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ABSTRACT In this paper we define and study rankmetric codes endowedwith aHermitian form.We analyze
the duality for Fq2 -linear matrix codes in the ambient space (Fq2 )n,m and for both Fq2 -additive codes and
Fq2m -linear codes in the ambient space Fn

q2m
. Similarly, as in the Euclidean case we establish a relationship

between the duality of these families of codes. For this we introduce the concept of qm-duality between
bases of Fq2m over Fq2 and prove that a qm-self dual basis exists if and only if m is an odd integer. We obtain
connections on the dual codes in Fn

q2m
and (Fq2 )n,m with the corresponding inner products. In particular,

we study Hermitian linear complementary dual, Hermitian self-dual and Hermitian self-orthogonal codes
in Fn

q2m
and (Fq2 )n,m. Furthermore, we present connections between Hermitian Fq2 -additive codes and

Euclidean Fq2 -additive codes in Fn
q2m

.

INDEX TERMS Rank metric codes, additive rank metric codes, Hermitian rank metric codes.

I. INTRODUCTION
Rank metric codes were introduced by Delsarte (1978) as a
q-analogue of coding theory [13]. Due to their applications
in cryptography and in network error correction ( [30], [31]),
there is a great interest in studying their general properties
and their connections with other topics [1], [4], [9]–[11], [24],
[26], [27], [29].

In the matrix representation linear rank metric codes are
FQ-linear subspaces of the ambient space V = (FQ)n,m,
where Q is a prime power and the weight of an element
A ∈ (FQ)n,m is defined as the rank of the matrix. In the vector
representation, rank metric codes are FQm -linear subspaces
of the ambient space U = FnQm , where the weight of a vector
v ∈ FnQm is defined as the maximal number of coordinates of
v which are linearly independent over FQ.

It is well known that using an invertible isometry λB :
U −→ V , any FQm -linear code C ≤ U can be considered as
an FQ-linear matrix code C ≤ V , called the code associated to
the code C , which shares the same rank properties as C (see
Definition 3). However, conversely given an FQ-linear code
C in V , we only obtain FQ-linearity, i.e. an FQ-additive rank
metric codeC in the spaceU . Therefore, the Hermitian forms
we define on V and U are over FQ. Furthermore, we define

The associate editor coordinating the review of this manuscript and

approving it for publication was Cesar Vargas-Rosales .

a Hermitian form on U over FQm and show their relationship
with those defined over FQ.

Classical additive codes of length n over F4 are subgroups
under addition of Fn4 and were first introduced in [5] because
of their connection to quantum codes. Specifically the authors
in [5] transform the problem of finding quantum error-
correcting codes into the problem of finding additive codes
over F4 which are self-orthogonal with respect to a certain
trace inner product. The author of [8] classified additive codes
over F9 that are self-dual with respect to the Hermitian trace
inner product, which in quantum information theory corre-
spond to ternary quantum error-correcting codes. Additive
codes were generalized and studied in [3], [16], [19], [20].

Additive codes and self-duality are also considered in the
ambient space of matrices endowed with the rank metric
(see, for example, [22], [25], [26]). They have potential
applications not only in network coding, combinatorics and
cryptography but also in code-based cryptography (and hence
post-quantum cryptography).

Duality in coding theory is an interesting notion with many
applications. Recently codes having trivial intersections with
their duals, in particular linear complementary dual codes, are
shown to be interesting also for some side-channel attacks in
cryptography [6].

The paper is structured as follows. In Section 2 we collect
preliminaries on σ -sesquilinear forms, Hermitian forms and
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Euclidean forms. In Section 3 we define Hermitian Fq2 -linear
rank metric codes in the ambient space (Fq2 )n,m and analyze
some properties such as the MacWilliams Identities. The
main contributions of our paper are given in Sections 4 and 5.
We obtain some connections on additive codes and their dual
codes in the ambient spaces Fn

q2m
and (Fq2 )n,m together with

corresponding Hermitian inner products. In Section 4 we
define Hermitian Fq2m -linear and Fq2 -additive rank metric
codes in the ambient space Fn

q2m
. In order to analyze the

duality of these families of codes we introduce the concept
of qm-duality for two bases of Fq2m over Fq2 . We prove
that a qm-self-dual basis exists if and only if m is an odd
integer. Additionally, we establish a relationship between
the theory of the duality for the spaces (Fq2 )n,m and Fn

q2m
(see Theorem 3). Due to this result, the MacWillams Iden-
tities are valid for Hermitian codes of Fn

q2m
. We state results

on Hermitian linear complementary dual codes, self-dual
codes and self-orthogonal codes. Finally, in Section 5 we
present connections between Hermitian Fq2 -additive codes
and Euclidean Fq2 -additive codes in Fn

q2m
.

II. BASIC FACTS ON σ -SESQUILINEAR, EUCLIDEAN AND
HERMITIAN FORMS
Let K be a finite field, F an extension of K, σ ∈ Aut(K)
and V a finite-dimensional F-vector space. A σ -sesquilinear
form on V over K is a map 〈·, ·〉 : V × V −→ K such that
if x, y, z ∈ V and α ∈ K, then 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉,
〈x, y + z〉 = 〈x, y〉 + 〈x, z〉, 〈αx, y〉 = α〈x, y〉 and 〈x, αy〉 =
σ (α)〈x, y〉. In addition, if ord(σ ) = 2 and σ (〈x, y〉) =
〈y, x〉, then the form is called a Hermitian form. In the case
ord(σ ) = 1 and 〈x, y〉 = 〈y, x〉 the form is called a Euclidean
form. A σ -sesquilinear form with the property that 〈x, y〉 =
0 ⇐⇒ 〈y, x〉 = 0 is called reflexive. Clearly, Hermitian and
Euclidean forms are reflexive. A σ -sesquilinear form is called
non-degenerate if 〈x, y〉 = 0 for all y ∈ V implies x = 0.
For any F-linear vector subspace W ≤ V , the dual space

of W with respect to a reflexive σ -sesquilinear form 〈·, ·〉,
denoted by W⊥, is

W⊥ := {v ∈ V : 〈v,W 〉 = 0}.

