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ABSTRACT The rapid growth of the Internet of Things (IoT) has accelerated strong interests in the
development of low-power wireless sensors. Today, wireless sensors are integrated within IoT systems to
gather information in a reliable and practical manner to monitor processes and control activities in areas such
as transportation, energy, civil infrastructure, smart buildings, environment monitoring, healthcare, defense,
manufacturing, and production. The long-term and self-sustainable operation of these IoT devices must be
considered early on when they are designed and implemented. Traditionally, wireless sensors have often
been powered by batteries, which, despite allowing low overall system costs, can negatively impact the
lifespan and the performance of the entire network they are used in. Energy Harvesting (EH) technology
is a promising environment-friendly solution that extends the lifetime of these sensors, and, in some cases
completely replaces the use of battery power. In addition, energy harvesting offers economic and practical
advantages through the optimal use of energy, and the provisioning of lower network maintenance costs.
We review recent advances in energy harvesting techniques for IoT. We demonstrate two energy harvesting
techniques using case studies. Finally, we discuss some future research challenges that must be addressed to
enable the large-scale deployment of energy harvesting solutions for IoT environments.

INDEX TERMS Energy efficiency, energy harvesting, Internet of Things, IoT device, wireless sensor
networks.

I. INTRODUCTION
Fifteen years ago, the International Telecommunications
Union (ITU) published its first report on the Internet of
Things (IoT) [1]. The IoT paradigmwas first defined as a new
dimension added to the world of Information and Communi-
cation Technologies (ICTs) that allows making connections
for anyone and anything, anytime and anywhere to create
a new dynamic network of networks [1]. Today, IoT is no
longer an emerging trend. It has become one of the most
important technologies of the current century with appli-
cability in many industries such as transportation, energy,
civil infrastructure, smart buildings, environment monitoring,
healthcare, defense, manufacturing, and production. IoT con-
tinues to grow. Experts predict that, by 2025, about 22 billion
IoT devices will be connected to the Internet and will com-
municate in this IoT environment [2].
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The IoT ecosystem has the followingmain components [3]:

• IoT devices (sensors and actuators) are responsible for
collecting data or controlling a certain process.

• IoT connectivity (protocols, gateways) is responsible for
transferring data in the online, cyber-physical world.

• The IoT cloud stores data and it is also the place where
decisions are made.

• IoT analytics and data management are responsible for
processing the data.

• End-user devices and user interfaces help to control and
configure the system.

Each of these components must address significant scien-
tific and technological challenges for achieving efficient and
scalable implementations. For example, the energy efficiency
paradigm associated with IoT devices must be considered
early on during their design phase [4]. Enabling a seam-
less flow of information throughout the IoT ecosystem is
another important challenge because wireless connectivity
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is highly complex, and the fast-evolving wireless standards
contribute to this. The development of new Artificial Intelli-
gence (AI) techniques to analyze huge amounts of data and
make real-time decisions is another major challenge. Also,
security and privacy must be considered because existing
security protocols such as Data Encryption Standard (DES),
Advanced Encryption Standard (AES) and Rivest, Shamir,
and Adelman (RSA), are not suitable for IoT devices due
to their resource (memory, processing power) constraints and
heterogeneity [5]–[7].

We describe the challenge associated with the energy effi-
ciency paradigm for some IoT devices (such as wireless
sensors) below. The IoT vision benefits from the features
of Wireless Sensor Networks (WSNs) [8], [9] and relies on
these systems for gathering data about the environment and
for performing actions following the analysis of the collected
data. IoT uses Internet Protocol (IP) connectivity for assuring
that every one of its components, or ‘‘things’’, has a distinct
address, while WSNs do not necessarily require a connection
to the Internet. However, due to the continuously increasing
power of microelectronics combined with their decreasing
costs, improved power efficiency of hardware technologies
along with better wireless communication protocols, WSNs
have become a vital component of the IoT ecosystem. WSNs
can extend the Internet, or the cyber environment, into phys-
ical spaces [4], [10]. Moreover, IoT and WSN have become
almost inseparable [11], wireless sensor networks being rec-
ognized as a key enabler of IoT [12]. Some of the domains,
wherein IoT technologies have been integrated with WSNs
include healthcare [13], agriculture [14], smart cities [15] and
smart buildings [16], manufacturing [17], and transportation
systems [18]. Figure 1 shows a typical IoT scenario where
data also is collected using WSNs.

FIGURE 1. Typical IoT scenario including Wireless Sensor Networks
(WSNs).

The use of wireless sensor networks has proven to be
beneficial in specific applications where access is difficult,
such as remote locations or on moving parts of machinery
[19]–[22]. Generally, a wireless sensor is made up of four
main components, namely the sensorial part, the processor,
the transceiver, and a power supply, as Figure 2 shows [23].
In general, wireless sensors have limited capabilities in terms
of processing power and storage and must operate on small

FIGURE 2. Wireless sensor (IoT device) components.

amounts of energy because the power source, in most of the
cases is a battery which has limited capacity. Other challenges
encountered in the deployment of solutions that rely on wire-
less sensors include reliable communication, coverage and
deployment issues, security, QoS (Quality of service) assur-
ance, and the efficient management of large amounts of data
[10]. Therefore, the long-term and self-sustainable operation
of wireless sensors (IoT devices) is a critical issue and must
be addressed properly. Energy Harvesting (EH) technology
is an environment-friendly solution that has the potential to
extend the lifetime of these sensors. Energy harvesting refers
to the harnessing of energy from various external sources and
its conversion into electricity.

This work deals with the analysis of energy harvest-
ing techniques suitable for IoT devices. We summarize our
research contributions as follows:

• We motivate why energy harvesting is important for the
IoT ecosystem.

• Based on a comprehensive review of energy harvesting
solutions for IoT, we analyze different techniques to
harvest energy from various sources.

• Wepresent two IoT energy harvesting devices developed
by the authors, along with considerations regarding their
design, implementation, and testing.

We organize the rest of the article as follows. The second
section highlights why energy harvesting is important for IoT.
In this section, we highlight the limitations of using batteries
as the main power source for wireless sensors. The third
section presents an overview on energy harvesting techniques
that can be used in IoT. We present a classification of these
techniques according to the sources from which energy is
harvested energy. We analyze recently proposed energy har-
vesting techniques for IoT. In the fourth section we describe
the energy harvesting models and consumption models that
have been proposed for implementing energy harvesting IoT
devices. We then present two case studies from our previous
works on solar energy harvesting and Radio Frequency (RF)
energy harvesting. We describe the architecture, operation,
and energy characteristics of a solar powered environmental
IoT device based on Bluetooth Low Energy (BLE) commu-
nication. We present a prototype for a BLE-enabled environ-
mental beacon, powered by a RF energy harvesting element
in the fifth section. The sixth section discusses a few technical
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challenges that still need to be addressed on the design
and development of energy harvesting devices even though
progress has been made in recent years on self-powered IoT
devices. Finally, we make some concluding remarks in the
final section.

