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ABSTRACT In this paper, a robust adaptive fuzzy proportional-derivative inverse dynamics decoupling
control scheme with fuzzy-based linear extended state observer (FLESO) is presented and applied to the
trajectory tracking control of a two degree-of-freedom (2-DOF) spherical motion mechanism (SMM).
The dynamics of the SMM has the characteristics of multivariable nonlinearity, uncertainties and strong
coupling. Uncertainties like the modeling errors and external disturbances affect the tracking performance,
and coupling increases the difficulty of controller design and reduces the tracking precision. Therefore,
a novel hybrid control scheme that is composed of a fuzzy proportional-derivative (FPD) feedback control
with varying gains, inverse dynamic model-based feed-forward decoupling term, FLESO with varying
bandwidth, and robust term is developed. The novel control strategy combines the advantages of simplicity
and easy design of the FPD control, the effectiveness of the FLESO to handle themodeling errors and external
disturbances, and the robustness of the robust term to estimation errors of the FLESO. First, introduce the
structure of the SMM and establish the dynamic model. Second, the feed-forward decoupling principle is
derived based on the inverse dynamic model. Then the FPD control with two-inputs and two-outputs is
designed, whose rule base is derived by the phase plane method. The linear extended state observer is
designed, whose bandwidth is tuned via the fuzzy logic system. Furthermore, the asymptotic stability of
the proposed controller is proved by the Lyapunov theorem. Finally, the high tracking performance of the
proposed controller is validated via both simulation and experiment results.

INDEX TERMS Robust and adaptive control, fuzzy proportional-derivative control, fuzzy-based linear
extended state observer, inverse dynamics decoupling control, spherical motion mechanism.

I. INTRODUCTION
Multi-DOF spherical motion generation devices, which are
generally composed of at least two rotary motors and some
intermediate connecting parts in serial or parallel form,
have been widely applied in industry such as robotic joints
and orienting devices [1]–[3]. For accomplishing spherical
motion, the above mentioned mechanisms frequently have
bulky structures and complex motions. To achieve a com-
pact design, one of methods is designing an integrated actu-
ator without the intermediate transmission mechanisms to
generate multi-DOF motion. In this paper, we investigate a
novel 2-DOF hydraulic spherical motion mechanism (SMM)
which can accomplish a 2-DOF smooth spherical motion
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in a single joint [4]. It has the advantages of a compact
structure, low inertia and high stiffness. However, since the
mentioned SMM has the features of multivariable nonlin-
earity, uncertainties and strong coupling, the conventional
linear controllers can no longer satisfy the tracking control
requirements in terms of high tracking precision and robust-
ness and so forth. Therefore, it is essential to develop an
effective and efficient tracking control strategy for achieving
satisfactory control performance. So far, there have been
plenty of advanced control strategies to settle the control
problems caused by nonlinearity, uncertainties and strong
coupling, such as fuzzy logic control [5], [6], neural network
control [7], [8] and sliding mode control [9] and so forth.
These studies show that the aforementioned controllers can
provide high control performance against nonlinearity and
uncertainties. Nevertheless, the traditional neural networks
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demand extensive representative training sample and amount
of online computation time. The chattering phenomenon of
sliding mode control might result in the system instability.
These drawbacks limit their applications for the real time
control.

These motivate us to develop an efficient control strategy
for the SMM to compensate for the model uncertainties
and external disturbances, which can not only provide the
satisfactory control performance, but also has the simple
structure and low computation. Fuzzy control introduced
in [10], [11] as a primary model-free control approach, which
utilizes human linguistic to describe the nonlinear mapping
relationship of inputs and outputs based on fuzzy set theory,
has the outstanding capability to cope with the nonlineari-
ties and uncertainties [12]. On the other hand, although the
traditional PID controller does not handle nonlinearities and
uncertainties effectively, it has the virtues of a simple struc-
ture, easy for hardware implementation and low cost [13].
Therefore, a better controller by combining the fuzzy with
PID was studied [5], [14]. Liu et al. [15] applied the fuzzy
PID controller in the field of nuclear to control reactor power.
Jin et al. [16] utilized the fuzzy PID controller to enhance
the output precision of the transplanting manipulator for
hydraulic seeding picking-up mechanism in the presence of
nonlinearity and external factors. Pan et al. [17] designed a
fuzzy PID controller for an exoskeleton-human robot system
and verified the performance via co-simulations. The above
mentioned literatures show that fuzzy PID controllers have
not only the relatively simple structure but also the favorable
control performance.

The inverse dynamic model-based feed-forward control
with the simple structure is widely employed to linearize and
decouple the nonlinear coupled systems [18], [19]. However,
it requires a precision dynamic model and has no capability
to handle the model uncertainties and external disturbances.
To weaken the influence of model uncertainties and external
disturbances, several disturbance observers have been studied
to estimate and compensate for them, such as disturbance
estimator [20], [21], nonlinear disturbance observer [22] and
extended state observer [23], [24] and so forth. The linear
extended state observer regards all factors impacting the
motion of plant in terms of the model uncertainties and
external disturbances as the total disturbances to estimate.
Compared with the other disturbance observers, it has the
advantages of a simple structure, less demand of the plant
dynamics and higher estimation precision [25]. Therefore,
the linear extended state observer is selected as a disturbance
observer for the SMM.

In this paper, a novel hybrid robust adaptive control scheme
named FPDESO that consists of a FPD feedback control with
varying gains, inverse dynamic model-based feed-forward
decoupling term, FLESO with varying bandwidth, tracking
differentiator (TD) and robust term is proposed. The PD
feedback control whose P- and D-gains are regulated via the
fuzzy system is used to speed up the convergence rate. The
fuzzy rule bases are designed by the phase plane method.

FIGURE 1. Computer-aided design model of the SMM.

