store the coordinates of
MCBP when searching for MCBP’s side;

Step 2: Traverse the elements in the first column of
lineList, mark the line where Vp lies as r1, and mark the line
where the other endpoint of Lp lies as r2;
Step 3: Traverse each element in lineList from r1 to r2 to

find the left side line of the blocking area of each viewpoint;
Step 4: Traverse each left side line Lj, and use the prin-

ciple of vector cross product to determine whether Lj has an
intersection point with Lp.
Here we take two intersecting lines AB and CD in Fig. 6 as

an example.
As shown in Fig. 6, when it is true that both C and D lie

on different sides of the line AB and A and B lie on different
sides of the line CD, it means that AB intersects with CD. The
above principle can be denoted by the equations as follows:{

(
−→
AB×

−→
AC) · (

−→
AB×

−→
AD) ≤ 0

(
−→
CD×

−→
CA) · (

−→
CD×

−→
CB) ≤ 0

(1)

FIGURE 6. Determining whether two straight lines intersect by using
cross product.

The equation of the vector cross product for
−→
AB ×

−→
AC is

defined as
−→
AB×

−→
AC

= [(x2 − x1) ∗ (y3 − y1)− (x3 − x1) ∗ (y2 − y1)]
−→
k (2)

The direction of
−→
k is vertical to this paper surface and

points at the reader’s direction.
Similarly:
−→
AB×

−→
AD

= [(x2 − x1) ∗ (y4−y1)−(x4−x1) ∗ (y2 − y1)](−
−→
k ) (3)

(
−→
AB×

−→
AC) · (

−→
AB×

−→
AD)

=

∣∣∣−→AB×−→AC∣∣∣ ∗ ∣∣∣−→AB×−→AD∣∣∣ ∗ cos < −→k ,−−→k > (4)

The cross product of the other vectors in Equation (1) can
be calculated in a similar manner.

If AB and CD do not intersect, jump to Step 5. If they
intersect, suppose the equations of AB and CD are a1x +
b1y + c1 = 0 and a2x + b2y + c2 = 0, respectively (where
a1 = y1−y2, b1 = x2−x1, c1 = x1∗y2−x2∗y1, a2 = y3−y4,
b2 = x4−x3, c2 = x3∗y4−x4∗y3). Then we use Equation (5)
to calculate the coordinates Pi of the intersection point, and
use Equation (6) to find the distance d between Vp and Pi.{

x = (b1 ∗ c2 − b2 ∗ c1)/(a1 ∗ b2 − a2 ∗ b1)
y = (a2 ∗ c1 − a1 ∗ c2)/(a1 ∗ b2 − a2 ∗ b1)

(5)

d =
√
(Xi − Xp)2 + (Yi − Yp)2 (6)

where (Xp, Yp) is the coordinate of Vp, (Xi, Yi) is the coordi-
nate of Pi.
Step 5: The light which has an intersection with Lp and the

intersection point is farthest fromVp is the first side ofMCBP.
For example, in Fig. 5, the initial localization light is V3V2.

When we traverse all viewpoints between V3 and V2 in the
counter-clockwise direction of V3, only the left side lines of
the blocking areas of viewpoints (3.5, 0), (4.5, 0), and (5.5, 0)
have intersection points with V3V2. Besides, the left side line
of the blocking area from the viewpoint (3.5, 0), i.e., the line
segment L4 (i.e., Ld ) composed of (3.5, 0) and (6, 4.5), has
the largest distance from the intersection point with V3V2 to
V3. L4 is the first side of MCBP of the obstacle.

C. SEARCHING FOR THE SUBSEQUENT SIDES OF MCBP
After obtaining the first side of MCBP of the obstacle,
we can use the law of counterclockwise intersecting lights
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and Theorem 2 to calculate the subsequent sides of MCBP
until all the sides of MCBP are obtained.
Theorem 2: Taking the side of MCBP of the obstacle as the

left side line Li of the blocking area from Vi, the light Lj that
is the farthest away from Vi according to the law of counter-
clockwise intersecting lights must be the next side of MCBP
of the obstacle O.
Proof: Since Li is a side of MCBP of the obstacle, and

according to the law of counter-clockwise intersecting lights,
we can get the light Lj that is farthest from the intersection
point of the left side line of the viewpoint Vi. Because the
intersection area has the minimum blocking area in the direc-
tion of Si or the next visible surface Si+1 in the counter-
clockwise direction, Lj must be the next side of MCBP of the
obstacle O.

