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ABSTRACT As rapid decision making in business organizations gain in popularity, the complexity and
adaptability of extract, transform, and load (ETL) process of near real-time data warehousing has dramati-
cally increased. The most important part of near real-time data warehouse is to feed new data from different
data sources on near-real-time basis. However, this new data is not in the format of the data warehouse
therefore, it needs to be transformed into the required format by using transformation algorithms which is
essential part of ETL process. A semi-stream join algorithm is required to implement this transformation,
for this purpose a HYBRIDJOIN (hybrid join) algorithm has been presented in the literature. However,
major design issue with this algorithm is that it uses a single buffer to load the disk partitions and therefore,
the algorithm has to wait until the next disk partition overwrites the exiting partition in the disk buffer.
As the cost of loading disk partition into disk buffer is the major cost of overall algorithm processing
cost, this leaves the performance of algorithm sub-optimal. Moreover, existing approaches only considering
the oldest key join attributes for finding the matches with master data and maintaining the Queue of key
join attribute. However, performance can be improved if recent and oldest attributes process in parallel.
This article addresses the limitation of HYBRIDJOIN by presenting two optimized new algorithms named:
Parallel-Hybrid Join (P-HYBRIDJOIN) and Hybrid Join with Queue and Stack (QaS-HYBRIDJOIN).
Proposed algorithms aim to reduce major processing cost that is disk I/O as well as to increase number
of matching stream tuples. Both of these algorithms perform significantly better in terms of throughput and
number of matching tuples as compared to existing approaches. Performance analysis and cost model for
proposed algorithms show the best performance using intermittent stream data under limited resources.

INDEX TERMS Near-real-time data warehouse, semi-stream join, optimized hybrid join, queue and stack.

I. INTRODUCTION
Business world has become the global village with many
companies competing with one another to improve their
resource management and business intelligence on basis of
real-time data warehouse (RTDW) [1]–[3]. Decision support
systems are dependent on RTDW, Enterprise Service Bus
(ESB) [4] applications and big data [5]: a repository of
complex and large data that can be analyzed for decision
making. It is difficult for common business applications to
process such data [6] on real-time basis. Main challenge in
real-time big data is processing of data from different sources
which can cause unexpected and unknown faults in infor-
mation system if not handled properly [7]. These faults can
be removed by using emerging techniques that can process
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the real-time big data efficiently and effectively. Business
intelligence is dependent on latest data warehouse technology
that is near real-time data warehouse [8]. The growing need
of reporting and analysis emerge the idea of RTDW which
appears as tool for better business forecasting [9]. Moreover,
as size of historical data is increasing every year for each
company [10]–[12], there is need to perform historical anal-
ysis to improve business progress of the companies [13],
[14]. The general architecture of RTDW consists of three
components.

The first is Data Sources hosting the data production
systems that populate the data warehouse, second is an
intermediate Data Processing Area (DPA) where the clean-
ing and transformation of the data takes place, and last is
Data Warehouse(DW) to load the transformed data. General
architecture of RTDW with three components is presented
in Figure 1.
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FIGURE 1. General Architecture for Near Real-Time Data Warehouse [15].

Many services need to organize data at a scale too large for
a traditional database include: web analytics, social networks
and smart e-commerce [16]. Complexity increases as scale
and demand increase. A different approach is required [17]
as simplicity and scalability not mutually exclusive. Big
data systems utilize many devices executing in parallel to
process and store data, which leads to basic challenges
unfamiliar to most developers [18], [19]. Moreover, these
days big data is considered as the only source for business
intelligence [20]–[22].

Big data needs to be captured in form of data streams.
The coherent continuous collection of attributes is called data
stream which is intermittent in nature with variant velocity
for near RTDW. As industry is moving towards RTDW for
better decisions [6], [23]–[25] where records are extracted
from intermittent stream and master data. These records are
not in the format required by near RTDW, therefore, transfor-
mation phase is required to convert the input data into target
format [26] and then loaded into the data warehouse [27].
For real-time stream transformation, all incoming data rows
of stream need to be kept in memory which appears to be a
big challenge because of fast speed and large volume of the
continuous data [28]–[31]. The data stream arrival rate varies
depending on the nature of business transaction on transaction
outlets. The velocity is high in transaction rush hours while
it is low in working hours of the buyer. Both sources of data
have different arrival rates before transformation, therefore,
risk of stream loss becomes another big challenge [32]. Algo-
rithms designed to join stream with disk data are generally
referred as semi-stream join algorithms. Figure 2 shows the
basic model of semi-stream join process [33].