The FLESO is utilized to estimate the model uncertainties
and external disturbances, and then the corresponding com-
pensation is exerted to suppress the influence of them to
improve the decoupling accuracy and robustness of the con-
troller. Moreover, the bandwidth of the linear extended state
observer (LESO) is tuned via the fuzzy system to improve
estimation precision. To further enhance the robustness, a
robust term is increased to amend estimation errors of the
FLESO. The TD is employed to filter sensor noise. The pro-
posed control law combines the merits of the simple structure
of the FPD control, the effectiveness of the FLESO to handle
the model uncertainties and disturbances, and the robustness
of the robust term to the estimation errors.

The rest sections of this paper are arranged as follows.
Section II establishes the dynamic model of the SMM. Then
the hybrid controller composed of the FPD feedback control
along with the inverse dynamic model-based feed-forward
decoupling term, TD, FLESO, and robust term is designed in
Section III. Section IV proves the asymptotic stability of the
proposed controller. Section V illustrates the simulation and
experimental results. Finally, some conclusions are drawn in
Section VI.

II. ARCHITECTURE AND DYNAMICS MODELING
A. ARCHITECTURE
As shown in Fig. 1, the computer-aided design (CAD) model
of the SMM is presented. It is composed of two rotors (upper
and lower rotors), two stators (upper and lower stators),
a rudder blade, a measurement system (X and Y rails, X
and Y sliding blocks, and X and Y encoders), and hydraulic
actuators (swing and spin hydraulic motors).

Since the swing and spin motors are integrated into one
rotor, a single rotor can accomplish two degrees of freedom
motion: one is tilting around the X0 axis, and the other is
spinning around the Z0 axis, which are actuated by the swing
and spin hydraulic motors respectively, as depicted in Fig. 2.
The detailed operation principle has been described in [4].

B. DYNAMICS MODELING
The orientation of the SMM is represented by a coordinate
transformation of the tilt–torsion–spin (β,−α, θ) of the rotor,
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FIGURE 2. Motions of the SMM a) Tilting motion b) Spinning motion.

FIGURE 3. Coordinate transformation of tilt–torsion–spin.

as illustrated in Fig. 3. The rotation matrix determining the
orientation of the SMM based on the X0Z1Z0 conversions can
be written as

RX0Z1Z0 =

cαcθ + sαcβsθ sαcθ − cαcβsθ sβsθ
cαsθ − sαcβcθ sαsθ + cαcβcθ −sβcθ
−sαsβ cαsβ cβ


(1)

where c and s denote ‘‘cosine’’ and ‘‘sine’’, respectively. The
dynamic model of the SMM in the generalized coordinates
q = [α β]T can be formulated by the Lagrange’s equation,
as follows:

M (q)q̈+ C(q, q̇)q̇+ G(q)+ F(q̇)+ ξedis = τc (2)

where M (q) denotes the inertial matrix, C(q, q̇) is the Cori-
olis and centripetal term which can be ignored in low-speed
motion, G(q) is the gravitational term, F(q̇) is the vector of
the viscous friction, τc is the control torque vector in the
generalized coordinate system and ξedis denotes the exter-
nal disturbances including load fluctuation and impact of
the external environment, the detailed expressions of M (q),
C(q, q̇) and G(q) are given in the Appendix A.

III. CONTROLLER DESIGN
A. MODEL-BASED FEED-FORWARD DECOUPLING
It can be seen in (2) that the dynamics of the SMM has a
nonlinear characteristic as many interactive coupling terms
exist in the dynamic model. In this section, based on the
inverse dynamic model and the estimation of uncertainties,
the coupled system is transformed into an integral series
system through feed-forward compensation to achieve the

purpose of approximate decoupling. Meanwhile, note that
modeling errors cannot be avoided in the process of dynamics
modeling. Considering the effects of model uncertainties,
(2) can be rewritten as

M̂ (q)q̈+ Ĉ(q, q̇)q̇+ Ĝ(q)+ F(q̇)+ ξedis = τc (3)

where M̂ (q) = M (q) + 1M (q) is the actual inertial matrix,
Ĉ(q, q̇) = C(q, q̇) + 1C(q, q̇) is the actual Coriolis and
centripetal term, Ĝ(q) = G(q) + 1G(q) is the actual gravi-
tational term, and1M (q),1C(q, q̇) and1G(q) represent the
modeling errors.

Let

ξidis = 1M (q)q̈+1C(q, q̇)q̇+1G(q)+ F(q̇) (4)

where ξidis is the internal disturbances containing parameter
variations and modeling errors. Then, (3) can be rewritten as

M (q)q̈+ C(q, q̇)q̇+ G(q)+ ξdis = τc (5)

where ξdis = ξidis + ξedis denotes the total disturbances.
The candidate feed-forward compensation term is designed

as

τc = M (q)u+ C(q, q̇)q̇+ G(q) (6)

where u is the control law.
Substituting (6) into (5), (5) can then be rewritten as

M (q)q̈+ ξdis = M (q)u (7)

If the total disturbances containing the internal and external
disturbances can be estimated, and then compensated for, (6)
can be redesigned as

τc = M (q)u+ C(q, q̇)q̇+ G(q)+ ξ̃dis (8)

where ξ̃dis denotes the estimate value of the total disturbances.
If the disturbance observer has enough high precision, that
is, ξ̃dis ≈ ξdis, the influence of the total disturbances can be
eliminated.

Substituting (8) into (5), (5) can be modified as

M (q)q̈ = M (q)u (9)

SinceM (q) is a symmetric positive definite matrix, the fol-
lowing equation can be obtained

q̈ = u (10)

Consequently, the coupled SMM can be decoupled. And
the higher the estimate accuracy of the disturbance observer
is, the better the decoupling performance is.