In this case we say that W is self-orthogonal if W ⊆ W⊥

and self-dual if W = W⊥. It is well known that if 〈·, ·〉 is
non-degenerate and reflexive, then dimK(W⊥) = dimK(V )−
dimK(W ) and (W⊥)⊥ = W .
The radical of a reflexive σ -sesquilinear form 〈·, ·〉 on V is

the F-vector space

rad(〈·, ·〉) = {x ∈ V : 〈x, y〉 = 0 for all y ∈ V }.

Clearly a reflexive σ -sesquilinear form is non-degenerate if
and only if its radical is trivial.

If B = {β1, . . . , βm} is a basis of V over K and if 〈·, ·〉 is a
σ -sesquilinear form on V , then

〈x, y〉 = 〈
m∑
i=1

xiβi,
m∑
j=1

yjβj〉

=

m∑
i=1

xi
m∑
j=1

〈βi, βj〉σ (yj)

= xGBσ (y)
t ,

where x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Km and σ (y) :=
(σ (y1), . . . , σ (ym)) ∈ Km. The matrix GB = (〈βi, βj〉) ∈
(K)m is called the Gram matrix of 〈·, ·〉 with respect to the
basis B.
Symmetric matrices A ∈ (K)m and B ∈ (K)m are said to be

conjunctive if there exists a non-singular matrix P ∈ GLm(K)
such that B = PtAP. Two Euclidean forms are equivalent if
and only if their Gram matrices are conjunctive. We shall use
the following well-known lemma.
Lemma 1: Let char(K) be an odd integer and let A ∈

(K)m be a non-singular symmetric matrix. Then A and Im are
conjunctive or A and J = diag(1, . . . , 1, a) are conjunctive,
where a is an arbitrary non-square in K.

Proof: If char(K) is odd, then there are exactly two
equivalence classes of non-degenerate Euclidean forms on
Km, represented by the matrices Im and J (see [2]). �
It is well known that ifK0 is the field of fixed points of σ and
ord(σ ) = 2, then (K : K0) = 2. Therefore |K| = |K0|

2
= q2

for some q prime power and σ (x) = xq for all x ∈ K. Let
K = Fq2 and let x∗ := xq be the conjugate of x ∈ Fq2 .
For a matrix A ∈ (Fq2 )m, write A(q) for the matrix obtained
from A by conjugation of each entry. We define the conjugate
of A, denoted by A∗, as the transpose of the matrix A(q) i.e.
A∗ = (A(q))t . A matrix A ∈ (Fq2 )m is Hermitian if A∗ = A.
It is easy to verify that 〈·, ·〉 is Hermitian if and only if its

Gram matrix GB is Hermitian. Therefore there exists an one-
to-one correspondence between the set of Hermitian matrices
in (Fq2 )m and the set of Hermitian forms on V . Notice that
〈·, ·〉 is a non-degenerate Hermitian form if and only if its
Gram matrix GB is non-singular in (Fq2 )m and Hermitian.
Hermitian matrices A ∈ (Fq2 )m and B ∈ (Fq2 )m are said

to be conjunctive if there exists a non-singular matrix P ∈
GLm(Fq2 ) such that B = P∗AP. Two Hermitian forms are
equivalent if and only if their Gram matrices are conjunctive.

The following lemma is crucial for the proof of Theorem 2.
Lemma 2: 1) Let A ∈ (Fq2 )m. Then A∗A is a Hermitian

matrix with det(A∗A) = det(A)q+1 =: NFq2/Fq
(det(A)).

2) Let A ∈ (Fq2 )m be a non-singular Hermitian matrix.
Then A and Im are conjunctive.
Proof:

1) Let A = (aij) ∈ (Fq2 )m. Since

det(A(q)) =
∑

σ∈Sym(m)

sgn(σ )
m∏
i=1

aqi,σ (i)

=

 ∑
σ∈Sym(m)

sgn(σ )
m∏
i=1

ai,σ (i)

q

= [det(A)]q,

we have det(A∗) = det(A(q)) = [det(A)]q.
2) See [18, Lemma 2.3].

�
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III. HERMITIAN Fq2-LINEAR RANK METRIC CODES
Let (Fq2 )n,m be the Fq2 -vector space of matrices over Fq2 of
type (n,m). On (Fq2 )n,m we define the so-called rank metric
distance by d(A,B) := rank(A− B) for A,B ∈ (Fq2 )n,m.
A t-dimensional Fq2 -subspace C ≤ (Fq2 )n,m endowed

with the metric d is called an Fq2 -linear rank metric code
with minimum distance d(C) := min {d(A,B) | A 6= B ∈
C}. Clearly, the minimum distance of a code C 6= {0} is
also

d(C) := min{rank(A) : A ∈ C, A 6= 0}.

The trace Hermitian inner product of two matrices A =
(aij) ∈ (Fq2 )n,m and B = (bij) ∈ (Fq2 )n,m, is defined
by 〈A,B〉H = Tr(A(Bt )(q)), where Tr denotes the trace of
the matrix and Bt the transpose of B. It is easy to ver-
ify that 〈·, ·〉H is a non-degenerate Hermitian form. The
dual of the code C ≤ (Fq2 )n,m with respect to this form
is denoted by C⊥H . Since 〈·, ·〉H is non-degenerate and
reflexive, we have dimFq2 (C

⊥H ) = nm − dimFq2 (C) and

(C⊥H )⊥H = C.
A Hermitian rank metric Fq2 -linear code is a rank metric

code C ≤ (Fq2 )n,m equipped with the Hermitian form 〈·, ·〉H .
The ordinary trace inner product of two matrices A =

(aij) ∈ (Fq2 )n,m and B = (bij) ∈ (Fq2 )n,m, is defined
by 〈A,B〉E = Tr(A(Bt )) and the dual of the code C ≤
(Fq2 )n,m with respect to this Euclidean form is denoted
by C⊥E .
Remark 1: Throughout the paper, we always assume 2 ≤

n ≤ m.
Similarly, as in classical coding theory, the rank distribu-

tion of C is the collection A0(C), . . . ,An(C), where Ai(C) :=
|{A ∈ C : rank(A) = i}| for i ∈ {0, . . . , n}.
In [13] Delsarte established a bound for the minimum

rank distance of a code similar to the Singleton bound for
Hamming distance:
Theorem 1: (Rank Singleton bound) Let C ≤ (Fq2 )n,m be

an Fq2 -linear code of dimension t with minimum distance d.
Then we have

d ≤ n− t/m+ 1.
Rank metric codes meeting the Singleton bound are called

MaximumRankDistance (MRD) codes. Delsarte was the first
who proved in [13] the existence of Fq2 -linear MRD codes.
Using the MacWilliams Identities for the Euclidean form

we can prove the following lemma.
Lemma 3: Let C and D be two t-dimensional rank metric

codes in (FQ)n,m with the same rank distribution. Then C⊥E
and D⊥E have the same rank distribution.