According to the law of counter-clockwise intersecting
lights and Theorem 2, the method for determining the next
light of the subsequent minimum surrounded polygon is as
follows:

Step 1:Mark the starting point of the first side Ld ofMCBP
as the viewpoint V1, and traverse each element of lineList.
Once the line of the coordinates of the starting point V1 is
found, we marked it as r ;

Step 2: Determine the number of viewpoints N that need
to be traversed when looking for viewpoints on the right of
V1 and the next side of the measurement area according to
the law of counter-clockwise intersecting lights;

Step 3: Traverse from the first column of the (r+1)th row
to the first column of the (r +N )th row in the lineList to find
the left side line of the blocking area of each viewpoint;

Step 4: Traverse each left side line to determine whether it
intersects with Ld . If it is true, we calculate the coordinates
of the intersection points and the distance d between V1 and
each intersection point;

Step 5: The light that has an intersection point with Ld
and the distance between the intersection point and V1 is the
largest one is the next side ofMCBP.We store the intersection
point coordinates in M1;
Step 6: Mark the newest found side as Ld , and the view-

point of Ld as V1, and repeat the steps from 1 to 5. If Ld is
the same as the first side of MCBP (e.g. the coordinates of
the endpoints are the same), it means that all the vertices of
MCBP have been found. We calculate the intersection point
with the last side of MCBP and store it to M1. By traversing
all the coordinates of the vertices inM1 and connecting them
in sequence, then we get MCBP of the obstacle.

V. EXPERIMENT AND ANALYSIS
In this section, we first present the performance evaluation
indicators for obstacle area localization, and then we con-
ducted performance evaluation in three different scenarios:
(1) The obstacles are located at the different distance from the
center of the measurement area and in the same orientation;
(2) The obstacles are located at the same distance from the
center of the measurement area and in symmetric orienta-
tions; (3) The light-emitting points have different sparseness.

FIGURE 7. Convex polygon consisting of multiple triangles.

Moreover, we compared the time complexity betweenMPVT
and the algorithm in [31].

A. EXPERIMENT ENVIRONMENT
The hardware platform of this experiment is a Dell OptiPlex
9020 desktop computer with the CPU of Intel Core i5-4900,
the operating frequency of 3.30GHz, and the memory size of
12GB.We assume an obstacle lies somewhere in themeasure-
ment area in a static state, and we have obtained all the LED
lights except the ones blocked at each light-receiving points.
Therefore, we can locate the position and size of the obstacle
by MPVT. We used C++ to develop the implementation of
MPVT and conducted the localization experiments.

B. INDEXES FOR PERFORMANCE EVALUATION
After obtainingMCBP of the obstacle, in order to evaluate the
approximation degree between the actual value and the local-
ization value in terms of area sizes and positions, we propose
two performance evaluation indexes as follows. (1) The area
ratio Sr , which is the ratio of the actual area of the obstacle
to the area of MCBP, reflecting the proximity degree of their
area sizes; (2) The ratio of equivalent radius Lr , which is the
ratio of the centroid distance between the obstacle andMCBP
to the equivalent circle radius of the obstacle, reflecting the
proximity degree of their positions and shapes. In this section,
we take Fig. 7 as an example to illustrate the calculation
method of Sr and Lr .

The calculation method of Sr is as follows.
Step 1: Calculate the actual area of the obstacle and the

area ofMCBP. As shown in Fig. 7, if we know the coordinates
of all vertexes, we can calculate the area of the convex poly-
gon ABCDE as follows. First, we decompose it into multiple
triangles, and then calculate the areas of ABC, ACD, and
ADE respectively. Second, we add their areas up to get the
areas of convex polygon. For example, the area of ABC can be
obtained by Equation (7) according to its vertex coordinates.

s =
1
2
(x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2) (7)

The area of a convex polygon can be calculated by accu-
mulating the area of all triangles it contains. As shown in
Equation (8), where k is the number of triangles that the poly-
gon consisting of. For the convex polygon ABCDE in Fig. 7,
k is 3.

S =
k∑
i=1

si (8)
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Step 2: Calculate the area ratio of the obstacle to MCBP
according to Equation (9):

Sr =
Sa
S

(9)

where Sa is the actual area of the obstacle, S is the area of
MCBP, and Sr is the ratio of their areas.

The calculation method of Lr is given as follows:
Step 1: Substitute the area S of the obstacle into

Equation (10) to derive the radius R of its equivalent circle:

S = πR2 (10)

Step 2: Substitute the vertex coordinates (Xi, Yi) of the
obstacle into Equation (11) to derive the centroid coordinates
of the obstacle:

X =

n∑
i=1

Xi

n

Y =

n∑
i=1

Yi

n

(11)

Similarly, the centroid coordinates of MCBP of the obsta-
cle can also be calculated by Equation (11).