The data stream management system(DSMS) is the
tool designated for proper data stream management [35].

FIGURE 2. Graphical representation of semi-stream join [34].

Semi-stream data management is considered as an important
area for research where researchers have contributed a lot
for data transformation phase. This transformation is per-
formed during ETL(Extract,Transform,Load) phase of data
warehouse. The joining of semi-stream data remained under
consideration of researchers as this area has evolved in last
decade. This journey was started from processing hundreds of
records per second with exponential raise to process millions
of records per second [32], however, still there is need of
further optimized solutions. Various fields require real-time
semi-stream join operation: DW, risk management, online
shopping, IoT, enterprise resource planning, supply chain
management and, data retrieval and manipulation [36]–[54].

To achieve optimal performance of semi-stream join pro-
cess, loading of disk partitions need to work in parallel to join
operator as well as newest and oldest streams can be given
equal opportunity for join operation. In this paper, we propose
two optimized new algorithms called Parallel Hybrid Join
(P-HYBRIDJOIN) and Hybrid Join with Queue and Stack
(QaS-HYBRIDJOIN) by introducing two disk buffers (work-
ing sequentially/Parallel) and a component called Queue and
Stack which results in finding matches for newest streams
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along with oldest. These approaches minimizes the disk
I/O cost and ultimately improves the service rate.

Later sections present: detailed discussion on problems and
research gaps present in existing semi-stream join algorithms
and, proposed methodology that can help to improve the effi-
ciency of existing joins. The results and discussion presented
in later sections justify how the proposed work is better than
existing work. Future directions may help to make further
improvements.

II. LITERATURE REVIEW
A number of algorithms have been proposed to pro-
cess real-time stream in an efficient way [55]–[63] for
RTDW [64]. During processing stream with disk data,
the data is coming from two sources. From one source data
is coming at quick arrival rate while the other is permanent
disk data coming at slow arrival rate due to high I/O cost.
Algorithms designed for in-memory join of stream with disk
data are known as semi-stream algorithms [54], [65]–[78].
Working and limitation of most relevant semi-stream algo-
rithms have been presented in this section.

A parallel semi-stream similarity join (S3J) algorithm
proposed by [79], combines a disk-intensive queue-based
semi-stream join approach with a CPU-intensive similarity
matching algorithm to utilize disk and CPU optimally.This
algorithm supports parallel execution to utilize modern
multi-core CPUs and minimizes the memory footprint. Fre-
quent join of online stream of updates and a disk-resident
table of historical data are the basis for ETL transformations.
In this context, another innovative Semi-Streaming Index
Join (SSIJ) algorithm proposed by [80], that increases the
efficiency of join operation by buffering online stream of
updates and then accordingly selecting how to best amortize
expensive disk sought for blocks of the stored relation among
a large number of stream tuples. Furthermore, SSIJ appears to
be able to adjust to variable attribute of the stream (i.e. arrival
rate, data distribution) by dynamically tuning of memory
between the cached relation blocks and the stream.

The Real-time Transport Protocol (RTP) and its related
standards defined a re-transmission packet format [81] and a
way to give feedback via Negative ACKnowledge (NACK)
packets for data that had been lost. In one embodi-
ment, a unicast RTP repair session was associated with a
main Source Specific Multicast (SSM) multicast session.
Real-time Transport Control Protocol (RTCP) NACK pack-
ets were then used for feedback to a SSM feedback target
address. This dynamically instantiated unicast RTP repair
for multicast sessions. The repair scheme could be used
for repairing multicast channels or joining new multicast
channels.