Proof: Let (Ai(C))0≤i≤n and (Ai(D))0≤i≤n be the
rank distribution of C and D, respectively and let
Ai(C) = Ai(D) for all i ∈ {0, . . . , n}. For any inte-
ger 0 ≤ r ≤ n, we have

∑n−r
i=0

[n−i
r

]
Ai(C) =

Qt−mr
(∑r−1

j=0

[n−j
r−j

]
Bj(C⊥E )+ Br (C⊥E )

)
. Assume

Bj(C⊥E ) = Bj(D⊥E )

for j < r . Then

n−r∑
i=0

[
n− i
r

]
Ai(D)

= Qt−mr

r−1∑
j=0

[
n− j
r − j

]
Bj(D⊥E )+ Br (C⊥E )


and we have Br (C⊥E ) = Br (D⊥E ). �
Remark 2: Let C ≤ (Fq2 )n,m be an Fq2 -linear rank code.

Since C and C(q) have the same rank distribution and C⊥H =
(C(q))⊥E , we get by Lemma 3 that C⊥E and C⊥H have the same
rank distribution.
By the previous remark the MacWilliams Identities are also
valid for Hermitian rank metric codes. We state this direct
consequence in the following corollary, which would be use-
ful for some applications.
Corollary 1: (Hermitian MacWilliams Identities) Let C ≤

(Fq2 )n,m be an Fq2 -linear Hermitian rank code of dimension
t. Let (Ai)0≤i≤n and (Bi)0≤i≤n be the rank distribution of C
and C⊥H , respectively. For any integer 0 ≤ r ≤ n, we
have

n−r∑
i=0

[
n− i
r

]
Ai(C) = (q2)

t−mr
r∑
j=0

[
n− j
r − j

]
Bj(C⊥H ).

Remark 3: Note that if C ≤ (Fq2 )n,m is an MRD code, then
by Remark 2 we have that C⊥H is also an MRD code.

IV. HERMITIAN Fq2-ADDITIVE AND Fq2m-LINEAR RANK
METRIC CODES
The field Fq2m may be viewed as an m-dimensional vector
space over Fq2 . The rank of a vector v = (v1, . . . , vn) ∈
Fn
q2m

is defined as the maximum number of coordinates in
v that are linearly independent over Fq2 , i.e. rank(v) :=
dimFq2 〈v1, . . . , vn〉. Then we have a rank metric distance
given by d(v, u) = rank(v− u) for v, u ∈ Fn

q2m
. A Fq2m -linear

subspace C ≤ Fn
q2m

of dimension k endowed with this metric
is called a Fq2m -linear rank metric [n, k] code.

On the other hand, a Fq2 -additive code C ⊆ Fn
q2m

of
dimension t over Fq2 endowed with the rank metric is called
a Fq2 -additive rank metric [nm, t] code. In this case the
dimension of C over Fq2m is defined as the number k such
that (q2m)k = |C|. Note that k is not necessarily an integer
and k = t

m .
The minimum distance of a rank metric code C 6= {0},

denoted by d(C), is the smallest rank distance between any
pair of distinct codewords. If C ≤ Fn

q2m
is an Fq2 -additive

code of dimension t over Fq2 with minimum distance d , then
d ≤ n− t/m+ 1. In particular if C ≤ Fn

q2m
is an Fq2m -linear

code of dimension k , then d ≤ n − k + 1. Fq2 -additive or
Fq2m -linear rank metric codes meeting this bound are equally
called Maximum Rank Distance (MRD) codes.
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Given a vector v = (v1, . . . , vn) ∈ Fn
q2m

we denote by
Mk (v) ∈ (Fq2m )k,n the matrix

Mk (v) =


v1 v2 . . . vn
v
[1]q2
1 v

[1]q2
2 . . . v

[1]q2
n

...

v
[k−1]q2
1 v

[k−1]q2
2 . . . v

[k−1]q2
n

 , (1)

where [i]q2 := (q2)i.
Gabidulin showed in [14] that if v1, . . . , vn are linearly

independent over Fq2 , then the Fq2m -linear code C ≤ Fn
q2m

generated by the matrix Mk (v1, . . . , vn) is a k-dimensional
MRD code and we call it theGabidulin code Gk (v) generated
by Mk (v1, . . . , vn).
In Fn

q2m
we can define two different inner products: The

ordinary Hermitian inner product 〈·, ·〉H and the trace inner
product 〈·, ·〉TH . More precisely we have.
Definition 1: For v = (v1, . . . , vn), u = (u1, . . . , un) ∈

Fn
q2m

we define

1) 〈v, u〉H =
∑n

i=1 viu
qm

i ∈ Fq2m (ordinary Hermitian
inner product)

2) 〈v, u〉TH = TrFq2m/Fq2

(
n∑
i=1

viu
qm

i

)
∈ Fq2 (trace Her-

mitian inner product).
Lemma 4: The following facts hold.
1) The map 〈·, ·〉H is a Hermitian non-degenerate form.
2) If m is a odd integer, then the map 〈·, ·〉TH is a Her-

mitian non-degenerate form. Otherwise, 〈·, ·〉TH is a
Euclidean form.
Proof:

1) Let σ : Fq2 −→ Fq2 be the automorphism of Fq2
defined by σ (α) := αq

m
for all α ∈ Fq2 and σ̂ the

extension of σ over the field Fq2m . It is easy to verify
that 〈·, ·〉H is a σ̂ -sesquilinear non-degenerate form.
Moreover σ̂ is the Frobenius automorphism of Fq2m
over Fq2 , which is an involution.