II. MOTIVATION FOR ENERGY HARVESTING IN IOT
It is desirable for the network lifetime to be as long as pos-
sible. Therefore, energy efficiency and long battery lifetime
are of crucial importance in the design and development
of wireless sensors (IoT devices). However, a battery has
a finite capacity and, even though there have been break-
through developments in communication protocols, operating
systems, and in the implementation of powerful power man-
agement mechanisms, highly efficient MAC (medium access
control) and routing protocols, it will eventually get depleted.
To ensure the operation of the network, costly maintenance
operations for battery replacement must be performed. The
scale of wireless sensor networks coupled with sensor place-
ment, often in inaccessible locations,make thesemaintenance
operations difficult in many cases [24]. The use of batteries
as power supply for wireless devices has other drawbacks
besides their ability to provide power for a finite amount of
time. These include reduced energy densities and leakage,
that discharges the battery evenwhen it is not used.Moreover,
the application space of batteries is limited by the impact
of temperature on their proper operation, extreme conditions
leading to capacity and power losses [25]. Another problem,
that is common to the operation of wireless sensors is the
proper management of short high-current pulses that affect
the capacity and lifetime of batteries [26]. Battery weight
and dimensions directly affect capacity, and their reduction
for achieving small form factor designs will lead to a shorter
operation time for the devices they power. Anothermajor con-
cern is related to the environment because batteries contain
harmful chemicals and toxins that make their disposals more
complex [25], [27] . Although most batteries can be recycled
and many governmental initiatives have been established for
increasing the recycling rates, improvements in this direction
are still necessary [28]. Currently, there is also a general-
ized trend of reducing the environmental impact of informa-
tion and communication technology, and this also applies to
wireless sensors, where the goal is toward the achievement
of sustainable and energy efficient systems [29]. These are
some of the reasons why energy harvesting elements are
included in the design of current wireless sensors. These
energy harvesting components can act as secondary power
sources or can completely replace batteries. The use of energy
harvesting extends mote’s lifetime by replenishing its energy
from an energy source, such as solar cells, vibration or fuel
cells, acoustic noise, or mobile suppliers (robots) [10]. In this
way, the long-term and self-sustainable operation of wireless
sensors, one of the most important issues in the widespread
use of IoT, is assured [29].
Energy harvesting or energy scavenging is the pro-

cess through which energy from external sources, such as

mechanical load, vibrations, temperature gradients, or light,
is captured and converted to obtain relatively small lev-
els of power supplied to electronic devices [4], [30]. The
intake of energy from the surrounding environment leads
to a green energy source that replaces primary batteries or
charges secondary cells and represents a cost-effective and
environmentally sound method for wireless devices [31]. The
three components of a common energy harvesting system are
the source (external energy that is collected), the harvest-
ing architecture (mechanisms), and the load (the consumer)
[32]. The energy can be used immediately at the time it
is harvested or it can be stored for future use, resulting in
two main architectures, namely, Harvest-Use and Harvest-
Store-Use [32]. Figure 3 shows the two distinct architectures
for a wireless sensor node with energy harvesting elements.
Depending on the configuration of the system, belonging
to one of the two architectures, its power generation part
includes specific energy harvesting circuits that convert ambi-
ent energy to Direct Current (DC) energy, powermanagement
units that increase the efficiency of power generation and its
use, and storage elements, that can store energy and power
the electronics. All these components and their associated
characteristics and actions are the subject of intense research
efforts, that target the manufacturing of energy-autonomous
wireless sensors when deployed in the IoT environment.

FIGURE 3. (a). Wireless sensor (IoT device) with energy harvesting
architectures: Harvest-Use. Adapted from [32]. (b). Wireless sensor (IoT
device) with energy harvesting architectures: Harvest-Store-Use. Adapted
from [32].

III. ENERGY HARVESTING TECHNIQUES FOR IOT
For energy harvesting several energy sources can be consid-
ered. These can be classified into the following categories
according to the sources from which the harvested energy
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FIGURE 4. Main components of a solar energy harvesting system. Adapted from [47].

comes: ambient, mechanical, human, organic and hybrid. The
ambient energy sources are available in the environment and
can be easily accessed without any costs. These ambient
sources can in turn be divided into the following categories:
solar, Radio Frequency (RF), thermal, wind, and hydro based
energy sources [24]. Vibrations and pressure are mechanical
energy sources that are deployed explicitly in the environ-
ment for harvesting purposes [24]. Humans through their
motion and physiology, organisms, and plants, represent other
sources of energy that can be scavenged. In some cases, the
use of only one energy source is not enough, therefore several
types of energy sources must be combined to reap sufficient
power needed by electronic equipment.

A. AMBIENT ENERGY HARVESTING
Solar and RF are the main ambient energy sources that are
naturally or artificially always present in the environment and
can be considered in making self-powered devices for the IoT
ecosystem. This is why in this work we focus only on these
ambient sources.

1) SOLAR ENERGY HARVESTING
Solar power is the most abundant energy source on earth,
with approximately 173 × 1012 kW of energy produced
continuously, a quantity that exceeds by far the world’s
demand and use [33]. The total energy that reaches the
earth’s surface annually is approximately 3.4 × 1024 J,
an amount that is 7000 to 8000 times higher than the
yearly primary energy consumption of the globe [34]. This
energy is harvested through helio-chemical (photosynthesis),
helio-electrical (photovoltaic converters), and helio-thermal
(thermal energy production, solar water heaters) processes
[35]. The helio-electrical process is based on the Photo-
Voltaic (PV) effect, that can be observed when two dis-
similar materials convert solar rays into DC (direct current)
power when struck by light [24]. The device that is used
for generating electricity from sunlight is the solar cell or
the photovoltaic cell, that is a solid-state electrical junction
device [24]. It is usually built from silicon, using a pro-
cess like the one used in the manufacturing of transistors
and Integrated Circuits (ICs) [34]. The main types of PV
cells, depending on the materials in their composition, are
the mono-crystalline, polycrystalline, and amorphous silicon,
or thin-film cells [34], [36]. The parameter used for compar-
ing their performance is their efficiency which is defined as

the ratio of the maximum output power to the incident light
power under 100 mW/cm2 illumination [37]. The first cat-
egory (mono-crystalline PV cells) has the highest efficiency,
between 15 and 24%, but the corresponding mono-crystalline
PV cells are the most expensive. The second group, made
up of polycrystalline PV cells, has an efficiency between 14
and 20%, while thin-film cells are the cheapest, but with an
efficiency lower than 13.2% [36].

In the context of wireless sensors, the use of solar cells for
harvesting energy from the environment is amature technique
and is the most common mechanism used for prolonging
the lifetime of the power supply [38]–[40]. Solar cells offer
the highest power density, of approximately 15 mW/cm2,
as compared to various other energy harvesting techniques
[41]. Even though solar power is uncontrollable, and the
conversion efficiency is affected by the day-night cycle, sea-
sonal changes, weather conditions, and ambient temperature,
it can be predicted andmodeled so that adequate strategies are
adopted for assuring continuous power to electronic devices
[42]–[46]. To ensure uninterrupted operation (during the peri-
ods such as night and the presence of clouds when ambient
light is not available) of the device powered by solar energy
harvesting components, an architecture that includes storage
elements, as Figure 4 shows, is the most common [47], [48].
The energy storage can be a rechargeable battery, a superca-
pacitor, or a combination of the two with each choice having
its own advantages and limitations. The power is stored when
the amount generated exceeds the consumption of the device,
or when it is in sleep or inactive mode and this stored power
is used when the energy source is missing or when required
by the system [48]. PV cells are a well-known technology
which have been used in a wide range of IoT devices. When
PV technology is used in conjunction with adequate energy
storage, power consumption optimization, appropriate circuit
design and dimensioning, we can develop efficient energy
autonomous devices [49]–[53].

Energy harvesting using PV technology was initially
intended for outdoor use. PV cells have been designed mainly
for generating energy from sunlight with conversion effi-
ciencies in indoor environments having smaller values as
compared to higher conversion efficiencies with outdoor
environments [54], [55]. However, advances in manufactur-
ing processes and circuits along with improved designs of IoT
devices have enabled the deployment of indoor solar pow-
ered systems [56]–[59]. Furthermore, significant progress has
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FIGURE 5. Main components of a RF energy harvesting system. Adapted from [61].

also been made in the development of energy supplies for
moderate power systems, that consume power in the range
of 1 to 10 W, combined with the current popular use of
low-power IoT devices requiring between 10 and 100 mW
[60]. This allows energy autonomous embedded systems to
run data-intensive tasks such as computer vision and facili-
tates the implementation of edge computing technologies.