Another semi-stream join algorithm, Indexed Nested Loop
Join (INLJ) [66], has the ability to work with intermittent
data but with low throughput. MESHJOIN (Mesh join) algo-
rithm [53], [54] appears to process stream data with high
throughput. It divides the permanent disk data R into partition
generating efficient results for continuous stream at high

speed. This algorithm uses limited memory and is a candidate
for a resource-aware system setup. However, performance
of MESHJOIN always remain inversely proportional to the
size of disk based master data set leaving this algorithm
sub-optimal. Moreover, MESHJOIN is not very efficient in
managing the intermittent stream.

An efficient algorithm R-MESHJOIN (R-Mesh Join) [65]
has been introduced to overcome the inadequate memory
distribution of MESHJOIN by introducing a new memory
architecture. In this memory architecture the size of the per-
manent disk data would not affect the disk buffer size. It sim-
plified the complex architecture of MESHJOIN by remov-
ing dependency between disk buffer and size of permanent
data R. However, it is not efficient in dealing with variable
speed arrival rate of stream data. Secondly the disk I/O cost
to load permanent data is also high.

A new approach for stream processing has been intro-
duced in another algorithm CACHEJOIN, which performed
better than MESHJOIN if parts of non-stream disk based
master data set are used with different frequencies. In order
to quantify the performance differences, it compares both
algorithms using a synthetic data set with a known skewed
distribution [82].

Another stream join processing model has been introduced
by [83] which is efficient for batch processing and also
handling network delay issues. Two distributed join meth-
ods have been introduced in this model: (1) simple join,
in which full tuples forwarded to the query processing site and
(2) semijoin-based join, in which partial tuples have been
forwarded.

Map Reduce stayed an important method that dealt with
semi-structured or unstructured big data files, however,
querying data mostly needed a Join procedure to accumulate
the desired result from multiple huge files [84]. Indexing in
other hand, remains the best way to ease the access to specific
record(s) in a timely manner. Partition-based algorithm added
its contribution to the intermittency in streams of join algo-
rithm [85]. The algorithm has been focusing on the analysis
of stream records backlog.

Another recently developed algorithm, block-nested loop
join (BNLJ) [86], eliminates needles intermediate writes on
disk saving the buffer sizes. However, this approach results in
additional processing time.

Flexibility and self-adaptivity are important to real-time
join processing in a parallel shared-nothing environment.
Join-Matrix is a high-performance model on distributed
stream joins and supports arbitrary join predicates [87].
Extensive experiments have been done on different kind of
join workload and showed high competence comparing with
baseline systems on benchmark. Matrix-based scheme (Join-
Matrix) could perfectly support distributed stream joins,
especially for arbitrary join predicates, because it guar-
anteed any tuples from two streams to meet with each
other [88]. However,the dynamics and unpredictability fea-
tures of stream required quick actions on scheme chang-
ing. Otherwise, they might lead to degradation of system
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throughput and increment of processing latency with the
waste of system resources, such as CPUs and Memories.

Famous semi-stream join algorithm HYBRIDJOIN and its
versions [89]–[93] perform significantly efficient for inter-
mittent stream data. Detailed working of all versions of
HYBRIDJOIN is presented in the following section. How-
ever, join operation in these approaches need to wait for the
time spend on loading the disk buffer partition in memory and
newest stream also waits for its match as algorithms consider
only oldest streams first. We overcome these gaps in this
study by developing two modifications in existing versions
of HYBRIDJOIN algorithms. This article develops and eval-
uates P-HYBRIDJOIN and QaS-HYBRIDJOIN algorithms
improving throughput considerably.

III. EXISTING VERSIONS OF HYBRIDJOIN AND PROBLEM
DEFINITION
HYBRIDJOIN [89] is a robust algorithm that has been partic-
ularly designed to deal with bursty stream data, combining the
two approaches MESHJOIN and INLJ. unlike MESHJOIN,
throughput of HYBRIDJOIN is not inversely proportional to
disk size and algorithm uses indexes to access disk partitions,
consequently perform better.