2) Without difficulty we see that 〈·, ·〉TH is a
σ -sesquilinear form, where σ : Fq2 −→ Fq2 is the
automorphism of Fq2 defined by σ (α) := αq

m
for all

α ∈ Fq2 . We prove that 〈·, ·〉TH is also non-degenerate.
Let u ∈ Fn

q2m
and 〈v, u〉TH = 0 for all v ∈ Fn

q2m
. Sup-

pose that u 6= 0 with uj 6= 0 for a some j ∈ {1, . . . , n}.
Then we have that uq

m

j 6= 0. Since TrFq2m/Fq2 is a

non-zero map and Fq2m = {zu
qm

j : z ∈ Fq2m}, there
exists zuq

m

j ∈ Fq2m such that TrFq2m/Fq2 (zu
qm

j ) 6= 0. Let

v ∈ Fn
q2m

with vj = zuq
m

j and vi = 0 for all i 6= j. Then,

〈v, u〉TH = TrFq2m/Fq2 (zu
qm

j ) 6= 0, a contradiction.
On the other hand, if m is an odd integer, then for all
x ∈ Fq2 we have xq

m
−q
= xq(q

m−1
−1)
= xq(q

2
−1)s
= 1,

where s ∈ N, since m− 1 is even and q2− 1|qm−1− 1.
Hence σ (α) = αq

m
= αq for all α ∈ Fq2 and ord(σ ) =

2. As 〈v, u〉TH = σ (〈u, v〉TH ) the form is Hermitian.
In the case that m is even, then ord(σ ) = 1.

�

A Hermitian Fq2 -additive code (Hermitian Fq2m -linear
code) is an Fq2 -additive (Fq2m -linear) rank metric code C ≤
Fn
q2m

equipped with the Hermitian form 〈·, ·〉TH (〈·, ·〉H ).

We denoted byC⊥TH andC⊥H the dual code ofC with respect
to the trace Hermitian inner product and to the ordinary
Hermitian inner product respectively.
Lemma 5: Let C be a subset of Fn

q2m
. Then we have

1) C⊥H is an Fq2 -vector subspace of C⊥TH .
2) If C is an Fq2 -additive code, then dimFq2 (C

⊥TH ) =
nm−dimFq2 (C). Similarly, if C is an Fq2m -linear code,
then dimFq2m (C

⊥H ) = n− dimFq2m (C).

3) If C is an Fq2m -linear code, then C⊥H = C⊥TH .

Proof: The proof of part 1 and part 2 is immediate. By
part 1 we have that C⊥H ⊆ C⊥TH . On the other hand, by part
2 we have

dimFq2 (C
⊥H ) = m · dimFq2m (C

⊥H ) = m(n− dimFq2m (C))

= mn− dimFq2 (C) = dimFq2 (C
⊥TH ),

so part 3 follows. �
Remark 4: 1) Note that the map 〈·, ·〉 : Fq2m ×

Fq2m −→ Fq2 defined as 〈a, b〉 := TrFq2m/Fq2 (ab
qm ) is

a non-degenerated σ -sesquilinear form, where σ (α) =
αq

m
for all α ∈ Fq2 . Therefore, if B is a basis of Fq2m

over Fq2 and GB is the Gram matrix of 〈·, ·〉, then GB
is nonsingular in (Fq2 )m. In particular, if m is an odd
integer, then the map 〈·, ·〉 is a Hermitian form, since
σ (α) = αq

m
= αq for all α ∈ Fq2 . For m an even

integer, 〈·, ·〉 is a Euclidean form.
2) Moreover, note that if v = (v1, . . . , vn), u =

(u1, . . . , un) ∈ Fn
q2m
, then

〈v, u〉TH = TrFq2m/Fq2 (〈v, u〉H ) =
n∑
i=1

〈vi, ui〉.

Definition 2: Let B = {β1, . . . , βm} and B′ =

{β ′1, . . . , β
′
m} be two bases of Fq2m over Fq2 . If 〈β ′i , βj〉 =

TrFq2m/Fq2 (β
′
iβ

qm

j ) = δij for all i, j ∈ {1, . . . ,m}, then the
basesB andB′ are said to be qm-dual to each other.Moreover,
a basisB = {β1, . . . , βm} of Fq2m over Fq2 is called a qm-self-
dual basis if TrFq2m/Fq2 (βiβ

qm

j ) = δij, for all i, j ∈ {1, . . . ,m}.
Remember that bases B = {β1, . . . , βm} and B∗ =
{β∗1 , . . . , β

∗
m} are said dual if TrFq2m/Fq2 (β

∗
i βj) = δij for all

i, j ∈ {1, . . . ,m}. In the case that TrFq2m/Fq2 (βiβj) = δij for
all i, j ∈ {1, . . . ,m} we say that B is self-dual. It is well
known that any basis B of Fq2m over Fq2 has a dual basis
B∗ which is unique. This result also holds for qm-duality.
In fact, if B = {β1, . . . , βm} is a basis of Fq2m over Fq2 ,
then the unique dual basis B′ = {β ′1, . . . , β

′
m} to the basis

Bqm := {βq
m

1 , . . . , β
qm
m } is qm-dual to B.

Lemma 6: Let B = {β1, . . . , βm} be a basis of Fq2m over
Fq2 , GB the Grammatrix of the σ -sesquilinear form 〈a, b〉 :=
TrFq2m/Fq2 (ab

qm ) with respect to the basis B, where σ (α) =
αq

m
for all α ∈ Fq2 and let Mk (v) ∈ (Fq2m )k,n the matrix (1)
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for all vectors v = (v1, . . . , vn) ∈ Fn
q2m

and 1 ≤ k ≤ n. Then
we have:

1) GB = Mm(B)∗Mm(B).
2) The basis B = {β1, . . . , βm} is a qm-self-dual basis of

Fq2m over Fq2 if and only if Mm(B)∗Mm(B) = Im, where
B := (β1, . . . , βm) ∈ Fm

q2m
.

3) [det(Mm(B))]q
2
= (−1)m−1 det(Mm(B)).

