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ABSTRACT High quality annotated named entity corpora are essential language resources, but fully
manual annotation is time-consuming. Interactive annotation offers an efficient alternative where humans
and machines collaborate. Instances of named entity mentions tend to share the same label, when they
co-occur in the same document and have similar surface forms. After selecting an instance in one sentence
for manual annotation, the label of the instance can be propagated to instances in other sentences. This kind
of document-level label propagation can be used to reduce human effort and improve annotation quality
in interactive annotation. However, most existing literature assumes instances within different sentences
are independent, and ignores document-level label propagation. This paper proposes a reinforcement
learning-based approach, which learns to propagate labels among the instances within a document for
interactive named entity annotation. In addition, our approach also learns instance selection for manual
annotation. We optimize the objective which is a trade-off between human effort and annotation quality
by training a deep Q-network. Our approach reduces human effort by more than 42% compared to baseline
approaches, for achieving the same annotation quality (0.95 measured by F1 averaged on three datasets).

INDEX TERMS Interactive annotation, named entity recognition, reinforcement learning, deep Q-network.

I. INTRODUCTION
With the current success and widespread use of data-driven
techniques for natural language processing, annotated cor-
pora become essential resources [1]. Training of machine
learning models, especially deep learning-based models,
requires big annotated corpora [2], [3]. However, it is not easy
to obtain high quality annotated corpora. Fully manual anno-
tation is time-consuming and costly. Although recent devel-
opments in fully automatic annotation of named entity have
improved prediction performance significantly [2]–[5], there
are still some errors hard to be corrected automatically [6].

Interactive annotation offers an efficient alternative where
humans and machines collaborate [7]–[9]. It is an iterative
process of prediction and instance selection. Based on pre-
diction confidences, some instances are selected for manual
annotation, and then the manual annotation results are used
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to improve prediction of other instances. The goal of interac-
tive annotation is to reduce human effort while maintaining
annotation quality, or achieve better annotation quality under
the same amount of human effort.

Document-level label propagation can be used to reduce
human effort and improve annotation quality for interactive
named entity (NE) annotation. Instances of NEmentions tend
to share the same label, when they co-occur in the same
document and have similar surface forms [10]. This kind of
document-level label consistency is illustrated in a document
in AKSW-News dataset [11] in Fig. 1. Four NE mentions
rendered in red occur in three sentences and co-refer to the
‘‘Nintendo’’ company. If one of them has been manually
annotated, then its label can be propagated to other ones.
Labels can also be propagated at document-level among
the four NE mentions rendered in blue (MICROSOFT,
Microsoft Corp. etc.), and among the three NE mentions
rendered in green (NOMURA, Nomura Research Institute
Ltd. etc.).
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FIGURE 1. Illustration of document-level label consistency among
instances located in different sentences within a document.

TABLE 1. Comparison of our approach to previous approaches for
interactive named entity annotation.

However, most previous interactive NE annotation
approaches assume instances within different sentences
are independent, with document-level label propagation
ignored (see Table 1). The constrained inference-based (CI)
approach [12] propagates labels in the inference phase
at sentence level, but not at document-level. The active
learning-based (AL) approach [13] uses manual annotation
results in the training phase to learn a prediction model,
and document-level label propagation is not considered. The
k-best CI+AL [7] approach combines CI and AL, but also
ignores document-level label propagation. To the best of
our knowledge, the Clustering+CI approach [8] is the only
previous work which propagates labels at document level for
interactive NE annotation (see Table 1). In Clustering+CI,
rule-based propagation strategies gather multiple instances
into a cluster, and force the instances in the cluster to share
the same label. Nevertheless, it is still challenging to design a
‘‘good’’ propagation strategy for interactive NE annotation.

To solve the above issues, this paper models the inter-
active NE annotation of a whole document as a Markov
decision process (MDP), and proposes RL-DINEA, short for
Reinforcement Learning-based Document-level Interactive
Named Entity Annotation. Reinforcement learning is suitable
for interactive annotation tasks due to its intrinsic sequen-
tiality [15]. Document-level label propagation and instance
selection are viewed as actions in the MDP. The objective of
balancing human effort and annotation quality is reflected in
rewards. The policy to select optimal actions is learned by
training a deep Q-network [16].

In summary, this work makes the following contributions.
(1) We propose a reinforcement learning-based approach

RL-DINEA to learn document-level label propagation and
instance selection for interactive named entity annotation.