2) RF ENERGY HARVESTING
Wireless Internet, radio and satellite stations, and digital
multimedia broadcasts are sources of RF or electromagnetic
signals, between 3 kHz and 300 GHz of frequency spectrum,
that can be converted into electrical energy with the help of
an antenna and a rectifier circuit, as Figure 5 shows. This
type of energy exists around us (indoors and outdoors) at
different levels, and it is always available (day or night).
This energy can be retrieved without limit, but it has several
disadvantages such as low density and low efficiency that is
inversely proportional to distance [61]. Based on a review of
the past literature in this area [61]–[63], we found that RF
waves energy harvesting is the best solution in many scenar-
ios when it comes to low-energy IoT devices. The works in
[64], [65] and [66] highlight the potential of using RF Energy
Harvesters (RFEHs) to power IoT devices for environmental
and healthcare monitoring. Other approaches for harvesting
energy from RF signals include opportunistic charging from
nearby smartphones [67], or the sharing of energy between
different wireless systems close to each other [68].

B. MECHANICAL ENERGY HARVESTING
Mechanical vibrations and pressure are energy sources that
surround us, and these sources can be considered in making
self-powered IoT devices used in a wide range of applica-
tions.

1) MECHANICAL VIBRATIONS ENERGY HARVESTING
Mechanical vibrations have a sufficiently high energy density
and, in some cases, where IoT devices are deployed indoors
or in overcast areas, their use can replace solar harvesting
systems. The energy from low frequency (< 100 Hz) or high
frequency (> 100 Hz) vibrations is usually harvested through
piezoelectric, triboelectric, electromagnetic, and electrostatic
energy harvesters.

The Piezoelectric Energy Harvesters (PEHs) work based
on the combination between the mechanical and the electrical

behaviors of certain categories of materials such as crystals
and ceramics [69]. These harvesters do not require exter-
nal voltage sources, have a minimum of moving parts, and
can generate power with voltage levels that can be easily
conditioned (i.e., converted to DC) [70]. This type of har-
vesters benefits from high-power density, simplicity in their
design and fabrication, and they use a wide range of frequen-
cies. Based on the literature review in this area, we found
that the piezoelectric energy harvesting is the most widely
researched. The works in [70]–[74] analyze state-of-the-art
of energy harvesting using piezoelectric generators at micro
and nano scale and highlight that this method is one of the
most promising solutions to power IoT devices. In [75], the
authors used PEHs installed on an actual roadway for five
months, with vehicles traveling at speeds of 10–50 km/h.
The maximum generated power of 2080 mW and a power
density of 20.79 W/m2 were recorded with a vehicle speed
of 30 km/h, and 2381mWand a power density of 23.81W/m2
at a vehicular speed of 50 km/h. Another test presented in [75]
involved the use of eight PEHs installed on the highway rest
area. The results obtained prove the harvesters’ ability to suc-
cessfully operate 24 LED indicators that can ensure drivers’
safety at night, to monitor in real time the conditions inside
the harvesters through their sensors (temperature, strain, and
leakage), and to collect traffic data such as the number of
vehicles passing the harvester zone.

The ElectroMagnetic Energy Harvesters (EMEHs) work
based on the relative motion between a conductor (such as
a coil) and a magnetic field (created by a magnet) in response
to mechanical vibrations. This category of harvesters has
attracted considerable attention due to their ability to generate
high output currents, robustness, and their low-cost designs.
However, they continue to be challenging in terms of poor
transduction properties of planar magnets and the limited
number of induction loops when it comes to IoT small-scale
devices [69].

In [76], the authors proposed a battery-free solution to
power a Bluetooth board with a DC voltage equal to 2 V by
a low voltage vibration electromagnetic converter (with an
open circuit output voltage equal to 1.8 V peak to peak for
a frequency of 24 Hz) as energy source. In [77], the authors
present an EMEH working at low frequency ambient vibra-
tions (< 100Hz). To demonstrate the design, a macro level
prototype was used, and the voltage generated for a frequency
of 50 Hz and 20 turns of copper coil is 20 mV, i.e., 1mV per
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turn. The approach described in [78] presents a viable hybrid
solution which includes an EMEH to collect the energy from
the bridge’s vibrations and ambient wind surges to implement
IoT devices for bridges’ health monitoring. Two prototypes
withmulti-resonant frequencies have been designed. The first
prototype, suitable for narrow band vibration environments,
has a frequency band from 1 to 18 Hz and acceleration levels
below 0.4 g and generates an open circuit voltage of 810 mV
and an optimum power of 354.51 µW. It also produces an
adequate voltage and power levels (up to 7.84 µW) from
wind surges from 0.5 m/s to 9 m/s. The second prototype,
suitable for vibration surroundings, has a frequency band
from 1 to 45 Hz and acceleration levels below 0.6 g and
generates an open circuit voltage of 618 mV and an optimum
load power of 2214.32 µW. It can harvest the power (up
to 9.14 µW) from ambient wind with speed from 0.5 m/s
to 6 m/s.

The ElectroStatic Energy Harvesters (ESEHs) use the
mechanical vibrations to move the charged capacitor plates of
a variable capacitor structure against the electrostatic forces
between the electrodes which are separated by air, vacuum,
or a dielectric material [69]. Unlike PEHs and EMEHs,
ESEHs require a DC voltage (bias voltage) supplied by a
battery to oppositely charge the capacitor plates. ESEHs
generate high output voltage and relatively larger output
power density, provide a wider choice of frequencies at
the low-frequency range, and offer the possibility to build
low-cost devices. In [79] the authors present an ESEH (whose
footprint is as small as 1 cm2) that can reach an output
power of 495 µW sinusoidal vibration. Used in real life
conditions, under impact vibration inside of a tire tread, the
harvester generates an output power of 60 µW on a traveling
speed of 60 km/h. The result of the research contributes
to the evolution of intelligent automobiles in terms of tire
sensors (IoT devices). The work presented in [80] proposes
an ESEH design based on the electrostatic coupling methods.
The results demonstrate that the ESEH can harvest more
than 1 µW from 59 to 148 Hz, and more than 0.5 µW
from 14 to 152 Hz at an acceleration of 2 grms (Root Mean
Square acceleration). It was successfully used to power an
energy autonomous temperature sensor node with a data
transmission beyond a distance of 10 m at 868 MHz.

2) MECHANICAL PRESSURE ENERGY HARVESTING
Mechanical pressure is exploited to implement energy har-
vesters using the piezoelectric method, but to a lesser
extent than vibrations. For example, the work in arti-
cle [81] demonstrates the feasibility of using this energy
source.

C. HUMAN ENERGY HARVESTING
The human body is an energy warehouse which can ensure
alterative power supply through the collection of energy from
heat and motion [82]. This type of energy source can be
exploited by wearable and implantable electronic devices that
are IoT devices used to monitor the activity of healthy people

or the patient’s condition. However, this energy harvesting
approach encounters difficulties due to the following fac-
tors: human motion has a relatively low frequency (typically
under several tens of Hz) and also it is highly stochastic
and irregular; the human body temperature depends on the
daytime rhythm and on the instant disturbance of daily activ-
ities performed [82]. Additionally, the devices must be worn
by people and therefore they must have reasonable size and
weight and must interfere only minimally with the natural
functions of the body [83].

The research conducted in this field has focused on
the extraction of energy from human body focusing on
heat [84]–[91] and biomechanical energy [83], [92]–[96].