Proof:
1) Let S := Mm(B)∗Mm(B). If we denote the entry of

matrix S at position (i, j) by sij, then

sij =
m∑
k=1

(β
[k−1]q2
i )q

m
β
[k−1]q2
j

=

m∑
k=1

(βq
m

i βj)
[k−1]q2

= TrFq2m/Fq2 (β
qm

i βj).

2) The statement follows from part 1.
3) From the proof of Lemma 2 we know that

[det(Mm(B))]q
2
= det

(
Mm(B)(q

2)
)
. Furthermore

det
(
Mm(B)(q

2)
)

=

∣∣∣∣∣∣∣∣∣∣
β
[1]q2
1 β

[1]q2
2 . . . β

[1]q2
m

...
...

...
...

β1
[m−1]q2 β

[m−1]q2
2 . . . β

[m−1]q2
m

β1 β2 . . . βm

∣∣∣∣∣∣∣∣∣∣
(2)

and

det(Mm(B))

=

∣∣∣∣∣∣∣∣∣∣

β1 β2 . . . βm

β
[1]q2
1 β

[1]q2
2 . . . β

[1]q2
m

...
...

...
...

β1
[m−1]q2 β

[m−1]q2
2 . . . β

[m−1]q2
m

∣∣∣∣∣∣∣∣∣∣
.

By swapping the last row of (2) (m − 1)-times, we get
det

(
Mm(B)(q

2)
)
= (−1)m−1 det(Mm(B)).

�
Let B = {β1, . . . , βm} be a basis of Fq2m over Fq2 and

v = (v1, . . . , vn) ∈ Fn
q2m

. If vi =
m∑
j=1
λijβj, where λij ∈ Fq2

and 1 ≤ i ≤ n, the associated matrix of v with respect
to the basis B, is defined as λB(v) := (λij)n,m ∈ (Fq2 )n,m.
Note v = BλB(v)T , for all v = (v1, . . . , vn) ∈ Fn

q2m
,

where B := (β1, . . . , βm) ∈ Fm
q2m
. Therefore λB(v)(q

m)
=

λB(qm) (v(q
m)). The map Fn

q2m
3 v 7−→ λB(v) ∈ (Fq2 )n,m

is an invertible Fq2 -linear transformation and an invertible
isometry i.e. d(v, u) = d(λB(v), λB(u)) for all v, u ∈ Fn

q2m
.

Lemma 7: Let B = {β1, . . . , βm} and B′ = {β ′1, . . . , β
′
m}

be two qm-self-dual bases of Fq2m over Fq2 . If a =
∑m

i=1 xiβ
′
i ,

b =
∑m

j=1 yjβj ∈ Fq2m , where (x1, . . . , xm), (y1, . . . , ym) ∈
Fm
q2
, then 〈a, b〉 =

∑m
k=1 xky

qm

k .

Proof:

〈a, b〉 = 〈
m∑
i=1

xiβ ′i ,
m∑
j=1

yjβj〉

=

m∑
i=1

m∑
j=1

aib
qm

j 〈β
′
i , βj〉 =

m∑
k=1

xky
qm

k .

�
It is well known that a dual basis of Fq2m over Fq2 always

exits, but a self-dual basis exits if and only if q2 is even or both
q2 and m are odd (see [21]). With respect to the existence of
a qm-dual basis we have the following result.
Theorem 2: There exists a qm-self-dual basis of Fq2m over

Fq2 if and only if m is an odd integer.
Proof: Let m be an odd integer and let A =

{α1, . . . , αm} be a basis of Fq2m over Fq2 . Moreover, let
GA be the Gram matrix with respect to the basis A of the
σ -sesquilinear form 〈a, b〉 := TrFq2m/Fq2 (ab

qm ), where

σ (α) = αq
m
for all α ∈ Fq2 . By Remark 4 (1) we know that

GA is a nonsingular Hermitianmatrix in (Fq2 )m. Therefore by
Lemma 2 (2) there exists a nonsingular matrix H = (hij)m ∈
(Fq2 )m such that H∗GAH = Im. Define βj =

∑m
i=1 αihij

for j = 1, . . . ,m. We can prove that B = {β1, . . . , βm}
is a basis of Fq2m over Fq2 and Mm(B) = Mm(A)H , where
A := (α1, . . . , αm) ∈ Fm

q2m
and B := (β1, . . . , βm) ∈ Fm

q2m
.

By Lemma 6 (1) we know that GA = Mm(A)∗Mm(A),
therefore

(Mm(B))∗Mm(B) = H∗(Mm(A))∗Mm(A)H

= H∗GAH = Im.

Hence by Lemma 6 (2), B is a qm-self-dual basis.
On the other hand, letm be an even integer and let char(Fq2 )

be an odd integer. Suppose that there exists a qm-self-dual
basis B = {β1, . . . , βm}. If A = {α1, . . . , αm} is also a basis
of Fq2m over Fq2 and βj =

∑m
i=1 αisij, where sij ∈ Fq2 , for

j ∈ {1, . . . ,m}, then we have

δij = TrFq2m/Fq2 (βiβ
qm

j )

=

m∑
k=1

m∑
l=1

skiTrFq2m/Fq2 (αkα
qm

l )sq
m

lj .

Since xq
m
= x for all x ∈ Fq2 , we have

δij =
∑m

k=1
∑m

l=1 skiTrFq2m/Fq2 (αkα
qm

l )slj. Therefore Im =
S tGAS, where S := (sij)m ∈ GLm(Fq2 ). Thus det(GA) ∈
(F×

q2
)2. By Lemma 1 and Remark 4 (1), we can also argue in

the reverse direction. Hence there exists a qm-self-dual basis
B if and only if there exists a basis A such that det(GA) ∈
(F×

q2
)2. By Lemma 6 (1) we have GA = Mm(A)∗Mm(A).
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Therefore by Lemma 2 (1), we have det(GA) =

[det(Mm(A))]q
m
+1.We know that

[det(Mm(A))]q
2
= (−1)m−1 det(Mm(A))

= − det(Mm(A))

6= det(Mm(A)),

i.e. y := det(Mm(A)) 6∈ Fq2 . If there exits x ∈ F×
q2

such that

yq
m+1
= x2, then

y = (yq
m+1

)q
m−1
= (x2)q

m−1
∈ Fq2 ,

a contradiction.
Finally, let m be an even integer and let char(Fq2 ) be an

even integer. Then for all basis B = {β1, . . . , βm} of Fq2m
over Fq2 we have that the entries of the main diagonal of the

Gram matrix GB are zero. Indeed, let xi := β
qm+1
i for all

i = 1, . . . ,m. Since xq
m
−1

i = 1, we have that xi ∈ Fqm .
Therefore TrFq2m/Fqm

(xi) = 2x = 0. As m is an even integer,

then Fq2 is a subfield of Fqm . Hence for the transitive property
of the trace we have

TrFq2m/Fq2 (xi) = TrFqm/Fq2 (TrFq2m/Fqm (xi)) = 0.