B. FUZZY PD CONTROL
The traditional linear PD controller has been widely used in
the industrial field because of its simple structure, easy hard-
ware implementation, and wide applicability and so forth.
The linear PD control law can be given as

u = Kp(e)e(t)+ Kd (e)ė(t) (11)
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FIGURE 4. Fuzzy PD control.

where Kp(e) ∈ <2×2,Kd (e) ∈ <2×2 are the proportional and
derivative gains. e(t) = qd (t) − q(t) and ė(t) = q̇d (t) − q̇(t)
are the tracking error and change of error, respectively. qd (t)
and q(t) are the desired and actual trajectories, respectively.

Nevertheless, the performance of linear PD controller is not
ideal for systems with nonlinearity, model uncertainties and
external disturbances. And the gains of linear PD controller
are mainly adjusted manually. As a knowledge-based control
approach, fuzzy controller that uses the experience of expert
to establish control rules and realize automatic control is
particularly suitable for complex system with nonlinearity
and uncertainties. Therefore, to enhance the tracking perfor-
mance, this paper utilizes a two-dimensional fuzzy controller
to tune the parameters of the PD controller in the real time.
The fuzzy controller is composed of the fuzzification, rule
base, fuzzy reasoning and defuzzification, as illustrated in
Fig. 4. The self-adjusting proportional and derivative gains
of the PD controller can be given as{

kpj (e) = kpj0 + k1f
j
k (ke)

kdj (ė) = kdj0 + k2f
j
k (kde)

j = α, β (12)

where k1 and k2 are the scaling coefficients of fuzzy output,
respectively. f jk (·) represents the fuzzy operation with respect
to j at time k . kpj0 , kdj0 are the initial values of the proportional
and derivative gains, respectively.

The detailed design process of the fuzzy system is
explained as follows:
Step 1: Fuzzification
Here, the tracking error e and change of error ė(ce) are

utilized as the input variables and the correction factors of
PD are selected as the output variables, i.e., fk (ke) and fk (kde),
whose universes of discourse (UOD) are all normalized to
the domain of [−1, 1]. The linguistic labels corresponding
to the UOD of inputs and outputs are divided into Negative
big (NB), Negative medium (NM), Negative small (NS), Zero
(ZE), Positive small (PS), Positive medium (PM) and Positive
big (PB).

Since the triangular type of membership functions (MFs)
has the merits of simplicity and high computation efficiency,
it is selected to distribute the fuzzy sets equally for the
input variables [26], as illustrated in Fig. 5(a). Analogously,
the Gaussian type of MFs with the features of smooth and

FIGURE 5. MFs of input and output variables.

FIGURE 6. Rule analysis for α a) Step response b) (e, ce) state space.

non-zero at all points, which is more suitable to describe
complicated fuzzy relationship, is utilized for the fuzziness
of output variables, as depicted in Fig. 5(b). An intersection
level of 0.5 and an intersection ratio of 1 between two adjacent
MFs are employed, because it can provide faster rise time,
less settling time and smaller overshot, as pointed out in [27].
Step 2: Rule base
As the most important part of the fuzzy controller, the rule

base reflects the operation process. Generally, the rule base
is extracted from the practical experience of the skilled
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operators, whichmakes rules designmore subjective, difficult
and less universal. One of methods to design rules is mapping
from the step response in time domain to the phase plane
of (e, ce),named the phase plane method. This method com-
bines the knowledge of step response with the phase plane
trajectory to assess the control rules. The step response can
provide the information of error e and change of error ce.
Furthermore, the time domain dynamic features of the system
in terms of overshoot, rise time and settling time are essential
for the corresponding phase plane trajectory analysis.

Since different stages have different performances, the step
response in time domain can be divide into seven regions
(A1 − A7), four intersection points (b1, b2, e1, e2) and three
peak valley points (t1, t2, c1). And the sign of e and ce changes
in the different regions, as shown in Fig. 6(a). The phase plane
of (e, ce) is established based on the above step response,
which is divided into four quadrants corresponding to the
seven areas of the step response (A1 − A7). Moreover, the
linguistic labels are considered as the coordinates of the phase
plane, as depicted in Fig. 6(b). And then formulate the rules
based on the characteristics of e and ce in different areas [28],
as follows:

The output is approaching nearer toward the set point in
regions A1, A3 and A5, the small or medium gain is adopted
to avoid overshoot or undershoot and reduce the settling time.
In regions A2, A4 and A6, the output is moving upward or
downward farther away from the command, the big gain is
considered to reduce the further deterioration of the situation.
Moreover, when the state is close to the steady state, which
means that the output has just arrived or left the set point but is
moving away upward or downward from the set point rapidly.
In this condition, consider the medium gain to eliminate
overshoot or undershoot.
Criterion 1: The sign of rules

• If e = 0 and ce = 0, consider

f jk (ke) = f jk−1(ke) and f
j
k (kde) = f jk−1(kde).

• If e = 0, i.e., b1, b2, e1 and e2, consider

sign
(
f jk (kde)

)
= sign(ce).

• If ce = 0, i.e., t1, c1 and t2, consider

sign
(
f jk (ke)

)
= sign(e).

• If e will approach zero at a satisfactory rate, consider

f jk (ke) = f jk−1 (ke) and f
j
k (kde) = f jk−1 (kde).

• In areas A1/A2/A5/A6, ce < 0, consider
f jk (ke) , f

j
k (kde) > 0.

• In areas A3/A4/A7, ce > 0, consider f jk (ke) , f
j
k (kde) <

0.
• Rules for three segments, b1t1, e1t2 and b2c1 should
prevent the overshoot in A2/A6 or undershoot in A4.

• Rules for four segments, ab1, t1b2, c1e1 and t2e2 should
speed up the response in A1/A3/A5/A7.

• In the equilibrium points, consider f jk (ke) , f
j
k (kde) = 0.