Step 3: Calculate Lr by using Equation (12), which is used
to measure how close it is betweenMCBP of the obstacle and
the actual position of the obstacle. The distance D between
the centroid of the obstacle and its MCBP can be drived by
Equation (6). The smaller Lr is, the closer they are.

Lr =
D
R

(12)

C. EXPERIMENTS ON THE INFLUENCE OF
OBSTACLE ORIENTATION
In the following experiments, unless additional explanations,
the measurement area is a square with the side length of 20,
the gap between light-emitting points is 2, and the obstacle is
a square with a side length of 2. We conducted experiments in
two different scenarios to evaluate the effectiveness ofMPVT,
and these scenarios include: (1) The obstacles are deployed
at the same distance from the center of the measurement area
and in a symmetric orientation; (2) The obstacles are located
at the same distance from the center of the measurement area
and in an asymmetric orientation.

1) THE OBSTACLE IS LOCATED AT THE SAME DISTANCE
FROM THE CENTER OF THE MEASUREMENT AREA
AND IN A SYMMETRIC ORIENTATION
We use the MPVT algorithm to obtain MCBP of the obstacle.
When the obstacles are deployed at the center position C of
the measurement area, the upper left corner UL, the upper
right corner UR, the lower left corner LL, and the lower
right corner LR respectively, Sr and related parameters are
shown in Table 1, and Lr and related parameters are shown
in Table 2.

As shown in Tables 1 and 2, when the obstacle is located
at the same distance far from the center of the measurement

area and in a symmetric orientation. Sr is all about 70%.
Besides, the distance between centroids and Lr is about 10%.
Considering the slight differences caused by the accuracy of
the calculation, we can draw the conclusion that when the
obstacles are located at the same distance from the center of
the measurement area and in a symmetric direction, both Sr
and Lr do not change.

2) THE OBSTACLE IS LOCATED AT THE SAME DISTANCE
FROM THE CENTER OF THE MEASUREMENT AREA
AND IN AN ASYMMETRIC ORIENTATION
In this experiment, we use the angle between the horizon ori-
entation and the straight line orientation that links the center
of the measurement area with the obstacle as the deployment
position of the obstacle. The obstacle lies in the direction
of 0◦, 22.5◦ and 45◦ respectively. We gradually increase the
distance between the centroid of the obstacle and the center
of the measurement area from the distance of 1 to the position
that the outer side of the obstacle aligns with the side of the
measurement area.

In Figs. 8(a) and 8(b), in the direction of 0◦, 22.5◦, and 45◦,
the distance di between the centroid of the obstacle and the
center of the measurement area increases from 1 to 8, from
1 to 9, and from 1 to 12, respectively. As shown in Fig. 8(a),
with the increase of di, Sr generally has an increasing trend
in the direction of 0◦ and 22.5◦. While in the direction of
45◦, Sr generally shows a trend of vibration. The reasons are
as follows. With the increase of di, the obstacle is becoming
closer to one side of the measurement area in the directions
of 0◦ and 22.5◦, and becoming farther away from the other
sides, making the bounding polygon closer to the obstacle.
Because the 45◦ direction lies at the middle position of the
two sides, the shadow area caused by the obstacle has a
greater influence, which counteracts the effect of approaching
the side of the measurement area, and thereby Sr shows the
vibration effect. In addition, due to the large shadow area, it is
difficult to approximate the side of the obstacle for MCBP.

In the direction of 0◦, 22.5◦, and 45◦, Lr generally shows a
trend of vibration. It is because the shape of sides of MCBP
and the distance from the obstacle is changing continuously
when the obstacle was moved from the center of the mea-
surement area to the side of the obstacle, which leads to
the vibration of Lr . Except the maximum value of Lr in the
direction of 45◦ and near the side of the measurement area,
Lr is no more than 0.35, which shows the centroid deviation
is small.

D. THE INFLUENCE OF SPARSENESS OF
SENSOR DEPLOYMENT
In this experiment, the measurement area is a square with the
side length of 30. In order to test the impact of sparseness
on obstacle detection, we set the gaps between the light-
emitting points to 1, 2, 3, and 4, and the gaps between the
light-receiving points to 1, respectively. The four obstacles
are numbered as O1, O2, O3, O4. O1 and O2 are squares with
sides of 2 and 3 respectively. O3 is an isosceles ladder shape
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TABLE 1. Sr and related parameters.

TABLE 2. Lr and related parameters.