According to market survey the data coming in stream
is 80/20 nature. The 20 percents of the products are
generating 80 percents of the stream data. This survey
brought an idea of further improving the performance of
the algorithm by keeping the frequent data into the mem-
ory. X-HYBRIDJOIN(Extended Hybrid Join) [90] has been
designed to support this idea, which shows better perfor-
mance as compared to HYBRIDJOIN. The X-HYBRIDJOIN
Join divided the disk buffer into two parts, one contained the
most frequently matched records while the other part loads
the disk data into it by discarding the previous data. There are
two parts of the disk buffer: swappable and non-swappable.
Non-swappable contains the matched records whereas swap-
pable loads at each iteration of the algorithm probing phase.

Optimised X-HYBRIDJOIN [91] algorithm assumed that
the disk data accessing is done on the frequency of data.
Which is not the case at every iteration because when the data
is accessed from unsorted index of the data, the performance
of the algorithm decreases. This algorithm introduced two
phases: stream probing phase and disk probing phase. Stream
probing phase deals with frequently occurring stream unlike
X-HYBRIDJOIN resulting in better performance.

A variant of X-HYBRIDJOIN is Tuned X-HYBRIDJOIN
[92], assigns optimal division of memory to the components
of X-HYBRIDJOIN. After proper tuning, this algorithm per-
forms significantly better than X-HYBRIDJOIN.

Optimised HYBRIDJOIN [93] has further improved the
performance with introduction of two buffers for loading
from master data in parallel. It has improved performance
because of less wait time by algorithm while one buffer is
in probing phase the second buffer is loading phase from
master data. Consequently, second buffer is in probing phase
while first buffer goes for loading phase. This way the disk

FIGURE 3. Memory Architecture for Optimized HYBRIDJOIN.

loading cost is decreased, however the algorithm works on
an idea of oldest join key attribute, the key attribute remain
longer in the memory have more matches in probing phase.
Memory architecture for Optimised HYBRIDJOIN is shown
in Figure 6.

It has been identified that, the recent join attribute can
have chances of being more matches in probing phase.
This appeared to be most neglected concept in all previous
semi-stream join algorithms which needs to be addressed.
Our proposed methodology addresses identified gap by intro-
ducing a new component of Stack and Queue in a new algo-
rithm QaS-HYBRIDJOIN. Proposed algorithm takes both
fields as join key attribute the most recent and oldest key
attribute. Our experimental results show that service rate is
improved significantly in case of Qas-HYBRIDJOIN.

Comparison of existing versions of HYBRIDJOIN in terms
of memory components for streammanagement and disk data
loading, tuning and service rate is shown in Table 1. Service
rates for one memory setting (i.e, combination of 4 million
disk tuples with 50MB memory reserved for stream place-
ment and join process) for relevant algorithms have been
presented in Table 1.
Most of the versions of HYBRIDJOIN use only one disk

buffer making partition loading process sub-optimal. Further-
more, nearly all algorithms have been evaluated under limited
resources except Optimised X-HYBRIDJOIN. Comparative
analysis presented in Table 1 clearly shows that existing
contributions are novel and accurately perform better than
previous studies. The next sections present the proposed
methodology with the experimental results and discussion.

IV. PROPOSED METHODOLOGY
In this modification, proposed P-HYBRIDJOIN algorithm
introduces the new disk buffer (db2), join window now
having two disk buffers (db1 and db2) working in paral-
lel for join operation. In addition to that, a new compo-
nent QaS has been introduced making join operation fur-
ther optimized with the development of QaS-HYBRIDJOIN.
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TABLE 1. Comparison of all Versions of HYBRIDJOIN (Semi-stream join algorithm).

Parallel working of probing and loading significantly
improves the service rate. Figure 4 shows the context model
of proposed algorithms. Memory architectures, work flows
and algorithms of proposed approaches are presented in the
following subsections.

FIGURE 4. Context Diagram of QaS-HYBRIDJOIN.

A. P-HYBRIDJOIN ARCHITECTURE
Memory architecture for P-HYBRIDJOIN is presented
in Figure 5. During the probing phase of db1, this algorithm
loads db2 into the memory. After it finishes probing phase
with db1, db2 becomes available to the join operator. Dur-
ing this cycle, the join operator performs probing with db2,
meanwhile algorithm loads the next partition into db1. This
way join operation doesn’t need to wait for loading of next
partition into memory.