Criterion 2: The magnitude of rules
1) At peak points, t1, t2 and valley point, c1, rule for the

self-adjusting proportional gain is as follows:

f jk (ke) =
1− kpj0
k1

, ce = 0 (13)

2) In cross-over areas, to decrease overshoot or under-
shoot in areas A2/A4/A6, consider rules as follows:{

f jk (ke) = PS or PM, f jk (kde) = PS or PM, ce > 0

f jk (ke) = NS or NM, f jk (kde) = NS or NM, ce < 0

(14)

3) Rules for areas A1/A5 and A3/A7 are as follows:f
j
k (ke) = min

{
(f j0 (ke)+

e
k1
),PS

}
f jk (kde) = min

{
(f j0 (kde)+

ce
k2
),PS

} (15)

In areas A1 and A5, rules should be positive.f
j
k (ke) = max

{
(f j0 (ke)+

e
k1
),NS

}
f jk (kde) = max

{
(f j0 (kde)+

ce
k2
),NS

} (16)

In areas A3 and A7, rules should be negative.
Consequently, based on the phase plane trajectory and the

behavior of step response, the rule bases for updating gains
factors f αk (ke) and f

α
k (kde) are listed in Table 1. The designed

rule bases have the properties of completeness, consistence,
and continuity [29], which can guarantee the targeted fine
control in the whole trajectory tracking process.

To obtain good performance, at least one rule is activated in
the control process to adapt the current operating condition.
For instance, at the time instant t1, where e(t1) = 0.51 and
ce(t1) = 0.20, two MFs were involved, which were PS and
PM for error, and ZE and PS for change of error, as shown in
Fig. 7. Therefore, there existed four active rules at the time
instant t1 in the process of fuzzy inference. According to the
rule bases listed in Table 1, the relevant rules at the time
instant t1 can be given, respectively, as
• R1: If e = PS and ce = ZE, then f αk (ke) = PM and
f αk (kde) = NS.

• R2: If e = PS and ce = PS, then f αk (ke) = NM and
f αk (kde) = NS.

• R3: If e = PM and ce = ZE, then f αk (ke) = PM and
f αk (kde) = NS.

• R4: If e = PM and ce = PS, then f αk (ke) = NM and
f αk (kde) = NS.

Furthermore, quantify the fuzzy logical ‘‘and’’ for all
active rules by means of the Mamdani inference method. And
then aggregate the outputs of all active rules to deduce the
overall value of fuzzy output at the time instant t1.

Analogously, the step response and corresponding phase
plane trajectory of β are shown in Fig. 26(a)-(b), respectively.
And the derived fuzzy rule bases of β for updating gains are
listed in Table 7 in the Appendix B.
Step 3: Defuzzification
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FIGURE 7. MFs of e and ce at the time instant t1.

TABLE 1. Rules for f αk
(
ke

)
and f αk

(
kde

)
.

Defuzzification converts the fuzzy sets to the crisp outputs
which act on the plant. The center of gravity defuzzification
approach is employed because of its steady andmonotonicity.
The crisp output value can be written as

ucrisp =

∫
χ
νA(ulf )u

l
f du

l
f∫

χ
νA(ulf )du

l
f

(17)

where χ and A denote the UOD and fuzzy set of output vari-
ables, respectively, ulf represents the l-th element in the UOD
of the output variables, νA(ulf ) is the degree of membership
with respect to ulf .

C. FUZZY-BASED LINEAR EXTENDED STATE OBSERVER
According to the above analysis, to improve the decoupling
precision and robustness of the controller, it is significant
to design a high-precision disturbance observer to estimate
and compensate for the model uncertainties and external
disturbances.

Consider the nth nonlinear system as follows:

y(n) = g(ẏ, ÿ, · · · , y(n−1))+f (ẏ, ÿ, · · · , y(n−1), u, ξedis)+ bu

(18)

where g(·) is the known system dynamics, f (·) denotes the
total disturbances containing themodeling errors and external
disturbances, b is a constant value, u is the system input, y is
the system output and n denotes the system order.

In this paper, n = 2 and x = [q q̇]T , (18) can be expressed
as

ẋ2 = −M−1(x1)(C(x1, x2)x2 + G(x1)+ ξdis)+M−1(x1)u

(19)

Consider f (·) as an extended state of (19), the state space
form of (19) can be expressed as

ẋ1 = x2
ẋ2 = x3 −M−1(x1)(C(x1, x2)x2

+G(x1))+M−1(x1)u
ẋ3 = h(·)
y = x1

(20)

where x3 = f (·) = −M−1(x1)ξdis and h(·) = df (·)/dt .
Compared with the nonlinear extended state observer

(NESO), LESO is more convenient to design and simpler to
tune parameters. Consequently, the LESO [30] is applied to
the control system of the SMM, which can be designed as

ε = x1 − x̂1
˙̂x1 = x̂2 + l1ε
˙̂x2 = x̂3 −M−1(x̂1)(C(x̂1, x̂2)x̂2 + G(x̂1))

+M−1(x̂1)u+ l2ε
˙̂x3 = l3ε

(21)

where x̂1, x̂2, and x̂3 are the observed states, li, i = 1, 2, 3 are
the observer gains to be designed.

To simplify parameters tuning, the pole placement method
is adopted to make the observer bandwidth the only tuning
parameter [31], which can be expressed as

(s+ ωo)n+1 = sn+1 + l1sn + · · · + lns+ ln+1 (22)

where ωo denotes the observer bandwidth.
Thus

l1 = 3ωo, l2 = 3ω2
o, l3 = ω3

o (23)

The ESO is a high gain observer, which may result in a
peaking phenomenon [32]. The fuzzy logic system, which
has the advantages of a simple structure and excellent global
approximation property, can provide a reasonable trade-off
between the convergence rate and the control performance.
In this paper, it is utilized to tune the bandwidth of LESO to
improve the performance of LESO and achieve the same high
precision estimation as NESO [33], as shown in Fig 8.