1) HUMAN HEAT ENERGY HARVESTING
Human heat energy harvesting is based on the changes of
the human body temperature and uses two types of energy
harvesters: the ThermoElectric Energy Harvester (TEEH)
that utilizes a spatial-temperature gradient and the Pyro-
Electric Energy Harvester (PEEH) which requires a tem-
poral variation in temperature. The work [84] presents an
ultra-low power batteryless energy harvesting Body Sensor
Node (BSN) capable of acquiring, processing, and transmit-
ting ElectroCardioGram (ECG), ElectroMyoGram (EMG),
and ElectroEncephaloGram (EEG) data. The BSN is totally
powered by a commercially available TEEH with about
60 µW output power with 30 mV output voltage. In the
heart-rate extraction mode where the transmitter is duty-
cycled, the sensor node, including regulation, consumes only
19 µW. The authors of [85] describes a hidden TEEH of
human body heat, integrated into an office shirt. It generates
power in the range of 5-0.5 mW at ambient temperatures
of 15 ◦C to 27 ◦C. The tests made highlight that the ther-
moelectric shirt produces more energy during nine months
of use (if worn 10 h/day) than the energy stored in alkaline
batteries of the same thickness and weight. Its technical
properties make it a reliable power supply for low-power
IoT devices used in healthcare. More information on TEEHs
for human heat energy harvesting is provided in [86]–[88].
The temperature variations of the human body are not high
during the day. In this condition, the available heat energy
for PEEHs is limited. This is why when it comes to human
body energy harvesting applications, PEEHs are combined
with other types of energy harvesters. Such an approach
is demonstrated in [89] through a proof of concept of a
hybrid harvester combining piezoelectric and pyroelectric
properties for building self-powered healthy monitoring and
interactive sensing systems. The tests made to determine
the output voltage and current from the pyroelectric effect,
in the absence of any strain, by varying the temperature of
the hot plate to which the sensor is attached from 295 K
to 303K, yielded an output voltage and current pulse peaks up
to 0.1 V and 20 nA respectively. These correspond to a peak
power density of 2 mW / cm−3. Also, the approaches [90],
[91] present viable hybrid solutions which include PEEHs to
implement wearable IoT devices.
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2) BIOMECHANICAL ENERGY HARVESTING
Biomechanical energy available from human motion can be
classified into kinetic energy and elastic energy [82]. Given
the complexity of the physical mechanisms, several types of
energy harvesting devices are used: electromagnetic, elec-
trostatic, piezoelectric, and triboelectric [82], [92]. Based
on our review of the literature [82], [92]–[94] in this area,
we found that a wide range of devices and applications have
been reported. These published studies show that in terms of
power generation, the electromagnetic energy harvesters are
the best candidate to capture the kinetic energy. However, the
benefit that the IoT devices based on smart material-based
energy harvesters offer to those who wear them cannot be
ignored. The authors of [95] described an electromagnetic
energy harvester prototype to efficiently scavenge the kinetic
energy of human limbs swing. In real walking conditions, the
maximum power achieved was 1.84mW and 2.95mW for the
device worn on thewrist and ankle respectively, while the cor-
responding power densities are 573.21 µW / cm3 and 919.01
µW / cm3, respectively. The results confirm that the energy
harvester can entirely power a pedometer at various walking
speeds. Thework in [96] presents the design, implementation,
and evaluation of a fiber-based generator that converts biome-
chanical energy (motions/vibrations) into electricity using
electrostatic mechanisms. The average output power density
of ∼0.1 µW / cm2 makes this generator usable as an effec-
tive building element for a power shirt to trigger a wireless
body temperature sensor system and as a self-powered active
sensor to quantitatively detect human motion.

D. BIOENERGY HARVESTING
There are also more special types of energy harvesting.
For example, the use of plants for generating the energy
required for powering wireless sensors has been investigated
in [97]. The plant-as-battery approach is meant to simplify the
deployment of wireless sensors in agricultural applications,
where the measurement of soil moisture, ambient humidity,
or the monitoring of plants for detecting pests are some of
their common functions. The authors of [97] describe an
approach that exploits the ability of plants to produce electric
signals that are harvested by a power management unit, gen-
erating a power between 800 and 1400 nW during a day. This
energy is sufficient for transmitting an electric signal with a
single switch using low power bistatic scatter radio principles.
The use of soil energy for powering wireless sensors has been
proposed in [98], where the temperature and air moisture are
measured and transmitted using BLE technology to terminal
devices such as smartphones. The soil cell fabricated by the
authors supplies an average power of 60 to 100 µW which
is sufficient to power the BLE sensor so that it can perform
the aforementioned tasks. These approaches can help in the
development of environmentally friendlymonitoring applica-
tions in IoT contexts.

E. HYBRID ENERGY HARVESTING
There are cases wherein the scavenging of energy from a
single source does not generate the amount of power required

for the operation of the IoT device at all times. This challenge
led to the design of systems that include multiple energy
harvesting units, combined with energy storage components
[99]. An example is solar energy harvesting. As we have
mentioned earlier, generating DC from light can assure the
required energy for the operation of wireless sensor nodes.
However, the main drawback of using solar energy is its
reliability, that is affected by weather conditions and spatial-
temporal factors, such as the Sun’s position during the day
[41]. Therefore, hybrid solutions, where solar energy harvest-
ing is complemented by other mechanisms or power supplies
have been proposed [41], [48], [99]. Hybrid energy harvesters
combine circuits that generate power from single energy
sources, such as solar, radio frequency, and vibrations and
can also use multiple types of transduction mechanisms for
converting energy to electricity [100]. By generating a power
output equal to, or larger than the overall consumption of an
IoT device for a certain period, energy-autonomy is achieved.
In [101], the authors presented the design, implementation,
and evaluation of a self-powered WSN node with wind,
solar, and thermal energy. The average generated capacity by
the harvesting mechanisms of 7805.09 J exceeds the energy
consumption of the node, measured at approximately 2972 J,
demonstrating the practicality of the hybrid approach.

Table 1 presents a summary of this section. It describes
each energy source along with the technology used to harvest
it, the advantages and disadvantages of these technologies,
the range of power density obtained, and the application
domains that can get benefit if they use them to develop
self-powered IoT devices.

IV. ENERGY HARVESTING MODELING
The previous section presented the main energy sources and
energy harvesting technologies that can be used to develop
IoT devices. Regardless of the technology used, from the
design phase of IoT devices with energy harvesting charac-
teristics, we must maintain a balance between the generated
and stored power and that which is consumed.

In this context, various energy harvesting models and
consumption models have been proposed for two main
approaches, namely, Harvest-Store-Use andHarvest-Use (not
very common and not suitable for energy sources that are
uncontrollable or unpredictable). The energy harvestingmod-
els used in the Harvest-Store-Use approach take into account
the capacity of the storage element (the harvested energy can
always be stored, or the harvested energy can be stored up to
a limit and the rest is lost). Also, the harvested energy can
be modeled as a deterministic or a stochastic process. If the
incoming energy and its fluctuations are known in advance,
as in the case of predictable energy sources, the deterministic
model is suitable. Otherwise, the stochastic approach is the
right one. However, in each one of the cases, the basic idea for
assuring battery-free operation for IoT devices is to harvest at
least the amount of energy required for the proper operation
of the electronics. Usually, the power source must provide
enough energy for data processing operations, transmission
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TABLE 1. Analysis of Energy Harvesting Techniques.

FIGURE 6. Voltage on the storage element (supercapacitor) during
operation - T and RH Wi-Fi sensor [53].

and/or receive actions, and sleep periods. Figure 6 shows the
voltage on a supercapacitor that is charged by a solar cell
which powers a temperature sensor and a relative humidity
wireless sensor. These sensors send data periodically to a
cloud platform through the Internet. The graph indicates
a favorable situation wherein the solar cell is capable to
charge the storage element with enough energy for assuring
autonomous operation.