By training a deep Q-network, RL-DINEA optimizes an
objective function which is a trade-off between human effort
and annotation quality. The source code is publicly available
at GitHub.1

(2) Experimental results on AKSW-News, CoNLL’03,
and Ontonotes 5.0 datasets demonstrate the effectiveness
of RL-DINEA. To achieve the same annotation quality
(0.95 measured by F1 averaged on the three datasets),
RL-DINEA reduces human effort by more than 42%
compared to the baseline approaches. Our learning-based
document-level label propagation significantly outperforms
rule-based propagation in previous studies, in terms of con-
tribution to the improvement of annotation quality under the
same amount of human effort.

The remaining part of this paper is organized as follows:
Section II reviews relatedwork. Section III introduces prelim-
inary definitions. Section IV details our approach. The exper-
iments are described in Section V, followed by the results and
analysis in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK
In this section, we first review the previous study on
interactive NE annotation. Subsequently we introduce how
document-level label propagation is leveraged to improve
named entity recognition, which is closely related to inter-
active NE annotation. At last, reinforcement learning-based
interactive annotation approaches are briefly introduced.

A. INTERACTIVE NAMED ENTITY ANNOTATION
Most previous interactive NE annotation approaches assume
instances within different sentences are independent [12],
[13], except Goldberg et al. [8] which adopt rule-based strate-
gies to propagate manually annotated labels across sentences.
Constrained inference-based approaches use manual annota-
tion results in the inference phase [7], [8], [12], while active
learning-based approaches use manual annotation results in
the training phase [7], [13].

Kristjansson et al. [12] propose a constrained inference-
based (CI) approach for interactive information extraction.
The constrained Viterbi algorithm is presented, which mod-
ifies the traditional Viterbi algorithm by pruning from the
search space those labelings that do not agree with the manual
annotation results. In this way, when a label of a token is
manually corrected, the labels of some other tokens will be
automatically changed. They call this capability correction
propagation.

Skeppstedt et al. [13] propose an active learning-based
(AL) approach. Initially, a prediction model is trained on
manually annotated sentences. The rest sentences are anno-
tated automatically by the model. Then a batch of least con-
fident sentences are selected for manual annotation, and are
added to the training set to retrain the model. This procedure
iterates until a stop condition is met.

1https://github.com/KrisWentaoWong/dqnner-c/
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Zhang et al. [14] propose an active learning-based (AL)
approach. They focus on annotation of entities that can
often be expressed by regular expressions (regexes), such
as bill date, email address, course number, phone number,
etc. Humans write regexes, which are used to scan a cor-
pus and produce weak labels to pretrain a neuron network.
Then, based on the network, the most uncertain instances
are selected for manual annotation. Finally, the manu-
ally annotated instances are used to fine-tune the network.
They study the trade-off between spending human effort
in writing regexes and spending human effort on manual
annotation.

Culotta et al. [7] propose a hybrid approach that com-
bines k-best constrained inference and active learning (k-best
CI+AL). Based on a prediction model, k-best CI constrains
the k-best Viterbi algorithm [17] to prune predictions that
do not agree with the manual annotation results, and returns
top k predictions. For any NE mention in these k predictions
that is segmented correctly but classified incorrectly, humans
are allowed to provide the correct label for this NE mention.
In this way, the amount of human effort spent on segmentation
is reduced. k-best CI and human correction are iteratively
performed until all tokens within the current sentence are
correctly labeled. Then the current sentence is added to the
training set to retrain the prediction model.

Goldberg et al. [8] combine clustering and constrained
inference (Clustering+CI), where rule-based clustering
strategies are used to propagate manual annotation results
across sentences. Multiple tokens are gathered into a cluster
based on some rule-based strategies. One of the tokens in the
cluster is selected for manual annotation, and the other ones
are forced to share the same label. Then all these tokens are
used as constraints in constrained inference.

It should be noted that unlike CI [12] and Clustering+CI
[8], the AL approaches [13], [14] and the k-best CI+AL [7]
approach suffer the following limitations. First, AL [13], [14]
and k-best CI+AL [7] require humans to check and correct
all tokens within a selected sentence. Manually annotating
an entire sentence leads to unneeded redundancy, since a
sentence usually contains only sparse labeling errors [8].
CI and Clustering+CI overcome this limitation by selecting
tokens and requiring only one or part of the tokens within a
sentence to be manually annotated. Second, AL cannot utilize
manual annotation results immediately to improve prediction
until the prediction model is retrained. Model retraining is
often time-consuming. Hence, it is performed after a batch of
sentences is manually annotated, while constrained inference
can be performed immediately after a token is manually
annotated.