FIGURE 8. Sr and Lr at different distances.

with the upper line length of 2, the lower line length of 4, and
the height of 4.O4 is an isosceles ladder shape with the upper
line length of 4, the lower line length of 6, and the height
of 4. The centroids of O1-O4 are all located at the center of
the measurement area.

The parameters of Sr and Lr with different gaps of light-
emitting points are listed from Table 3 to Table 10.

With regard to the area of obstacles, we can see the follow-
ing facts from Tables 3, 5, 7 and 9. (1) Although the area of
the four kinds of obstacles and the gaps between the light-
emitting points are different, the area of MCBP is always
larger than that of the obstacle; (2) The values of Sr are all
about 0.7, indicating that the area of MCBP obtained by the
MPVT algorithm when the sensor is sparsely deployed is
close to that of the obstacle; (3) At the same sparsity degree,
the larger the area of the obstacle, the larger Sr is. It is because
the larger the object area is, the less Sr is affected by the
sparsity degree; (4) As the gap between the light-emitting
points increases, the area of MCBP becomes larger due to
the decrease in the localization resolution, and Sr decreases
slightly. The errors of Sr in the sparse environment (when the
gap between light emitting points is 1) vary between 0.01%
and 3% compared to the dense environment.

With regard to the difference of centroids, as shown
in Tables 4, 6, 8 and 10, Lr is within the range that the
maximum value is about 20%, and the minimum value is less
than 10%. It means the centroid of the obstacle is close to that
of MCBP, and the distance between the two is much smaller
than the equivalent circle radius of the obstacle. Therefore,
their relative positions are close.

The above experiments show the MPVT algorithm pro-
posed in this paper has a good effect in the sparse sensor
deployment environment.

E. ACCURACY COMPARISON WITH THE
EXISTING METHODS
The existing research works on the localization of obstacles
are basically about where an obstacle is, without considering
both the position and the size of the obstacle. We compared
MPVT with the two baseline methods presented in [31],
[32] and [33] which can measure the position and size of
obstacles. The localization method of [31] can refer to the
steps 3 in the following Subsection F. EXPERIMENT ON
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TABLE 3. Sr when the gap between light-emitting points is 1.

TABLE 4. Lr when the gap between light-emitting points is 1.

TABLE 5. Sr when the gap between light-emitting points is 2.

TABLE 6. Lr when the distance between light-emitting points is 2.

TABLE 7. Sr when the gap between light-emitting points is 3.

TABLE 8. Lr when the distance between light-emitting points is 3.

TABLE 9. Sr when the distance between light-emitting points is 4.

TIMECOMPLEXITY. In [32], Yu et al. proposed an obstacle
detection and recognition method based on ROI and multiple
relevance vector machines in order to classify obstacles into
four classes such as ditches, rocks, slopes and stones. In [33],
Shahdib et al. use ultrasonic sensors and cameras to detect

the distances between obstacles and robots, and then derive
the widths and heights of the obstacles.

We conducted 4 sets of comparative experiments, and
the areas of obstacles in groups 1-4 are 21540, 8670,
4853, and 40260, respectively. In the following experiments,
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TABLE 10. Lr when the distance between light-emitting points is 4.

FIGURE 9. Comparison results of accuracy.

in order to make the areas of obstacles and the measure-
ment region matchable, we set the experimental measure-
ment areas of groups 1-4 to be squares with side lengths of
380∗380, 270∗270, 230∗230, and 400∗400, respectively. The
gap between the light-emitting points is 2, and the obstacle is
located at the center of the measurement region. The experi-
mental setup forMPVT is also used in the experiments for the
method in [31]. The experimental results are shown in Fig. 9.

In Fig. 9 and the following descriptions given below,
Method 1 denotes the method presented in [32], Method 2
denotes the method presented in [33], and Method 3 denotes
the method presented in [31].

As shown in Fig. 9(a), among these three methods, the Sr
obtained by the MPVT algorithm is the largest, about 93%,
which means that the area of MCBP is closest to that of the
obstacle. As shown in Fig. 9(b), the maximum value of Lr
obtained by the MPVT algorithm is about 10%, which means
that the centroid interval between the obstacle and MCBP is
the closest.

There are smaller Srs and larger Lrs for Method 1 and
Method 2 due to the following reasons. There are errors in
the ROI regions extraction and the measurement for distances
and lengths through intensity images, it leads to large errors
when Method 1 is used for the positioning and measurement
of obstacles. In addition, the method is based on the use
of Time-of-Flight (ToF) cameras, which incurs a high cost.
For Method 2, because of the limitation of the accuracy of
ultrasonic measurement and the images’ resolution, there are
large errors in the localization of obstacles. Moreover, this
method requires accurate reference objects in all measuring
distances for the calculation of obstacle dimensions, and the
ultrasonic rangefinding and the camera need to work in a
stringently synchronized manner.