�
Definition 3: If C ≤ Fn

q2m
is a Hermitian Fq2 -additive

or Fq2m -linear rank metric code, then we define the Fq2 -linear
Hermitian code associated to the code C with respect to the
basis B as

λB(C) = {λB(v) : v ∈ C} ≤ (Fq2 )n,m.
Since λB is an invertible isometry, then d(C) = d(λB(C))
and Ai(λB(C)) = Ai(C) for i = 1, . . . , n. Moreover, λB
is an invertible Fq2 -linear transformation, therefore we have
dimFq2 (λB(C)) = dimFq2 (C) for all Fq2 -additive rank metric
code C . In particular, dimFq2 (λB(C)) = m · dimFq2m (C) =
dimFq2 (C) for an Fq2m -linear rank metric code C .
Remark 5: Using λB we can see that every Fq2 -additive

code or Fq2m -linear code can be seen as an Fq2 -linear matrix
code. In general not every Fq2 -linear matrix code C ≤
(Fq2 )n,m arises from an Fq2m -linear code, for example when
(q2m−1) - Ai(C) for all i = 1, . . . , n. However, there is always
an Fq2 -additive code C ≤ Fn

q2m
such that λB(C) = C.

An interesting question is how λB behaves in relation to
the duality defined with the Hermitian form. Indeed, if we
can prove that there is an invertible isometry ϕ : Fn

q2m
−→

(Fq2 )n,m such that ϕ(C⊥TH ) = λB(C)⊥H , then the Hermitian
Fq2 -additive codes satisfy the MacWilliams Identities (in
particular the Fq2m -linear codes). The reason is that, in this
case, we have Bi(C⊥TH ) = Bi(ϕ(C⊥TH )) = Bi(λB(C)⊥H )
for all i = 0, . . . , n and since Ai(C) = Ai(λβ (C)) for all
i = 0, . . . , n, we would be able to apply Corollary 1, which
is valid for Fq2 -linear matrix codes. Theorem 3 (1) shows
that for an odd integer m given a basis B of Fq2m over Fq2 ,
the map v 7−→ λB′ (v) where B′ is a basis qm-dual to B is the
desired invertible isometry. In fact, ifm is an odd integer, then
λB′ (C⊥TH ) = λB(C)⊥H .

Proposition 1: Let B and B′ be qm-dual bases of Fq2m over
Fq2 and v, u ∈ Fn

q2m
.

1) If m is an odd integer, then 〈v, u〉TH =: TrFq2m/Fq2 (〈v,
u〉H ) = 〈λB′ (v), λB(u)〉H .

2) If m is an even integer, then 〈v, u〉TH =: TrFq2m/Fq2 (〈v,
u〉H ) = 〈λB′ (v), λB(u)〉E .
Proof: Let B = {β1, . . . , βm} and B′ = {β ′1, . . . , β

′
m}

be two qm-dual bases of Fq2m over Fq2 . Let v, u ∈ Fn
q2m

such
that (xij) = λB′ (v) and (yij) = λB(u) i.e. vi =

∑m
j=1 xijβ

′
j and

ui =
∑m

k=1 yikβk .
Then by Remark 4 (2) and Lemma 7 we have

〈v, u〉TH = TrFq2m/Fq2 (〈v, u〉H ) =
n∑
i=1

〈vi, ui〉

=

n∑
i=1

m∑
l=1

xily
qm

il = Tr
(
λB′ (v)

(
λB(u)

t)qm) .
Ifm is an odd integer, then

(
λB(u)t

)qm
=
(
λB(u)t

)q. Form an

even integer we have
(
λB(u)t

)qm
= λB(u)t .

�
The following result was independently established in [15],

[17], [27] for Euclidean rank metric codes and dual bases.
Now we show a version for Hermitian rank metric codes and
qm-dual bases.
Theorem 3: Let C ≤ Fn

q2m
be an Fq2 -additive code, B and

B′ qm-dual bases of Fq2m over Fq2 . Then the following hold:
1) If m is an odd integer, then

λB′ (C
⊥H ) ≤ λB′ (C

⊥TH ) = λB(C)
⊥H .

In particular, if C ≤ Fn
q2m

is an Fq2m -linear code,
we have

λB′ (C
⊥H ) = λB′ (C

⊥TH ) = λB(C)
⊥H .

2) If m is an even integer, then

λB′ (C
⊥H ) ≤ λB′ (C

⊥TH ) = λB(C)
⊥E .

In particular, if C ≤ Fn
q2m

is an Fq2m -linear code,
we have

λB′ (C
⊥H ) = λB′ (C

⊥TH ) = λB(C)
⊥E .

Proof: Let B = {β1, . . . , βm} and B′ = {β ′1, . . . , β
′
m}

be two qm-dual bases of Fq2m over Fq2 . By Lemma 5 (1) it is
clear that λB′ (C⊥H ) ≤ λB′ (C⊥TH ) for all Fq2 -additive code
C . Suppose λB′ (v) ∈ λB′ (C⊥TH ) and λB(u) ∈ λB(C), where
v ∈ C⊥TH and u ∈ C . By Proposition 1 (1) we have

〈λB′ (v), λB(u)〉H = 〈v, u〉TH = 0.