FIGURE 5. Memory Architecture for P-HYBRIDJOIN.

B. QaS-HYBRIDJOIN ARCHITECTURE
In order to pick oldest and recent stream tuples for
join operation, a new component has been introduced in
QaS-HYBRIDJOIN: queue and stack (QaS), replacing the
queue (Q) component of the P-HYBRIDJOIN as shown
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in Figure 6. QaS-HYBRIDJOIN shares the remaining com-
ponent from P-HYBRIDJOIN. This newmemory component
QaS is implemented as double link list. After including QaS,
db1 is set to use the oldest index attribute key from Q, while
db2 uses the latest index attribute key from another double
link list which behaves like stack named as S. If a match is
found, join process is applied and the output is generated.
It can be stated that the oldest attribute of QaS is used as an
index to fill db1 and the most recent attribute of QaS will be
used as an index to fill db2.

FIGURE 6. Modified Component for QaS-HYBRIDJOIN.

Three separate sub-programs have been executed in par-
allel, one is the stream generator that produces the stream
of continuous records on zipfian’s law of distribution
(80/20 rule). The stream buffer S is filled from the stream
generator that is used to fill QaS. QaS is working in hybrid
nature: in the form of queue as well as stack. Hash table H
also has been filled from the stream buffer S. In the mean time
the join operation executes the join window, also probing the
current disk buffer either db1 or db2 with hash table H.

Figure 7 shows the flow chart of disk buffer loading
window in the presence of QaS of proposed algorithm.
The QaS-HYBRIDJOIN algorithm contains two disk buffers
db1 and db2 with the new memory component QaS as double
link list in data structure. The db1 has used the oldest index
attribute key from double link list as queue Q, while the
db2 has used the latest index attribute key from double link
list as stack S. db1 and db2 data is transformed and deleted
with join operation in Join Window.

Figure 8 presents the flow chart of Join Window of
QaS-HYBRIDJOIN. The current buffer is either db1 or
db2 depending on recent disk data loading. The probing phase
start matching and deletion of data loaded in disk loading
phase and set the state of the buffer to busy.

The completion process of probing phase sets the buffer
state to empty. The Empty buffer are available for data load-
ing from disk partition R.

Data flow diagram of QaS-HYBRIDJOIN is shown
in Figure 9. It is clearly depicted from Figure that
db2 is in the process of data loading from master data

Relation R while db1 is in join window. similarly, the db2 is
in join window after the db1 finishes data join and start doing
data loading. After adopting this new architecture, proposed
QaS-HYBRIDJOIN algorithm does not put join operation on
un-necessary wait unlike other Hybrid Join algorithms.

C. P-HYBRIDJOIN ALGORITHM
Two algorithms have been designed to fully implement pro-
posed idea. Algorithm 1 shows the working of Join Window
for P-HYBRIDJOIN.

Algorithm 1 P-HYBRIDJOIN/QaS-HYBRIDJOIN
1: procedure JOIN WINDOW

2: Input: Amaster data R with an index on join attribute
and Stream of updates S

3: Output: S on R
4: Parameters: w records of S and a partition of R
5: Method:
6: hs← w
7: while true do
8: if stream available then
9: Read: w records from S and load them in H,

load keys of records in Q
10: w← 0
11: end if
12: Check: available disk buffer (db1) or (db2)
13: Load: current disk buffer (db1) or (db2) for prob-

ing phase of H
14: Mark: current disk buffer (db1) or (db2) to busy

state
15: for each record r in chosen partition do
16: if r ∈ H then
17: Output: r on H
18: Delete: matching records fromH andQ or

QaS
19: w = w + no of matching records in H
20: end if
21: end for
22: Mark: current disk buffer (db1) or (db2) to empty

state
23: end while
24: end procedure

Line numbers 8-11 from Algorithm 1 show that if stream
of Q is available, load w records from stream to the H and
set w to zero. Line numbers 12-14 present that any one of
the two disk buffers is available for join window, then the
available buffer either db1 or db2 will be loaded to current
buffer and buffer state will be set to busy. Lines 15-21 show
that the algorithm iterates and matches one by one r from
current buffer in H and if the r is found in H, it deletes r from
H and Q, then adds the total matching records to w. In line 22
state of db1 or db2 is set to empty. While loop shows the
unlimited execution of algorithm as streams are continuously
generating.
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FIGURE 7. Flow Chart of Disk Buffer Loading Window with queue and stack (QaS).