As we have previously mentioned, although energy har-
vesting poses many challenges, the majority of these can

be overcome by efficient, energy aware, system designs
[103]. Since the amount of scavenged energy is so low (as
Table 1 shows), in most cases the energy harvesting IoT
device must operate on amounts of power as low as possible.
Several strategies have been proposed for prolonging the life-
time of wireless IoT devices, including duty-cycling [104],
sleep scheduling [105], the reduction of the required trans-
mission distance for IoT devices through efficient clustering
[106], optimized strategies for adaptively setting the rates of
sensor reading and data transmission depending on available
energy [56], or the development of scheduling schemes that
take into account power consumption when waking up the
wireless sensing systems [107]. Some practical techniques
for reducing the energy required by an IoT device, also
used in the development of low-power embedded systems,
include Dynamic Voltage Scaling (DVS) [108], the reduc-
tion of the frequency of the processing unit [109], or the
appropriate selection of peripherals in the device [110] or
of the type of memory involved in data processing and stor-
age (i.e., Flash or RAM -- Random access memory) [111],
the adaptation of transmission power depending on required
communication range and environment [112], [113], or logic
for deciding the moment and format for sending slow vary-
ing data [114]–[116]. All these approaches for assuring low-
power operation must be scheduled and further modified
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FIGURE 7. Profile of the current drawn by a Wi-Fi sensor during wakeup
(T, RH, P, CO2, and light intensity) [126].

depending also on the amount of energy that is generated
or stored by the IoT device at each moment in time [50].
Since in most cases of wireless IoT devices, communication
is the most expensive operation from an energy perspective
[117], many of the research efforts focus on efficient com-
munication protocols [117]–[121] and on the optimization
of the transmission, through careful planning and simple
data exchanges [114], [122], [123]. However, with the devel-
opment of extremely low-power communication technolo-
gies, such as BLE [124], and the inclusion in the design
of IoT devices of many sensors, some of them with special
requirements regarding timing and energy supply, such as
gas sensors, it is possible that sensing and data processing
consume the most energy in their design [4], [125]. In these
cases, algorithms for determining the optimal time for sensor
sampling, considering the amount of energy scavenged and
stored, must be developed for assuring energy autonomy in
the case of energy harvesting IoT devices [50].

The calculation of the energy budget required by the IoT
device during operation is also of great importance in the
selection of a proper power source. The energy profile [104]
of the IoT device can be used for estimating the amount of
power required for its proper operation. Figure 7 presents
the power signature of an IoT device that measures the tem-
perature, relative humidity, carbon dioxide level, absolute
pressure, and light intensity, and sends the data to a predefined
IP address using Wi-Fi connectivity and the User Datagram
Protocol (UDP) protocol [126]. By knowing the amount of
energy consumed during all the activities performed by the
device and their duration, the average energy required by
the system can be computed. This estimation can then be
used for choosing strategies for optimizations (i.e., modifying
the sleep / wakeup ratio, sampling sensors with different
rates, etc.) and for properly designing the energy harvesting
elements.

To ensure autonomy from an energy perspective, the
energy harvesting elements in the IoT device’s structure
must be capable of providing the energy required for its
proper operation. Therefore, the prediction of the amount
of energy harvested and stored energy is computed using
energy harvesting and storage models. Next, we present a

brief overview of energy harvesting models presented in the
literature.

In [127]–[130], the authors applied deterministic models
for power management of the energy harvesting devices.
The approach in [127] uses cooperative Automatic Repeat
Request (ARQ) protocols to balance the energy consumption
of self-power devices to match their own battery recharge
rate. The research has shown that cooperative ARQ enables
wireless sensors to efficiently transmit data using lower levels
of energy than in non-cooperative protocols. In [128] and
[129], the authors describe an optimal scheduling scheme
(power management algorithm) for IoT devices to maximize
the average data transmission rate and to maintain the energy
neutrality of these devices over a day. The work in [130]
highlights an optimal scheduling scheme for an IoT device
that uses two energy-harvesting sources (solar and wind).
The proposed algorithm optimally sets the overall IoT device
power consumption based on the utility and on the energy
required by tasks, and uses the weather forecast information
available at the beginning of each day and the power level of
the storage element.

Since the solutions developed based on the deterministic
approach need accurate predictions of the system state, which
are not always applicable to the IoT ecosystem, attention
has shifted to stochastic models capable to adapt the energy
management to the uncertainty of the energy harvesting
method. Many approaches [131]–[139] in this direction are
found in the literature. Some of these approaches use the
Poisson process (which is a continuous-timeMarkov process)
[131] or the Markov model [132]–[135], but in recent years
researchers have developed other techniques that would be
suitable in the energy harvesting modeling process, such as
the Gama process [136], the Gaussian model [137], rein-
forcement learningmethods [138], or the Kalman Filter based
model [139] as we discuss below.

The work in [135] introduces a stochastic model that
uses Markov Chain theory to estimate the performance of
battery-less IoT devices (using a capacitor as storage ele-
ment) for uplink and downlink transmissions. The proposed
model takes as inputs the current consumption of different
device states, the capacitance, the energy harvesting power,
how often a transmission will take place, the probability of
receiving a downlink packet, the uplink and downlink packet
size, and the Spreading Factor to be used. The Spreading
Factor is the amount of spreading code applied to the original
data signal and has values between 7 and 12 [140]. The model
determines the uplink Packet Delivery Ratio achievable and
the probabilities of successfully receiving downlink packets.
The authors evaluated the performance of the proposedmodel
in terms of the device configuration, application behavior, and
environmental conditions. The results show that a capacitor
of 47 mF can support a Spreading Factor of 7 for uplink
and downlink at an energy harvesting rate of 1 mW, even
when more than once per minute data transmissions are
performed. A Spreading Factor of 11 can be supported by a
supercapacitor of 1 F at an energy harvesting rate of 10 mW.
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Also, the authors stated that it is possible to achieve com-
munication between battery-less IoT devices, but it must
be pointed out that the turn-on voltage threshold of these
devices significantly affects their performance. In [136], the
authors proposed a stochastic model for a RF harvesting
system that uses the gamma process to model the energy
stored into the storage element (in this case a finite battery).
They also used the renewal reward theory (a generalization
of the Poisson process) to establish an optimal transmission
policy to enhance the operation of the RF harvesting sys-
tem. In [137], the authors presented single form accurate
probabilistic energy models for hybrid power harvesting IoT
devices. These models enable the dimensioning of the storage
unit depending on the energy requirements of the device in
whose structure it is used. Furthermore, the design and perfor-
mance evaluation of hybrid energy harvesting IoT devices is
facilitated by the predictability of energy harvesting systems
parameters, such as the amounts of harvested, combined, and
stored energy, and the efficiency of the recharging process,
that is achieved in the proposed methodology. The authors of
[138] proposed a reinforcement learning algorithm for solv-
ing the access control and continuous power control problems
in an energy harvesting IoT system having limited uplink
access channels. The energy harvesting IoT system analyzed
is composed of multiple user devices and one base station.
Simulation results have shown that the method proposed
achieves better performance than other existing approaches
(i.e., quasi binary power control, discrete power control, mod-
ified water-filling) in terms of throughput. The authors of
[139] propose a platform suitable for BSNs. The BSN moni-
tors and records the instantaneous usable power generated by
wearable IoT devices with energy harvesting characteristics
(solar and TEEH), while monitoring human activity and envi-
ronmental data. To predict the amount of usable harvested
energy based on environmental parameters (light intensity,
temperature difference) and human behavior (activity level),
the authors developed and validated a Kalman Filter based
model. The Mean Absolute Percentage Error (MAPE) is
used to compare the prediction performance. The value of
this metric for the proposed model is better compared with
other models (regression, moving average, and exponential
smoothing) used in the same testing conditions.