Therefore λB′ (C⊥TH ) ≤ λB(C)⊥H . By Lemma 5 (2)
we have dimFq2 λB′ (C

⊥TH ) = dimFq2 (λB(C)
⊥H ). Hence

λB′ (C⊥TH ) = λB(C)⊥H .
Similarly, by Proposition 1 (2) we have

〈λB′ (v), λB(u)〉E = 〈v, u〉TH = 0.
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Therefore λB′ (C⊥TH ) ≤ λB(C)⊥E . Since

dimFq2 (λB(C)
⊥E ) = nm− dimFq2 λB(C)

= nm− dimFq2 (C)

= dimFq2 λB′ (C
⊥TH ),

we have λB′ (C⊥TH ) = λB(C)⊥E .
In particular, if C is an Fq2m -linear code, then by Lemma 5

(3) we have λB′ (C⊥H ) = λB′ (C⊥TH ). Hence parts 1 and 2 are
complete. �
Corollary 2: Let (Ai)0≤i≤n and (Bi)0≤i≤n be the rank dis-

tribution of an Fq2 -additive (Fq2m -linear) rank metric code
C ≤ Fn

q2m
and C⊥TH (C⊥H ), respectively. For any integer

0 ≤ r ≤ n, we have
n−r∑
i=0

[
n− i
r

]
Ai =

|C|
q2mr

r∑
j=0

[
n− j
r − j

]
Bj,

which we call the Hermitian MacWilliams Identities.
Proof: Let m be an odd integer. By Theorem 3 (1) we

have Bi(C⊥TH ) = Bi(λB′ (C⊥TH ))
= Bi(λB(C)⊥H ) for all i = 0, . . . , n. Moreover Ai(C) =
Ai(λβ (C)) for all i = 0, . . . , n, therefore by Corollary 1
we are done. On the other hand, let m be an even integer.
By Theorem 3 (2) we have Bi(C⊥TH ) = Bi(λB′ (C⊥TH )) =
Bi(λB(C)⊥E ) for all i = 0, . . . , n. But Bi(λB(C)⊥E ) =
Bi(λB(C)⊥H ) by Remark 2. Again byCorollary 1 the sentence
follows. �
Example 1: A classical linear code C ≤ Kn is called

linear complementary dual, or shortly an LCD code, ifKn
=

C⊕C⊥E [23]. Classical LCD codes are of particular interest
because the class of LCD codes is asymptotically good [23]
and achieves the Gilbert-Varshamov bound [28]. Further-
more the codes play a crucial role in information protection
[6]. A Fqm -linear rank metric code C ≤ Fn

q2m
is called a

rank Hermitian LCD code (rank metric code with Hermitian
complementary dual) if C⊕C⊥H = Fn

q2m
. In [12] the authors

investigate and characterize ideals in the group algebra KG
which have complementary duals, i.e., ideals C in KG that
satisfy KG = C ⊕ C⊥E . Similarly as in the Euclidean case,
we can prove that C ≤ Fn

q2m
is a Hermitian LCD code if

and only if GG∗ is nonsingular, where G ∈ (Fq2m )k,n is a
generator matrix of C. Additionally, we say that anFq2 -linear
rank metric matrix code C ≤ (Fq2 )n,m is a rank Hermitian
LCD code if C ⊕ C⊥H = (Fq2 )n,m. If m is an odd integer and
B = {β1, . . . , βm} is a qm-self-dual basis, then, by applying
Theorem 3 (1), we see that C ≤ Fn

q2m
is a rank Hermitian

LCD code if and only if λB(C) is a rank Hermitian LCD code.
Moreover, by Lemma 6 (1), Mm(B)∗Mm(B) = Im. Therefore
Gk (B) is an MRD LCD code.
Example 2: Let α ∈ Fq2m . Then the map ϒα : Fq2m 7−→

Fq2m defined by ϒα(x) = αx for all x ∈ Fq2m is an Fq2 -linear
transformation. We have that the associated basis of ϒα with
respect to the basis B is λB(αB). Moreover we can prove that
TrFq2m/Fq2 (α) = Tr(λB(αB)) for all α ∈ Fq2m , actually this
is a usual alternative definition for the trace of an element α

(see [7]). Let m be an odd integer and let B = {β1, . . . , βm}
a qm-self-dual basis. We know that if C ≤ Fm

q2m
, then Im ∈

λB(C)⇐⇒ B ∈ C . Therefore, if C := G1(B), by Theorem 3
(1) we have

B ∈ C⊥H ⇐⇒ Im ∈ λB(C
⊥H ) = λB(C)

⊥H

⇐⇒ Tr(λB(αB)) = 0

⇐⇒ TrFq2m/F
q2
(α) = 0

for all α ∈ Fq2m . HenceB 6∈ G1(B)⊥H and Im 6∈ λB(G1(B))⊥H
i.e. G1(B) and λB(G1(B)) are not self-orthogonal codes.

In the rest of this section we present a connection of cer-
tain Hermitian LCD, Hermitian self-dual and Hermitian self-
orthogonal codes in the ambient spaces Fn

q2m
and (Fq2 )n,m.

We start with a simple lemma.
Lemma 8: Let C ≤ Fn

q2m
be an Fq2m -linear code. Then we

have the following:
1) C is Hermitian LCD if and only if C is trace Hermitian

LCD.
2) C is Hermitian self-dual if and only if C is trace Her-

mitian self-dual.
3) C is Hermitian self-orthogonal if and only if C is trace

Hermitian self-orthogonal.
Proof: The results follow immediately using Lemma 5

item 3. �
Now we give our connection for m is odd.
Theorem 4: Let m ≥ 1 be an odd integer. Let C ≤ Fn

q2m
be

an Fq2m -linear code. Let B be an qm-self dual basis of Fq2m
over Fq2 . Then the following hold:

1) λB(C) is Hermitian LCD ⇐⇒ C is Hermitian LCD
⇐⇒ C is trace Hermitian LCD.

2) λB(C) is Hermitian self-dual ⇐⇒ C is Hermitian
self-dual ⇐⇒ C is trace Hermitian self-dual.

3) λB(C) is Hermitian self-orthogonal ⇐⇒ C is Her-
mitian self-orthogonal ⇐⇒ C is trace Hermitian
self-orthogonal.
Proof: AsB is qm-self-dual basis of Fq2m over Fq2 , using

Theorem 3 we have

λB(C
⊥H ) = λB(C)

⊥H .