In order to reduce the number of fuzzy rules and enhance
the computational efficiency, the linear combination of the
estimation error E and its change Ė, ks1E+ks2Ė is applied as
the input, and the tuning factor of observer bandwidth f (ωo)
is utilized as the output [34]. The linguistic labels for input
are divided into NB, NS, ZE, PS, and PB in the range of [−1,
1]. The MFs of input adopt the Gaussian shape, as shown
in Fig. 9. Three variable labels for output are designed in the
range of [-1, 1], named Big (B), Medium (M), and Small (S),
and select the Gaussian shape as the MFs.
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FIGURE 8. FLESO.

FIGURE 9. MFs of input variable for observer bandwidth tuning.

The following fuzzy rules will be employed to tune the
observer bandwidth [34].
• R1

w: If ks1E + ks2Ė = NB, then f (ω) = S.
• R2

w: If ks1E + ks2Ė = NS, then f (ω) = M .
• R3

w: If ks1E + ks2Ė = ZE, then f (ω) = L.
• R4

w: If ks1E + ks2Ė = PS, then f (ω) = M .
• R5

w: If ks1E + ks2Ė = PB, then f (ω) = S.
Finally, the center of gravity defuzzification approach is

utilized to calculate the crisp output value of the fuzzy logic
system, referring to (17).

D. TRACKING DIFFERENTIATOR
Since sensor noise easily distorts the signal and then affects
the tracking performance, in order to extract the actual signal
reasonably from the measurement signal with random noise,
the tracking differentiator is utilized, as following:
The discrete form of TD [35] can be written as{
x1(k + 1) = x1(k)+ t · x2(k)
x2(k + 1) = x2(k)+ t · fst(x1(k)− v(k), x2(k), σ, h)

(24)

The fast tracking control method is adopted to achieve
the tracking and differential of signal as real as possible,
the synthesis function of which can be expressed as

fst(x1(k)− v(k), x2(k), σ, t) = −σ · sat(g(k), σ )
e(k) = x1(k)− v(k)
δ = h · σ, δ1 = h · δ
y(k) = e(k)+ t · x2(k)

g(k) =

{
x2(k)+ y(k)

/
h |y(k)| < δ1

x2(k)+
sign(y(k))·

√
8σ ·|y(k)|+δ2−δ
2 |y(k)| ≥ δ1

sat(g(k), δ) =

{
g(k)

/
δ |g(k)| < δ

sign(g(k)) |g(k)| ≥ δ

(25)

where v(k) is the input signal, x1(k) is the tracking signal
with respect to v(k), x2(k) is the differential of x1(k), t is
the integral step size, δ is the parameter that determines the
tracking speed, and h is the filter coefficient, generally, h > t .
Based on the aforementioned analysis, this paper proposed

a robust and adaptive controller, which is composed of a
fuzzy PD feedback control, inverse dynamic model-based
feed-forward decoupling term, TD, FLESO and robust term,
as shown in Fig. 10.

The proposed control scheme can be expressed as

τc = M (q)(q̈d + u)+ C(q, q̇)q̇+ G(q)+ ξ̃dis − v (26)

where v is the robust term to compensate for the estimation
error,1ξdis = ξdis−ξ̃dis is the estimation error, ‖1ξdis‖ ≤ bd .
with

v = −bd sgn(ėTM−1(q)) (27)

The first item is the feed-forward compensation term that
uses the inverse dynamic model along with the desired accel-
eration and the actual position and velocity of the end-effector
to approximate joint torque. This term that helps to simplify
the design of controller can make the nonlinear coupled sys-
tem achieve approximate linearization and decoupling. It can
be expressed as

τc1 = M (q)q̈d + C(q, q̇)q̇+ G(q) (28)

The second item as the core part of controller, which is
employed to eliminate the tracking error based on the position
error, can be expressed as

τc2 = M (q)u (29)

The third item is the compensation term of modeling errors
and external disturbances, which can be expressed as

τc3 = ξ̃dis − v (30)

To a large extent, the robustness of the control system is
directly determined by the suppression effect of the control
law on the modeling errors and external disturbances. There-
fore, in this paper, one of the most important tasks is to design
a disturbance observer with high estimation accuracy.

IV. STABILITY ANALYSIS
The stability of the proposed controller is demonstrated by the
Lyapunov direct method. The Lyapunov function candidate is
selected as

L(e, ė) =
1
2
ėT ė+

∫ e

0
ϕTKp(ϕ)dϕ (31)

where Kp(e) is a positive definite matrix [19].∫ e

0
ϕTKp(ϕ)dϕ =

∫ e1

0
ϕT1 kp1(ϕ1)dϕ1 +

∫ e2

0
ϕT2 kp2(ϕ2)dϕ2

Obviously, the first term of L(e, ė) is non-negative. As a
Lyapunov function candidate, the second term of L(e, ė) must
be a positive definite function, which will be proved in the
following.
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FIGURE 10. Schematic diagram of the proposed FPDESO controller.