Table 2 summarizes the aforementioned modeling
approaches proposed for different types of energy sources
and highlights the goals and the main results obtained.

As Table 2 shows, energy harvesting systems adopt the
Harvest-Store-Use architecture in the case of unpredictable
or non-controllable energy sources. Therefore, energy stor-
age is of paramount importance in the design and operation
of energy harvesting IoT devices. As pointed above, many
energy harvesting designs assume that energy generation is
not constant, and can only be predicted, and therefore the
efficient management and proper use of the energy stored in
supercapacitors or batteries is required.

The two options for energy storage in energy harvesting
IoT devices include rechargeable batteries and supercapacitors,

each one of them having their own advantages and limitations
[141]. There are also systems that include both batteries
and supercapacitors, leading to energy supplies that respond
better to high discharge pulses [142]. Batteries are the main
choice because of their high energy density, but supercapac-
itors are more often considered due to their high maximum
recharging cycle lifetime, that can result in longer service life
of the device they are powering. However, supercapacitors or
electric double-layer capacitors, that are nothing more than
extremely large value capacitors, cannot come close to the
energy density offered by batteries, and suffer from high
self-discharge rates, of 30% as compared to 5% encountered
in batteries [103], [141]. Modeling the behavior of superca-
pacitors has important implications for the design of energy
harvesting IoT devices [143]. Efficient energy modeling of
energy harvesting IoT devices enables the design of optimal
energy buffers for achieving uninterrupted operation. This
challenge of designing proper energy buffers was previously
solved by over-dimensioning [144].

V. CASE STUDY SYSTEMS
In this section, we present two IoT case study systems,
in which the sensing devices are fitted with energy har-
vesting mechanisms helping them achieve energy autonomy.
We describe the implementation details of the hardware along
with considerations and lessons learned from the correspond-
ing design, implementation, and operation phases. In the
first case study, we used solar energy harvesting, while the
second case study is based on RF energy harvesting. Both
systems use environmental BLE beacons, that operate in an
IoT scenario (Figure 8), thus becoming IoT sensing devices
[50], [126]. Beacons are a class of wireless sensing systems
that only transmit data to base stations which can be fixed
or mobile [115]. The IoT devices in the two case studies
(monitoring systems) broadcast the measured parameters,
and BLE-enabled terminals (such as smartphones) receive
this data. The smartphones running monitoring applications
relay the data to the cloud through Internet links. Using
cloud computing resources, we can perform data processing,
visualization, and prediction on the data stored in the cloud.

A. SOLAR-POWERED ENVIRONMENTAL BLE BEACON
1) CASE STUDY SYSTEM OVERVIEW
BLE is a wireless communication technology [145] that is
being increasingly used in IoT applications because of its
simplicity, ubiquity in most current electronic devices, and
low power operation [146], [147]. Applications such as retail
[124], environmental monitoring [125], indoor localization
[148], museum guiding [149], or inventory management
[150] are using BLE beacons. The IoT sensor device pre-
sented in [126] measures light intensity, temperature, and
relative humidity of the environment. We have described the
advantages and limitations posed by BLE devices advertising
the acquired data to nearbymonitoring applications in general
and of this device in particular in our previous work [126].
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TABLE 2. Summary of Energy Harvesting Models.

FIGURE 8. IoT scenario for use-case systems’ operation. Adapted from
[50], [126].

Here, we focus on the energy harvesting mechanism that was
used in the device’s architecture and the strategies that were
implemented for achieving energy autonomy. We achieved
energy independence even in the case when a modified
variant of the IoT device was fitted with a CCS811 gas
sensor [50], [151]. It is a well-known fact that the use of
gas sensors in energy-constrained devices, such as wireless
sensors, is problematic due to their requirements in terms of
power and wake-up times. The work in [50] presents the use
of adaptive duty-cycling strategies that resulted in energy-
efficient autonomous operation of the IoT device.

2) HARDWARE ARCHITECTURE
The architecture of the IoT device consists of a programmable
BLE-enabled radio on chip component, the Cypress Semi-
conductor EZ-BLE PRoC Module [152], an SHT21 tem-
perature (T) and relative humidity (RH) sensor [153],

an MPL115A2, absolute pressure (P) sensor [154], and a
PT3001 digital ambient light sensor [155]. The power source
includes a bq25504 ultra low-power boost converter with
batterymanagement for energy harvesting applications [156],
two IXYS KXOB22-04 × 3L amorphous silicon solar cells
connected in series [157], a single-cell coin rechargeable
battery (accumulator) [158], and two TPS78330DDCT low-
dropout linear regulators (LDOs) [159]. Figure 9 shows the-
ses various components and Figure 10 shows the integrated
hardware. As the solar energy source cannot be controlled, the
device is built using a generate-store-use architecture, where
a rechargeable battery stores the energy that is subsequently
supplied to the electronics of the device.

To enable better control over the power consumption of the
device, two TPS78330DDCT Low-DropOut linear regula-
tors (LDOs) were used for providing power to the processing
and sensing parts of the device. Therefore, the firmware can
control the power source for both the central part of the device
and the sensing component. As the beacon periodically sam-
ples the sensors in its structure, processes the acquired data,
and broadcasts it, the sensors’ power supply can be switched
off between readings so that the overall power consumption
of the system can be minimized.

3) OPTIMIZATIONS FOR ACHIEVING ENERGY AUTONOMY
AND RESULTS
Our initial work has shown that the BLE beacon can
achieve energy autonomy without requiring advanced
power-optimization techniques when the gas sensor is not
operational [126]. The setting of the processor’s clock fre-
quency to a value of 3 MHz, the readings of the attached
sensors (T, RH, P, light) once every minute, and the trans-
mission of an advertisement every 3 s resulted in a 37 µA
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FIGURE 9. Architecture of solar-powered BLE beacon [50], [126] .

average current drawn by the device. This value is sufficiently
low to allow stand-alone operation, with the solar cells being
capable of charging the accumulator within a single day with
good weather. In this scenario, the sensors are powered only
once a minute, when they are read, and the resulting data is
used to update the advertisement packet. The control module
spends almost all the time in sleep mode and wakes up once
every three seconds for 3 ms to transmit the advertisement
packet, and 140 ms every minute for communicating with the
attached sensors.

The addition of the CCS811 gas sensor in the design of the
IoT device for providing data regarding the eCO2 (equivalent
CO2) and Total Volatile Organic Compounds (TVOC) levels
in the air required the use of more complex mechanisms for
achieving autonomy from an energy perspective [50]. These
firmware optimization mechanisms were needed because of
the higher power consumption and requirement for longer
wake-up periods of the gas sensor. We implemented adaptive
duty-cycling strategies in the design of the firmware running
on the IoT device considering the light intensity and the
amount of energy stored in the accumulator. We incorporate
these strategies to lower the overall power consumption of the
IoT device. Furthermore, the advertising interval also had to
be increased for reducing the overall energy consumption of
the IoT device. Thus, we used an interval of 5 s instead of the
previous 3 s interval. The IoT device consumes more energy
when the attached sensors are active and take measurements
than when the transmission of advertisements of the collected
data takes place. Therefore, the sensors in the structure of
the IoT device are sampled with different rates, depending on
their power consumption and on the voltage value estimated
for the rechargeable battery and as well on the light intensity.
Thus, the T, RH, and the light intensity sensors are powered

FIGURE 10. Manufactured solar-powered BLE beacon (CCS811 not
populated).

up and read every minute, when the battery voltage is also
measured and computed using a special circuit in the design
as described in [50]. If the intensity of light and the battery
level are above some thresholds, the wake-up period is pro-
longed, and the gas sensor performs the reading operation.
Otherwise, the reading of the CCS811 sensor is postponed
until a future wake-up period with favorable conditions (bat-
tery level and light intensity are above previously set thresh-
olds) takes place. By choosing appropriate values for the
thresholds and for the maximum number of delay periods for
the reading of the gas sensor, efficient activity planning that
enables energy autonomy can be reached despite unfavorable
weather conditions (presence of clouds) and of the day/night
cycle, as the results in [50] have shown. We achieve this
result by carefully dimensioning (size of the solar cells in the
structure of the IoT device) the energy harvesting circuits and
by efficient hardware and software designs (separate power
source for the sensors, battery level measurement circuit,
adaptive duty-cycling strategy).