FIGURE 8. Flow Chart of Join Window with Queue and Stack(QaS).

Algorithm 2 presents the working of Disk Buffer Loading
Window of P-HYBRIDJOIN. Lines 7-12 show that algo-
rithm checks for empty disk buffer either db1 or db2. If the

empty buffer is db1, it selects the oldest join key attribute
from Q and loads partition p from master data R into db1 and
sets the db1 state to full. Alternatively Lines 13-18 are used
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FIGURE 9. Data Flow Diagram QaS-HYBRIDJOIN.

Algorithm 2 P-HYBRIDJOIN
1: procedure DISK BUFFER LOADING WINDOW

2: Input: A master data R based on oldest index from Q
3: Output: (db1) or (db2)
4: Parameters: a partition of master data R
5: Method:
6: while true do
7: if (db1) state is empty then
8: Get: the oldest key attribute as index from Q
9: Mark: (db1) state to busy

10: Load: partition p from R in (db1) on oldest
key attribute

11: Mark: (db1) state to full
12: end if
13: if (db2) state is empty then
14: Get: the oldest key attribute as index from Q
15: Mark: (db2) state to busy
16: Load: partition p from R in (db2) on oldest

key attribute
17: Mark: (db2) state to full
18: end if
19: end while
20: end procedure

to show that if the empty buffer is db2 then it selects the
oldest join key attribute from Q and loads disk partition p
from master data R. and sets the db2 state to full.

Algorithms 1 and 2 work in parallel for two cases, In the
first case while db1 is in Disk Buffer Loading Window,
meanwhile the db2 is in Join Window of P-HYBRIDJOIN
and opposite for other case.

D. QaS-HYBRIDJOIN ALGORITHM
Although use of two disk buffers in P-HYBRIDJOIN
improves disk I/O cost significantly, it is not applicable
for recent and oldest semi-stream join operation simul-
taneously. To enable join operation for recent and old-
est keys together we proposed another improvement called
QaS-HYBRIDJOIN. Algorithm 1 shows the working of Join
Window for QaS-HYBRIDJOIN where keys of records from
S have been loaded into QaS unlike Q. Similarly line 18
shows the deletion of matching records from QaS.

Algorithm 3 presents the working of Disk Buffer Loading
Window of QaS-HYBRIDJOIN. Lines 7-12 show that algo-
rithm checks for empty disk buffer either db1 or db2. If empty
buffer is db1, it selects the oldest join key attribute from QaS
and loads partition p from master data R into db1 and sets the
db1 state to full. Alternatively Lines 13-18 are used to show
that if the empty buffer is db2 then it selects the recent join
key attribute from QaS, loads disk partition p from master
data R and sets the db2 state to full.

Both algorithms work in parallel for two cases,
In the first case while db1 is in laoding phase of
QaS-HYBRIDJOIN algorithm, meanwhile the db2 is in prob-
ing phase of QaS-HYBRIDJOIN and inversely for other
case.
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FIGURE 10. Disk I/O Cost Comparison of Improved Algorithms with Two Existing Variants(2 million tuples of R).

FIGURE 11. Service Rate vs Master Data.

V. RESULTS AND DISCUSSION
Experiments performed using proposed P-HYBRIDJOIN
and QaS-HYBRIDJOIN in terms of memory and
processing show significant improvement as compared
to original HYBRIDJOIN. The following sections show
the experimental setup and cost comparison of proposed
algorithms with two existing variants: HYBRIDJOIN and
Optimised-HYBRIDJOIN.