Lemma. [36] Consider the diagonal matrix Kp : <2 →
<
2×2

Kp(e) =
[
kp1(e1) 0

0 kp2(e2)

]
Assume that there exist class K function ϑi(·) such that

|x| kpi(x) ≥ ϑi(|x|), x ∈ <, i = 1, 2

Then ∫ ei

0
|ϕi|

T kpi(ϕi)dϕi > 0, ∀ei 6= 0 ∈ <,

and∫ e
0 |ϕ|

TKp(ϕ)dϕ→∞ as |e| → ∞.
From (12), note that

∣∣ej∣∣ kpj(ej) ≥ ϑj(∣∣ej∣∣), ej ∈ <, j =
1, 2. Thus the second term of L(e, ė) is a radially unbounded
positive definite function. Hence, L(e, ė) is a positive definite
function, i.e., L(e, ė) > 0.
Differentiating (31) with respect to time obtains (32)

L̇(e, ė) = ėT ë+
d
dt

[∫ e

0
ϕKp (ϕ) dϕ

]
= ėT ë+

2∑
j=1

∂

∂ej

[∫ ej

0
ϕjkpj

(
ϕj
)
dϕj

]
ėj

= ėT ë+
2∑
j=1

ejkpj
(
ej
)
ėj

= ėT ë+ eTKp(e)ė (32)

Combining (5), (11) and (26), the close loop system equa-
tion can be derived as

M (q)(ë+ Kp(e)e+ Kd (e)ė)−1ξdis − v = 0 (33)

Since M (q) = MT (q) > 0, thus (33) can be rewritten as

ë = −Kp(e)e− Kd (e)ė+M−1(q)(1ξdis + v) (34)

Substituting (34) into (32), (32) can be rewritten as

L̇(e, ė) = ėT ë+ eTKp(e)ė

= −ėTKd (e)ė+ ėTM−1(q)(1ξdis + v) (35)

Because

ėTM−1(q)(1ξdis + v)

= ėTM−1(q)1ξdis + ėTM−1(q)v

= ėTM−1(q)1ξdis −
∥∥∥ėTM−1(q)∥∥∥ bd

≤ 0 (36)

and Kd (e) is a positive definite matrix, the below result can
be obtained as

L̇(e, ė) ≤ −ėTKd (e)ė ≤ 0 (37)

Therefore, according to the Lyapunov stability theory,
the closed loop system is stable. In the region:

8 =

{[
e
ė

]
: L̇(e, ė) = 0

}
=

{[
e
ė

]
=

[
e
0

]
∈ <

4
}

[
e ė
]T
= 0 is the unique invariant set. Based on the LaSalle’s

invariance theorem, the closed loop system is asymptotically
stable.

V. SIMULATION AND EXPERIMENT RESULTS
A. SIMULATION RESULTS
In this section, the co-simulations are employed to validate
the effectiveness and robustness of the proposed controller in
application of the designed SMM. Since the inverse dynam-
ics decoupling term is used in the control system, the con-
troller parameters can be tuned independently in the α and β
directions. Simultaneously, the simulation model of FPDESO
controller is established to generate control signals for the
dynamic simulation model established by ADAMS, as illus-
trated in Fig. 11. The relevant structure parameters employed
in the simulations are listed in Table 2.

To demonstrate the effectiveness of the proposed con-
troller, the following four different control schemes are sim-
ulated.

1) FPDESO: This is the FPD inverse dynamics decou-
pling control scheme (26) with FLESO (21) proposed
in this paper. The relevant parameters are set as follows:
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FIGURE 11. Co-simulation models.

TABLE 2. Structure parameters of the SMM.

The control gains are given as ke = diag(2, 6), kde =
diag(5, 2), k1 = diag(10, 13), and k2 = diag(0.5, 0.9). The
initial values is selected as kpj0 = diag(4050, 4150) and
kdj0 = diag(110, 90). The gains are given as ks1 = diag(3, 5),
ks2 = diag(1.15, 0.98) and kw = diag(11, 20). The initial
value of the bandwidth is given as ω0 = diag(20, 28).The
gain of robust term is set as bd = diag(0.03π, 0.02π).
2) PID: This is a proportional-integral-derivative con-

troller. The controller gains tuned carefully via trial and error
method are k ′p = diag(10, 50), k ′i = diag(0.9, 3) and k ′d =
diag(1.5, 0.5), which represent the P-, I- and D-gains, respec-
tively. Set the filter coefficient as f ′ = diag(500, 1456).

3) NPD: This is a nonlinear proportional-derivative con-
troller [37] defined in (38). Compared with the PID, NPD can
provide better control performance. Nonetheless, the struc-
ture of NPD becomes complicated and parameters that need
to be tuned also increase.

uNPD = KNp(e(t))e(t)+ KNd (ė(t))ė(t) (38)

with

KNp(e(t)) =

{
kNpj |e(t)|ρpj−1 , |e(t)| > δpj

kNpjδ
ρpj−1
pj , |e(t)| ≤ δpj

j = α, β

(39)

KNd (ė(t)) =

{
kNdj |ė(t)|ρdj−1 , |ė(t)| > δdj

kNdjδ
ρdj−1
dj , |ė(t)| ≤ δdj

j = α, β

(40)

where KNp(e(t)) and KNd (ė(t)) are the time-varying nonlinear
proportional and derivative gains, respectively, ρ·j determines
the nonlinearity of the controller, when ρ·j = 1, the controller
degrades into the linearity, δ·jis the threshold value of error or
change of error.

The initial values of P- and D-gains can be given as
KNp = diag(29, 20) and KNd = diag(0.8, 0.5). The thresh-
old values are selected as σp = diag(0.1, 0.1) and σd =
diag(0.1, 0.2). The nonlinearity coefficients are chosen as
ρp = diag(1.2, 0.6) and ρd = diag(1.1, 0.8).
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FIGURE 12. Step response of four controllers in the α direction.

4) FPD: This is a controller combining the fuzzy logic
system with the proportional-derivative controller. The con-
trol gains are given as k ′e = diag(8, 5), k ′de = diag(2, 3),
k ′1 = diag(1.5, 5), and k ′2 = diag(0.5, 0.8). The initial
values of P- and D-gains are set as kfp = diag(41, 45) and
kfd = diag(1.1, 0.9), respectively.

To evaluate the proposed controller comprehensively, two
cases are investigated.
Case 1: Trajectory tracking in the absence of disturbances
In this case, it is assumed that the SMM is operated under

the ideal condition without the modeling errors and external
disturbances. The initial position and velocity vectors are
both set to be zero. First, study the response characteristics
of four controllers under the step signal input.