B. RF ENERGY HARVESTING ENVIRONMENTAL BLE
BEACON
1) CASE STUDY SYSTEM OVERVIEW
In the second use case system, we replaced the power source
of the BLE beacon by an RF energy harvesting element as
Figure 11 shows. The IoT device in this case is also based on
a harvest-store-use architecture. Figure 11 shows the block
diagram of the system [4].

The resulting IoT device operates in a similar way as the
previous system we have described in the previous section.
However, due to the smaller amounts of scavenged energy
using RF harvesting elements, it was not possible to power
on the CCS811 gas sensor. Since the generated energy cannot
sustain the operation of the CCS811 gas sensors, the RF
energy harvesting BLE beacon presented can measure T, RH,
light intensity, and atmospheric pressure.

2) HARDWARE ARCHITECTURE
As Figure 11 shows, the power supply of the first use case
system was replaced by an RF energy harvesting circuit
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FIGURE 11. Architecture of RF-powered BLE beacon [4].

that charges a supercapacitor. Since the CCS811 gas sensor
requires energy levels that cannot be provided by the energy
harvesting circuit and longer wakeup periods, it was removed
from the IoT device. The power supply consists of a P1110
Powerharvester charging module [160], to which a 50 mF
capacitor is connected for storing the generated energy. The
P1110 evaluation board generates energy from signals having
frequencies in the range of 850–950MHz and charges the on-
board supercapacitor powering the BLE-enabled IoT device.
Although a capacitor assuring many charging-discharging
cycles is used instead of a rechargeable battery, it suffers from
having high leakage current, with values (5–10µA) compara-
ble to the sleep current (∼1–10µA) of wireless sensor nodes.
In the setup presented here, the 50 mF capacitor discharges
itself from 3.3 V to 2.3 V in less than 5 hours. A Global
System for Mobile Communications (GSM) phone operating
within a band close to the one required by the P1110 module
(2G technology) placed at 5 cm from the harvester antenna
is able to charge the capacitor to 3.3 V in less than three
minutes. By knowing these values and the energy profile of
the powered IoT device, an estimation of the rate at which the
energy harvesting mechanism should charge the energy stor-
age element can be computed, and adjustments to the design
of the entire system can be performed. We have presented a
detailed description of the design and the experimental results
obtained in [4].

3) OPTIMIZATIONS FOR ACHIEVING ENERGY AUTONOMY
AND RESULTS
The firmware on the IoT device implements a simple
duty-cycled system where the attached sensors are read
every 30 seconds and the advertisement period is set to 3 sec-
onds. Since we wanted to test the feasibility of using RF
energy harvesting for such a system, no other optimizations
were performed on the application running on the central unit
of the IoT device. Our experimental results demonstrated that
the 30 cm2 antenna of the P1110 RF Powerharvester can

deliver the power required by the IoT device that samples
the attached sensors every half minute and sends an adver-
tisement packet every 3 seconds, when a 2G GSM phone
closer than 10 cm is in an active call. However, this was made
possible after finding the optimal distance between the energy
source and the energy harvesting component and the proper
alignment between the two. The supercapacitor in the design
is another challenge because of its high self-discharge cur-
rent, and should be replaced by other, more efficient, energy
storage elements. Another challenge when designing such
circuits is represented by the efficient measurement of the
signals involved. For example, the current drawn by the
BLE beacon varies in a very short amount of time between
microamperes and tens or hundreds of milliamperes. This
quick variation requires measurement equipment with wide
input ranges and large sampling rates. However, probably the
biggest challenge when designing RF energy harvesting IoT
devices is in the miniaturization of the hardware. IoT-enabled
sensors should have small form factors and should be low
cost, while better RF energy systems require larger antennas
and more complex circuitry. Although the work presented in
[4] demonstrated that RF energy harvesting could generate
enough power for certain IoT devices, this is possible only
when specific conditions (such as an active source in the
immediate proximity of the system, signal in the frequency
range required by the harvester) are met.

C. DISCUSSIONS AND LESSONS LEARNT FROM THE CASE
STUDY SYSTEMS ENERGY HARVESTING DESIGNS
The development and analysis of the operation of the IoT
devices presented here identified several design issues that
could be useful for researchers focusing on energy harvesting
IoT devices’ implementations.

1) HARDWARE
The hardware design of the two case study systems demon-
strated that significant energy savings can be achieved by
using simple methods. One is the use of a separate power
source for the sensors attached to the IoT device. This way,
the software has control over the operation of the sensors
and can efficiently schedule their active periods. This design
feature enabled the solar powered IoT device to adapt the
reading of the attached sensors depending on the amount of
energy generated and on the level of the accumulator.

Another useful energy saving feature is the lowering of
the operational frequency of the microcontroller. The fre-
quency value should be close to the one that makes the static
component of the current drawn by the IoT device the main
consumer, and not the dynamic one. Reducing the operating
frequency from 48 MHz to 12 MHz did not significantly
increase the data processing time, but considerably lowered
the power consumption.

2) ENERGY HARVESTER
There is a category of energy harvesting methods which can
provide sufficient energy for prolonged periods of time and
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also offer the advantage of miniaturization. These include
solar cells and piezoelectric circuits. On the other hand,
there are energy harvesting mechanisms that generate small
amounts of energy at discrete moments in time, while also
occupying more space. An example of such a method is RF
energy harvesting. This represents a major challenge in the
development of energy harvesting IoT devices, since these
must be small and based on simple designs. Currently, these
requirements seem to be fulfilled in a more facile way by the
first category of energy harvesting mechanisms (solar cells
and piezoelectric circuits). One option for using RF energy
harvesting could be to embed the antenna into objects such
as clothes in the case of wearable IoT devices.

An energy budget of between 50 and 60 µAh generated
by an energy harvesting circuit could assure autonomous
operation from an energy perspective, without the need of
using a battery as the main power supply, for a wide range
of IoT devices. Given that we expect billions of IoT devices
deployed in coming years, energy harvesting could provide
significant savings in terms of energy and of materials and
efforts used for the manufacturing and disposal of batteries.

3) SOFTWARE
Algorithms for optimizing the energy consumption can over-
come problems such as the non-controllability of the energy
source. The firmware developed for the first use case sys-
tem, that generates energy from sunlight, manages to adapt
the operation of the IoT device and reduce the energy used
during periods when the conditions are not favorable (cloudy
weather, nighttime, small amount of energy stored in the
accumulator). Software plays a major role in the prediction
of harvested energy in the case of solar energy, while in the
case of RF energy harvesting, hardware seems to be more
important in optimizing the operation of the IoT device. The
use of an algorithm for selectively sending data depending on
its variation (i.e., send more rarely slow changing data) would
increase energy efficiency in both cases.

4) COST
Our case study systems show that energy harvesting leads to
an increase of the cost of an IoT device of 15 to 20 Euros.
However, in many designs, energy harvesting could provide
at least the energy required for sleep mode periods and for
leakage currents. If we assume a sleep current between 3 and
10 µA, this could lead to savings of 26.3 to 87.6 mAh for
the main energy source, that could be a battery. For an energy
efficient IoT device, this could mean doubling of its lifetime,
from 5 to 10 years.