A. EXPERIMENTAL SETUP
Proposed algorithms have been tested using the following
hardware and data specification.

FIGURE 12. Service Rate vs Skewed Stream Data.

1) HARDWARE SPECIFICATION

The experiments were performed on the Core i7 hp pavilion
laptop with 16 GB DDR. The maximum memory we had
allocated to our algorithm was 250 MB. JAVA programming
language is used for implementing proposed algorithm. Some
of the built-in functions of JAVA were used for calculating
the processing time i-e nanoTime(). The hash table in JAVA
did not allow to store multiple records for one key value.
Therefore, we have used the ApacheMulti-Hash-Map for this
purpose and for parallel process execution JAVA threads were
used.
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Algorithm 3 QaS-HYBRIDJOIN
1: procedure DISK BUFFER LOADING WINDOW

2: Input: A master data R based on oldest and recent
indexes from Queue and Stack QaS

3: Output: (db1) or (db2)
4: Parameters: a partition of master data R
5: Method:
6: while true do
7: if (db1) state is empty then
8: Get: the oldest key attribute as index from

QaS
9: Mark: (db1) state to busy

10: Load: partition p from R in (db1) on oldest
key attribute

11: Mark: (db1) state to full
12: end if
13: if (db2) state is empty then
14: Get: the recent key attribute as index from

QaS
15: Mark: (db2) state to busy
16: Load: partition p from R in (db2) on recent

key attribute
17: Mark: (db2) state to full
18: end if
19: end while
20: end procedure

FIGURE 13. Service Rate vs Total Memory.

2) DATA SPECIFICATION
QaS-HYBRIDJOIN
algorithm has been tested with various sizes for the master
data R. Experiments have been executed with 0.5 million,
1 million, 2 million, 4 million, and 8 million records of
master data R. Experiments usedmultiplememory allocation:
50MB, 100MB, 150MB, 200MB and 250MB of memory.
Change in total memory alters the size for memory com-
ponents. According to this setup, size of hash table H and
QaS is directly proportional to the size of total memory.
An increase in the size of total memory increases the size

FIGURE 14. Processed Record vs Total Memory.

of QaS and H. However, memory buffers remain of fixed
size of 1700 records where each record is of 120 Bytes.
Stream generator designed for experiments generates random
number of streams, also controlling delays. Component H has
the fudge factor of 4.8 to handle skewed partitions.

3) SYSTEM OF MEASUREMENT
The performance of the algorithms has been measured by
analyzing the number of records processed per second.
This term is called service rate and denoted as µ. The
results have been considered for evaluation only after exe-
cution of few loop iteration. For perfection of results we
have taken 3 readings for each testing model and consid-
ered the third measurement for evaluation as model gets
into flow by then and supposed to reflect more mature
readings.

B. PERFORMANCE EVALUATION
We mainly evaluate the performance of proposed algo-
rithms in terms of disk I/O cost, service rate, different sized
disk/master data, skewed stream data, various sized mem-
ory budgets, numbers of matching records and cost valida-
tion(measured vs estimated).

1) DISK I/O COST
The major focus of this research is to improve the disk
I/O cost of HYBRIDJOIN by developing new algorithms:
P-HYBRIDJOIN and QaS-HYBRIDJOIN. The goal seemed
to be achieved as proposed algorithms show significant
reduced I/O cost as compared to original HYBRIDJOIN by
introducing two disk buffers (db1, db2) and QaS as shown
in Figure 10. Time consumed in seconds for disk I/O cost dur-
ing various iterations have been measured for four mentioned
algorithms. On total of 9400 iterations were recorded when
algorithms were executed under 50 MB of total memory and
2 million records in master data R. Total eight readings were
observed for each mentioned algorithm showing significant
reduction in I/O cost in case of proposed algorithms as iter-
ations grow. It can be further noted that proposed algorithms
show consistent behaviour for growing iterations (unlimited
execution of join window).
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FIGURE 15. Cost Validation of Measured vs Estimated.