According to the step response curves, as depicted
in Figs. 12 and 13, among four controllers, PID achieves
the fastest response (0.01 s and 0.01 s) and the largest over-
shoot (0.153 rad and 0.195 rad) in the α and β directions,
respectively. On the premise ofmaintaining a certain response
speed (0.08 s and 0.07 s), NPD can suppress overshoot to a
certain extent but not completely eliminate it (0.075 rad and
0.022 rad). And FPD can effectively restrain the oscillations
and overshoot (0 rad and 0 rad), but it also reduces the
response speed (0.14 s and 0.09 s). It is worth noting that
the proposed FPDESO controller has a trade-off between
response speed and overshoot in both the α and β directions
respectively with a rise time of 0.06 s and 0.05 s, and almost
no overshoot.

Without loss of generality, the smooth sinusoid (41) is
selected as the reference trajectory for simulation to further
verify the tracking performance of the proposed controller.
The maximal angular velocities in the α and β directions are
π rad/s and 0.785π rad/s, respectively, which can effectively
assess the tracking ability of the proposed controller.

q = [s(π t) 0.785s(π t)]T (41)

The tracking trajectories and tracking errors in the α and
β directions under four controllers are shown in Figs. 14-17,
respectively.

As shown in Figs. 15 and 17, it can be observed that the
PID controller gives a large tracking error about 0.012 rad
and 0.003 rad in the α and β directions respectively, and

FIGURE 13. Step response of four controllers in the β direction.

FIGURE 14. Tracking trajectory in the α direction.

FIGURE 15. Tracking error in the α direction.

has an obvious oscillation. The NPD controller provides an
improved tracking performance with the maximal absolute
errors being about 0.007 rad and 0.003 rad in the α and β
directions respectively. Since the FPDESO controller decou-
ples the coupling system and thus achieves the independent
adjustment of controller parameters in the α and β directions,
it can provide the excellent tracking performance. Further-
more, the response trajectories under the FPDESO controller
can quickly track the desired trajectories and maintain a small
error, while the other three controllers always have large
errors in the whole tracking process.

The following four performance indices will be employed
to further evaluate the quality of control algorithms, i.e., the
maximal absolute tracking error, average tracking error,
root mean square tracking error (RMS) and control energy,
defined as follows:

1) Ma is the maximal absolute tracking error as a tran-
sient index denoting the ultimate performance, which
is defined as
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FIGURE 16. Tracking trajectory in the β direction.

FIGURE 17. Tracking error in the β direction.

Ma = max {|e|} (42)

2) Ave is the average tracking error, which is defined as

Ave =
1
n

n∑
i=1

|e(i)| (43)

3) RMS is the root mean square tracking error representing
the average performance in the entire operating cycle,
which is defined as

RMS =

√
1
tf

∫ tf

0
e2dt (44)

4) εu is the control energy denoting the control intensity
of the controller, which is defined as

εu =

∫ tf

0
u2(t)dt (45)

where tf is the final time.
The performance indices of four controllers are listed

in Table. 3. As shown, compared with the other three con-
trollers, the RMS values under the proposed controller are the
smallest in two directions about 0.0022 rad and 0.0012 rad
respectively, which are 29% and 29.4% lower than those
of the FPD controller. The maximal absolute and average
tracking errors are both lower than the other three controllers
as well. Meanwhile, it requires the least control energy about
24.44 J and 2.126 J, which indicates the proposed controller
outperforms the other three controllers in terms of the trajec-
tory tracking precision and control energy.
Case 2: Robustness testing against disturbances

TABLE 3. Performance indices of the α and β directions in case 1.

FIGURE 18. TD performance.

To further verify the tracking performance and robustness
of the proposed controller, the operating condition with dis-
turbances and noise is simulated. In this simulation stage,
sensor noise as shown in Fig. 20(a) and disturbances defined
in (46) are considered.

τd =

{
[0 0] t ≤ 1

[−0.5c(7t) 0.5c(7t)] t > 1
(46)

From the results in Case 1, comparatively speaking,
the PID and NPD controllers have the worst performance,
so they are omitted in this case. Meanwhile, to ensure compa-
rability, the parameters of the FPD and FPDESO controllers
are set to be consistent with Case 1.
To reduce the influence of sensor noise, TD defined in (25)

is utilized to extract the actual signal from measuring signal
by virtue of eliminating noise. The filtering performance of
the TD is shown in Fig. 18(b).

The tracking trajectories of two controllers are shown
in Figs. 19 and 20. The maximal absolute tracking errors
under the FPD controller are 0.127 rad and 0.131 rad in
the α and β directions, respectively. Nevertheless, since the
FPDESO controller utilizes the FLESO to estimate and com-
pensate for the total disturbances, it is capable to suppress
these unexpected disturbances effectively. It can be seen
that the response trajectories under the FPDESO controller
track the desired trajectories well, and the maximal absolute
tracking errors in two directions are about 0.099 rad and
0.095 rad, respectively. Since the tracking performance can
be illustrated clearly by the tracking trajectory, the tracking
error curve is omitted in this case.

The performance indices of two controllers in the presence
of disturbances are listed in Table 4. As can be seen from the
results, the performance indices of the FPDESO controller are
all better than those of the FPD controller. The RMS values
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FIGURE 19. Tracking trajectory in the α direction.

FIGURE 20. Tracking trajectory in the β direction.

(0.0120 rad and 0.0105 rad) under the FPDESO controller are
much smaller than those of FPD (0.0274 rad and 0.0168 rad),
with almost 56% and 38% performance improvement in the
α and β directions, respectively.

Obviously, due to the model uncertainties and external
disturbances, the tracking performance of the FPD controller
is seriously degraded. In contrary, since the FLESO is utilized
to estimate and compensate for the model uncertainties and
external disturbances, the tracking performance under the
FPDESO controller will not be affected evidently. Therefore,
the disturbances rejection capability and robustness of the
proposed controller are validated.