Hence we obtain that

λB(C)
⊥H ∩ λB(C)=λB

(
C⊥H

)
∩λB(C)=λB

(
C⊥H ∩ C

)
.

This completes the proof that λB(C) is Hermitian LCD
(respectively Hermitian self-dual and Hermitian self-
orthogonal) if and only if C is Hermitian LCD (resp. Her-
mitian self-dual and Hermitian self-orthogonal). The part
corresponding to trace Hermitian follows from Lemma 8. �

V. CONNECTIONS WITH EUCLIDEAN
Fq2-ADDITIVE CODES
In this section we present connections between Hermi-
tian Fq2 -additive codes and Euclidean Fq2 -additive codes in
Fn
q2m

. The following result is elementary but crucial for this
section.
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Lemma 9: Let C be an Fq2 -additive rank metric codes in
Fn
q2m
. Then C (qm) is an Fq2 -additive rank metric code and C

and C (qm) have the same rank distribution.
Proof: Ai(C) = Ai(λB(C)) = Ai(λB(C)(q

m)), for all
i = 0, . . . , n. Since λB(C)(q

m)
= λB(qm) (C (qm)), we have

Ai(C) = Ai(λB(qm) (C (qm))) = Ai(λB(C (qm))) = Ai(C (qm)),
for all i = 0, . . . , n.

�
Remark 6: If C and D are two Fq2m -linear rank metric

codes in Fn
q2m

with the same rank distribution, then C⊥E and

D⊥E have the same rank distribution. Indeed, if Ai(C) =
Ai(D) for all i = 0, . . . , n, then Ai(λB(C)) = Ai(λB(D)).
By Lemma 3 we have Bi(λB(C)⊥E ) = Bi(λB(D)⊥E ) for all
i = 0, . . . , n. Since λB(C ′)⊥E and C ′⊥E have the same rank
distribution for all Fq2m -linear code C ′ ≤ Fn

q2m
, we have

Bi(C⊥E ) = Bi(D⊥E ) for all i = 0, . . . , n. On the other
hand, by Lemma 9 we have that C and C (qm) have the same
rank distribution. Moreover C⊥H = (C (qm))⊥E . Therefore
C⊥E and C⊥H have the same rank distribution. Hence the
MacWilliams Identities are valid for Fq2m -linear Hermitian
rank metric codes as the Corollary 2 also shows.

In order to establish similar results to those given in
Lemma 3, Remark 2 and Remark 6, for Fq2 -additive codes
in Fn

q2m
, we define a new inner product, the trace Euclidean

product 〈·, ·〉TE .
Definition 4: We define the trace Euclidean inner product

of v = (v1, . . . , vn) ∈ Fn
q2m

and u = (u1, . . . , un) ∈ Fn
q2m

as

〈v, u〉TE = TrFq2m/Fq2

(
n∑
i=1

viui

)
∈ Fq2 .

The trace Euclidean product 〈·, ·〉TE gives rise to a non-
degenerated Euclidean form. Moreover, we have the follow-
ing result, whose proof is similar to that of Theorem 3.
Theorem 5: Let C ≤ Fn

q2m
be an Fq2 -additive code, B and

B∗ dual bases of Fq2m over Fq2 . The following hold:

λB∗ (C
⊥E ) ≤ λB∗ (C

⊥TE ) = λB(C)
⊥E .

In particular, if C ≤ Fn
q2m

is an Fq2m -linear code, we have

λB∗ (C
⊥E ) = λB∗ (C

⊥TE ) = λB(C)
⊥E .

Corollary 3: Let C and D be two rank Fq2 -additive rank
metric codes in Fn

q2m
with the same rank distribution. Then

C⊥TE and D⊥TE have the same rank distribution.
Proof: Let Ai(C) = Ai(D) for all i = 0, . . . , n. Then

Ai(λB(C)) = Ai(C) = Ai(D) = Ai(λB(D)). Therefore by
Lemma 3 we have Bi(λB(C)⊥E ) = Bi(λB(D)⊥E ). Moreover,
by Theorem 5 we have Bi(C⊥TE ) = Bi(λB∗ (C⊥TE )) =
Bi(λB(C)⊥E ) for all i = 0, . . . , n. Similarly Bi(D⊥TE ) =
Bi(λB(D)⊥E ) for all i = 0, . . . , n.

�
Remark 7: Let C ≤ Fn

q2m
an Fq2 -additive code. Since

C and C (qm) have the same rank distribution and C⊥TH =
(C (qm))⊥TE , then by Corollary 3, C⊥TE and C⊥TH have
the same rank distribution. In particular, the MacWilliams

Identities are valid for Fq2 -linear Hermitian rank metric
codes as we already know from Corollary 2.

VI. CONCLUSION
In this paper we study Fq2 -additive and Fq2m -linear codes
in the ambient spaces Fn

q2m
and (Fq2 )n,m endowed with Her-

mitian forms and suitable rank metrics. We extend many
results for such codes in the literature obtained for Euclidean
forms to Hermitian forms. In order to study the dual codes
with respect to Hermitian forms, we introduce the concept
of a qm-self dual basis of Fq2m over Fq2 and we completely
characterize them. We obtain many connections in between
these codes in the ambient spaces Fn

q2m
and (Fq2 )n,m and

their Hermitian duals. As consequences, we obtain results
on Hermitian LCD, self-dual and self-orthogonal codes in
both of these ambient spaces. Furthermore we obtain Hermi-
tian MacWilliams Identities for Fq2 -additive and Fq2m -linear
codes endowed with Hermitian form in these ambient spaces.

For future studies, it would be interesting to construct opti-
mal Hermitian LCD and self-dual codes in Fn

q2m
and (Fq2 )n,m

with the corresponding rank metrics systematically for non-
trivial parameters. These codes have potential applications in
many areas including network coding, symmetric cryptogra-
phy, and code-based cryptography. Hence it is worth finding
fast decoding algorithms for these codes. Also it natural to
expect designs of countermeasure protocols for side-channel
attacks on cryptographic systems using these rank metric
codes, which require further investigation.
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