2) GROWING MASTER DATA
In our first experiment, we tested proposed algorithms for dif-
ferent sizes of master data R to achieve high service rate over
growing master data R. Figure 11 plots the service rate over
master data R for various sizes: 0.5million tuples till 8million
tuples, twice the size pattern. Note that service rate tends
to be decreased steadily when master data R size increased
as search of required key takes longer time for bigger sized
master data. Figure 11 clearly shows that P-HYBRIDJOIN
performs better than existing variants of HYBRIDJOIN for
all sizes of master data, whereas QaS-HYBRIDJOIN outper-
forms the rest.

3) SKEWED STREAM DATA
During second experiment we tested P-HYBRIDJOIN and
QaS-HYBRIDJOIN, and varied the value of the Zipfian expo-
nent e to evaluate stream distribution in real-life applications.
Figure 12 shows that both improved algorithms perform sig-
nificantly better than existing HYBRIDJOIN and Optimised-
HYBRIDJOIN.

4) VARIOUS MEMORY BUDGETS
Figure 13 plots the service rate for different memory budgets:
50MB till 250MB with intervals of 50MB. This experiment
was conducted to study the behaviour of improved algorithms
under limited memory. Note that service rate keeps improv-
ing if memory is increased. Figure 13 zooms in the details
of differences of HYBRIDJOIN, Optimized-HYBRIDJOIN,
P-HYBRIDJOIN and QaS-HYBRIDJOIN.

5) NUMBER OF PROCESSED/MATCHING RECORDS
Figure 14 compares the number of processed records during
execution of four mentioned algorithms for different memory
budgets. This Figure clearly shows that QaS-HYBRIDJOIN
processed more number of records as compared to other

variants of HYBRIDJOIN. Additionally, it can be observed
that number of processed streams will be significantly
increased if more memory is reserved for components of
proposed algorithms.

6) COST VALIDATION
In order to validate the performance of improved algorithms,
we performed cost validation by comparing the measured
and experimental costs of both algorithms. In the case of
the predicted cost, we first determined the cost for one loop
iteration. Figure 15 presents the comparisons of both costs for
improved algorithms. In this Figure it can be observed that
the predicted cost closely resembles the measured cost which
validates the correctness of our implementations.

7) SUMMARY
Above experiments indicate that our two improved algo-
rithms P-HYBRIDJOIN and QaS-HYBRIDJOIN exhibit bet-
ter service rate and more number of processed records in a
unit time under limited resources.

VI. CONCLUSION
The key contribution of this research is in the field of
ETL for accessing disk based master data in an efficient
way to improve the service rate by decreasing the I/O
cost. We proposed two new improved HYBRIDJOIN algo-
rithms: P-HYBRIDJOIN and QaS-HYBRIDJOIN that have
decreased the I/O cost and increased the number of processed
records. Initially, we have made the process of join and disk
loading parallel to each other. Due to this approach, interde-
pendent processes of disk buffer loading phase and probing
phase are no more dependent on each other. By introducing
two disk buffers for loading of disk partitions significantly
reduced disk I/O cost. Consideration of oldest key attribute
for join operation may reduce the number of matches in
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existing variants of HYBRIDJOIN. This limitation has been
addressed during second contribution of this study. Involve-
ment of recent key attribute parallel to oldest key attribute
for the join operation helped finding more matches. There-
fore we introduced a new component queue and stack (QaS)
by replacing the existing component queue Q. This new
component has increased the performance by three times as
compared to the original HYBRIDJOIN. We have made the
implementations of all algorithms and evaluations publicly
available to facilitate reproducible comparisons and further
investigation of semi-stream join algorithms.

VII. FUTURE DIRECTION
This article has focused the equijoin for two different data
sources which can also be implemented on non-equijoin
scenarios like Internet of Things (IoT), smart devices,non
uniform data streams and blockchain data sources. More-
over, proposed solutions can be used for images data streams
for photogrammetry images of archaeology, defense, and
Unnamed Ariel Vehicles (UAVs) for coastal changes. Pro-
posed approaches can also be used for mulit-valued attributes
data like motor cycle spare parts with different models, size,
weight, and quality. The most of the join algorithms worked
with text data, however, an images data streams of UAVs
can be considered in future research with limited memory
architecture for depth map generation and 3D Models.
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