B. EXPERIMENT RESULTS
To further evaluate the effectiveness of the proposed control
strategy, experiments are accomplished on a prototype SMM.
The schematic of the hydraulic system used in the test bench
shown in Fig. 21 is composed of a hydraulic power unit,
two servo valves, a control module, two encoders and an
SMM.

The real-time control system consists of a digital sig-
nal processor (DSP), A/D card, D/A card, V/I converter
and host computer, as depicted in Fig. 22. Utilize the Lab-
view2018 to program a graphical user interface on the
host computer, which can be used to accomplish operating
modes choice, data storage and results display. The rele-
vant hardware specifications of the control system are listed
in Table. 5.

According to the simulation results, two controllers with
outstanding tracking performance, FPD and FPDESO, are
utilized for experiments to verify the effectiveness of the

TABLE 4. Performance indices of the α and β directions in case 2.

FIGURE 21. Schematic of the hydraulic system.

FIGURE 22. Schematic diagram of the real-time control system.

FIGURE 23. Experiment results under FPD and FPDESO.

proposed control strategy. Since the position of the
end-effector of the SMM, (x, y, z)T = L(sβsθ,−sβcθ, cβ)T ,
is more concerned in the practical application, it is investi-
gated.

The tracking trajectories and absolute position errors of
the end-effector under the FPD and FPDESO controllers
are shown in Figs. 23-25, respectively. It is observed that
the tracking trajectory under the proposed FPDESO con-
troller has a small fluctuation within an acceptable range,
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TABLE 5. Hardware specifications of the control system.

TABLE 6. Performance indices in the x, y and z directions.

FIGURE 24. Position absolute errors under FPD.

FIGURE 25. Position absolute errors under FPDESO.

and the maximal absolute tracking errors in the x, y and
z directions are approximately 0.924 mm, 1.078 mm and
1.071 mm, respectively. Nevertheless, the maximal absolute
tracking errors under the FPD controller in the x, y and z direc-
tions are 1.518 mm, 2.022 mm and 1.913 mm respectively,
which are significantly larger than those of FPDESO. Mean-
while, the RMS values under the FPD controller, as shown
in Table 6, are about 47.7%, 20.2% and 38% higher than
those of the proposed control law in the x, y and z directions,

FIGURE 26. Rule analysis for β a) Step response b) (e, ce) state space.

respectively. Therefore, the experimental results show that
compared with the FPD controller, the proposed FPDESO
controller can provide much better tracking performance,
which verifies the effectiveness of the proposed controller.

VI. CONCLUSION
A novel hybrid control scheme, which consists of a fuzzy
PD control with varying gains, inverse dynamic model-based
feed-forward decoupling term, FLESO with varying band-
width and robust term, is proposed for the trajectory tracking
control of the SMMconsidering the influence ofmodel uncer-
tainties and external disturbances. The asymptotic stability of
the mentioned controller was proved by the Lyapunov direct
method. A comprehensive comparisonwas implementedwith
other three controllers named PID, NPD and FPD. Compared
with FPD, the proposed FPDESO controller can reduce the
RMS values in the x, y and z directions by about 47.7%,
20.2% and 38%, respectively. The simulation results veri-
fied that the proposed controller can effectively handle the
model uncertainties and external disturbances. The experi-
mental results also validated the feasibility of the proposed
controller.

This paper provided an alternative scheme with the simple
structure and satisfactory control performance for the system
in the presence of multi-variable nonlinearity, uncertainties
and strong coupling.

APPENDIX A
The explicit expressions of the relevant terms in (2) except
the viscous friction and external disturbances are given as
follows:

M (q) =
[
M11 M12
M21 M22

]
, C(q, q̇) =

[
C11 C12
C21 C22

]
,
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TABLE 7. Rules for f βk
(
ke

)
and f βk

(
kde

)
.

G(q) =
[
G11
G21

]
M11 = I44 + sec2 αc2β

(
tan2 α + c2β

)−2
[
I55 sec2 α
−I11

(
tan2 α + c2β

) ]
M12 = M21 = tanαsβcβ

(
tan2 α + c2β

)−2
[
I55 sec2 α
−0.5I11

(
tan2 α + c2β

) ]
M22 = I22 + I55 tan2 αs2β

(
tan2 α + c2β

)−2
C11 = sec5 αcβ

(
tan2 α + c2β

)−3
[
2sαcβ

(
I11c2αs2β − I55 tan2 α

)
α̇

+cαsβ
(
2I11s2α − I55 tan2 α + I55c2β

)
β̇

]
C12 = sec2 α

(
tan2 α + c2β

)−3
[
sβcβ

(
2I55 tan2 α − 0.5I11c2β

)
α̇

+ tanαc2β
(
I55 sec2 α − 0.5I11

)
β̇

]
C21 = sec2 α

(
tan2 α + c2β

)−3
[
sβcβ

(
I55 sec4 α + 0.5I11 tan2 α

)
α̇

− tanαs2β
(
I55 sec2 α − 0.5I11s2α

)
β̇

]
C22 = I55 sec2 α

(
tan2 α + c2β

)−3
[
tanαs2β

(
c2β − tan2 α

)
α̇

+s2αsβcβ
(
sec2 α + s2β

)
β̇

]
G11 = 0

G12 = − (mbglb0 + mrglr0 + mmglm0) sβ

I11 = Im.zz + 2Ir .zz, I22 = Id .xx + Im.xx + Ir .xx ,

I33 = Id .zz + Im.zz + Ir .zz
I44 = Im.zz/4+ Ir .zz, I55 = (I22 + I33)/2

APPENDIX B
The step response and corresponding phase plane trajectory
in the β direction are shown in Fig. 26(a) and (b), respectively.
See Table 7.
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