VI. TECHNICAL CHALLENGES
Even if have witnessed recent advances in the design and
development of energy harvesting devices over the past
decade, several technological challenges still need to be
addressed before the manufacturing of self-sustainable IoT
devices becomes prevalent. Some of them are:

• Harvested energy modeling. A balance between the
generated power and the consumed power must be
maintained. This implies the efficient power profiling
of IoT devices and the adaptation of their operation
to the amount of harvested energy. The availability
of the harvested energy varies mostly with time in a
non-deterministic manner. Therefore, the estimation of
the amount of energy scavenged is computed using
prediction techniques and conventional power manage-
ment approaches (i.e., Maximum Power Point Track-
ing (MPPT) and software Phase Locked Loops (PLL))
are applied tomanage the power coming from the energy
sources. Recently proposed energy forecasting models
should be improved to provide accurate results, while
the power management choices should be made to min-
imize the loss of energy. Additionally, the power source
must provide enough energy for the following tasks:
data processing operations, transmission and/or receive
actions, and sleep periods. Inmost cases, it is not the data
processing that is the most energy-demanding task. It is
the transmission and reception of data over the wireless
Internet. Therefore, future researchers should develop
optimized consumption models to minimize the energy
cost during wireless data transmissions and investigate
novel techniques to adapt the wireless communication
protocols according to the energy harvesting process’
characteristics.

• Harvested energy storage. This involves the develop-
ment of suitable storage elements such as rechargeable
batteries and supercapacitors because the technology
used for storing the harvested energy affects the cost,
size, and the operating life of the IoT devices. Batteries
have high energy densities, but they are not well suited
for long-life IoT devices due to the cycling degradation
phenomenon [161]. Moreover, both high and low tem-
peratures reduce their capabilities. Supercapacitors have
lower energy density than batteries, but cyclic degrada-
tion does not affect them. Furthermore, supercapacitors
suffer from increased current leakage that would con-
sume a large part of the harvested energy. Therefore,
future researchers should investigate new techniques
that can find the best candidate for harvested energy stor-
age which must meet the following criteria: low cycling
degradation, low current leakage, high energy density,
and continued operation even in harsh environments
such as at very low and very high temperatures.

• Energy harvesting from multiple sources. There are
cases wherein a single source of energy harvesting is
insufficient to power IoT devices. By combining energy
from multiple sources, the reliability of IoT devices can
be increased. The work in [162] presents the recent
developed architectures and techniques of low power
management circuits that use energy harvested from
multiple heterogeneous sources of energy. The analysis
highlights that the proposed architectures are suitable for
specific applications. For example, the complementary
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use of harvesters or the Power ORing topology are
simple schemes appropriate in cases where it is not
expected that all the input energy sources deliver a sig-
nificant amount of power at the same time. The multi-
ple input switched-inductor and switched-capacitor con-
verter architectures are also used to combine energy
for heterogeneous sources. Regardless of the chosen
architecture, designers must consider the development
of configurable impedance matching schemes for the
purpose ofMPPT control. Researchers should also focus
their attention on the development of intelligent algo-
rithms capable of selecting the input sources of energy
depending on their availability thereby eliminating the
need for the energy storage element.

• Size and cost efficiency. There are situations where
the size and the weight of IoT devices are critical
(i.e., wearable and implantable IoT devices). But these
devices produce a small amount of energy which is
not enough to be used to perform their main functions
(i.e., powering the device and the attached sensors, data
transmission). Small-scale harvesting solutions (micro,
nano) that can power IoT devices and support the opera-
tion of other functions (i.e., monitoring the health sta-
tus of patients, acting as stimulators for regenerating
tissues) must be developed considering the low cost
of fabrication. The scientific literature emphasizes that
PEHs can be effectively used for powering small and
very-small IoT devices. Therefore, future researchers
should develop new eco-friendly materials to enable
micro and nanofabrication of PEHs with improved flex-
ibility and output power density. Recent advances in the
field of microelectronics are promising and can be used
to develop robust, miniaturized, low power, and low-cost
energy harvesters.

• Environmental impact with renewable energy sources.
Renewable energy sources help to mitigate environmen-
tal pollution, and thus, they are used to develop new IoT
devices because this industry has experienced a signifi-
cant growth in the past few years. Batteries used in IoT
devices without energy harvesting mechanisms eventu-
ally get depleted and, in some cases, they are thrown
away in several weeks or months. If there are no battery
recycling mechanisms, then the environment suffers.
The challenge in this case is the development of energy
harvesting IoT devices with a lifetime significantly
longer than the one provided by batteries. Also, it is
worth noting that some energy harvesting IoT devices
employ toxic or rare materials (i.e., bismuth telluride
for TEEHs, lead zirconate titanate for PEHs, cadmium
for PV). Therefore, the use of eco-friendly materials,
such as electroactive polymers, carbon nanowire semi-
conductors, to design the electronics components of the
energy harvesting IoT devices is another challenge that
must be addressed. Biodegradable and biocompatible
IoT devices must be considered by developers of such
devices for a sustainable future.

VII. CONCLUSION
Energy harvesting has been receiving a lot of attention by
various research communities and industry involved in the
design and implementation of self-powered IoT devices.
In this article, we analyzed the energy harvesting technolo-
gies used primarily in the IoT environment. We conclude
that some energy harvesting technologies can provide a sig-
nificant amount of energy for a long time using small size
PV cells or piezoelectric devices. In contrast, other energy
harvesting techniques provide a small amount of energy at
discrete moments of time and require large circuits for captur-
ing the energy, but they do not depend on certain cycles such
as day/night, working days/weekends, nor are they easy to
shield (i.e., RF). The appropriate energy harvesting technique
depends mainly on the parameter to be measured, the use
case scenario of the IoT device (fixed/mobile, surface/built-
in), but also on its location (indoor/outdoor). To demonstrate
the potential of solar and RF energy sources, we described
two IoT case study systems from our previous work with har-
vesting mechanisms in terms of their design, hardware imple-
mentation and operation. Finally, we have discussed some
future technical challenges, whose addressing will facilitate
the large-scale deployment of energy harvesting solutions for
IoT.

LIST OF ACRONYMS
AES Advanced Encryption Standard
AI Artificial Intelligence
ARQ Automatic Repeat Request
BLE Bluetooth Low Energy
BSN Body Sensor Node
DC Direct Current
DES Data Encryption Standard
DVS Dynamic Voltage Scaling
ECG ElectroCardioGram
eCO2 Equivalent CO2
EEG ElectroEncephaloGram
EH Energy Harvesting
EMEH ElectroMagnetic Energy Harvester
EMG ElectroMyoGram
ESEH ElectroStatic Energy Harvester
grms Root Mean Square acceleration
GSM Global System for Mobile Communications
ICs Integrated Circuits
ICTs Information and Communication Technologies
IoT Internet of Things
IP Internet Protocol
ITU International Telecommunications Union
LDOs Low-DropOut linear regulators
MAC Medium Access Control
MAPE Mean Absolute Percentage Error
MCU MicroController Unit
MPPT Maximum Power Point Tracking
P Pressure
PEEH PyroElectric Energy Harvester
PEH Piezoelectric Energy Harvester
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PLL software Phase Locked Loops
PV PhotoVoltaic
QoS Quality of Service
RAM Random Access Memory
RF Radio Frequency
RFEH RF Energy Harvester
RH Relative Humidity
RSA Rivest, Shamir, and Adelman
T Temperature
TEEH ThermoElectric Energy Harvester
TVOC Total Volatile Organic Compounds
UDP User Datagram Protocol
WSNs Wireless Sensor Networks
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