For Method 3, whether a grid where a light passes belongs
to an obstacle or not is determined by the distance between
the grid and the centroid of the obstacle. If the distance is less
than the equivalent circle radius of the obstacle, the grid is a
part of the obstacle, and vice versa. Even if a small part of the
grid belongs to the obstacle, the whole grid area is counted,
which results in a large error in Sr and Lr . Note that we set the
obstacle to be located in the center of the measurement area
in this experiment. Therefore, when the obstacle is located at
other positions in the measurement area, Sr of MPVT will be
better.

F. EXPERIMENT ON TIME COMPLEXITY
Because the method in [31] (i.e., Method 3) is similar
to MPVT in terms of deployment environment, which is
also based on sensor positioning and can measure the
target shape, we compared the time complexity of MPVT
with that of Method 3. The experiment steps are as
follows:

Step 1: The measurement area is divided into 100∗100
grids, and the obstacle is set to a square with the area of 100;

Step 2: Traverse each viewpoint to obtain all the lights
between the left side line and right side line of the blocking
area from each viewpoint;

Step 3: For Method 3, traverse all the grids where lights
pass, and use Equation (13) to determine whether there are
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obstacles in the grid:

oj =

{
1, if ||Pj − co|| < Ro
0, otherwise

(13)

where Oj denotes whether there is an obstacle in the j-th
grid. If Oj is 1, there is an obstacle; otherwise, there is no
obstacle. Pj represents the center coordinate of the j-th grid,
Co represents the centroid coordinate of the obstacle, and Ro
represents the equivalent circle radius of the obstacle.

When the distance between the center of a grid and the
centroid of the obstacle is less than the equivalent circle radius
of the obstacle, it means there is an obstacle in the grid;
otherwise, it means there is no obstacle in the grid.

For MPVT, it uses the steps presented in Section IV.
IMPLEMENTATION PROCESS OFMPVT to locate MCBP
of the obstacle.

The experimental results are as follows. The running time
of Method 3 was 8.673 seconds, while the running time of
MPVT is 1.249 seconds.

In this paper, the MPVT algorithm can get one side of the
polygon in each step when calculating MCBP. After getting
the last side of the polygon, MPVT finds the entire MCBP.
However, the method in [31] needs to traverse each grid
with lights before calculating and judging whether there are
obstacles in the grid. The time complexity of the method
in [31] is O(n3), which is greater than the O(n2) of MPVT.

Moreover, the polygon area that bounding the obstacles
obtained from [31] is 130.2693, Sr is 0.7676, and Lr is
1.1145; the polygon area obtained by the MPVT algorithm
in this paper is 106.7692, Sr is 0. 9366, and Lr is 0. 2683.

Therefore, theMPVT algorithm not only has high accuracy
but also has low time complexity.

VI. CONCLUSION
In this paper, we propose and implement the MPVT algo-
rithm for the problem of locating obstacles in the environ-
ments of sparsely-deployed sensors. The MPVT algorithm
can recognize both the position and the area of the obsta-
cle by constructing MCBP. MPVT includes the following
four steps. Firstly, it gets the left side line and right side
line of the blocking area of each light-receiving point; Sec-
ondly, it takes the left side line of the blocking area of the
viewpoint (0.5, 0) as the reference line, and obtain the initial
localization light according to VLT; Third, it uses the initial
localization light as the reference line, and gets the first side.
Fourth, it searches for all the other sides and vertexes of
MCBP based on the law of counter-clockwise intersecting
lights and related theorems proposed in this paper. We con-
ducted the experiments to test the influence of obstacle orien-
tation and sparseness of sensors, and compared the accuracy
and time complexity with those of the existing methods.

In order to evaluate the localization deviation between an
obstacle and its MCBP in terms of area sizes and positions,
we propose two performance evaluation indexes, i.e., the area
ratio Sr and the ratio of equivalent radius Lr , and give the cal-
culation methods of Sr and Lr . We conducted the experiments

to test the influence of obstacle orientation and sparseness
of sensors, Experiment results show that MPVT has higher
localization accuracy compared to the three baseline methods
in [31], [32] and [33], and lower computing overhead.

As for the future work, we plan to extend MPVT to the
scenario of multi-obstacles in order to make it suitable for
the applications in complex environments. Moreover, how
to extend MPVT to measure the size and positions of a
moving obstacle when partial light-emitting nodes fail is also
a research problem in real-world applications.
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