In summary, Clustering+CI [8] is the only approach which
makes document-level label propagation in the previous stud-
ies, and our RL-DINEA is different from Clustering+CI
in terms of how to propagate labels at document level.
Clustering+CI adopts rule-based strategies to force tokens
with similar contexts to share a common label, while our
RL-DINEA adopts a data-driven strategy which learns to

propagate labels among candidate NE mentions with similar
surface forms.

B. DOCUMENT-LEVEL LABEL PROPAGATION FOR
NAMED ENTITY RECOGNITION
Document-level label propagation has been shown to improve
performance of NER [18]–[23], which is a task closely related
to interactive NE annotation. NER aims at extracting named
entities from texts [24]. In AL-based interactive NE annota-
tion, NER models are iteratively trained and make predic-
tions. In CI-based interactive NE annotation, NER models
make predictions under constraints of manual annotation
results.

NER with document-level label propagation is usually
approached using a two-stage framework [18]–[20]. In the
first stage, draft labels for tokens or candidate NEs are pre-
dicted by a base model. In the second stage, the draft labels
are refined by document-level label propagation.

Wang et al. [18] propose a document-level optimiza-
tion approach to NER. Long-short-term memory (LSTM) is
applied to perform token classification. Then, a global objec-
tive function is defined on the basis of the token classification
results to achieve document-level optimization via Integer
Linear Programming.

Gui et al. [20] introduce a label refinement approach to
handle document-level label consistency. In this approach,
a key-value memory network is first used to record draft
labels predicted by the base model, and then a multi-channel
Transformer refines these draft predictions based on the
explicit co-occurrence relationship derived from the memory
network.

Our previous work [19] proposes a reinforcement
learning-based approach to document-level NER, short for
RL-DNER. Candidate NEs with draft labels and estimated
confidences are produced by ensemble of multiple existing
NE taggers. Afterwards, document-level label propagation
is modeled as actions in a framework of Markov decision
process.

This paper extends our previous work RL-DNER [19]
to interactive annotation setting, and proposes RL-DINEA.
RL-DNER and RL-DINEA are approaches for differ-
ent tasks–NER and interactive NE annotation, respec-
tively. RL-DNER focuses only on maximizing performance
of prediction, without interaction with humans. Whereas
RL-DINEA is a human-in-the-loop approach. RL-DINEA
attempts to solve a multi-objective problem, aiming at
balancing human effort and annotation quality.

C. REINFORCEMENT LEARNING FOR INTERACTIVE
ANNOTATION
Over the past few years, reinforcement learning has emerged
as a powerful tool for solving complex sequential decision
making problems. It is well known for its success in the
area of game, such as Atari [16] and Go games [25]. RL is
suitable for interactive annotation tasks due to its intrinsic
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sequentiality, and has been applied to interactive annotation
of images and videos [15], [26], [27].

Liao et al. [15] model interactive image segmentation as a
MDP and solve it with multi-agent RL. At each step, an RL
model predicts the labels of all voxels, based on the previous
predictions and human supervisions. After that, the model
receives a feedback according to predefined measurement
of segmentation. The above process is repeated until the
maximum number of interactions is reached. Multi-agent RL
is adopted to solve above MDP by finding the segmentation
strategy to maximize the accumulated feedbacks received at
each step.

Varga and Lorincz [26] learn instance selection in inter-
active video segmentation using a modified Dueling Deep
Q-Network. The RL agent is trained to select optimal frames
for manual annotation, by estimating the scale of potential
discrepancies between the predicted labels and image-derived
features. Once manual annotation results are provided by
humans, label propagation algorithm re-estimates its label
predictions for the whole video. The above two steps iterate
until a given budget of human effort is exhausted.

Our RL-DINEA differs from previous RL-based inter-
active annotation approaches in two ways. First, previous
approaches adopt RL either to learn prediction [15], or to
learn instance selection [26], [27], while RL-DINEA jointly
learns prediction and instance selection. Second, previous
approaches apply RL in image and video annotation tasks,
while RL-DINEA is for named entity annotation.

III. PRELIMINARY DEFINITIONS
This section presents preliminary definitions, including token
sequence, document, named entity, instance, etc.

A. TOKEN SEQUENCE
Token sequence and three types of relations between token
sequences are defined in Definition 1–4.
Definition 1 (Token Sequence): A token sequence

w = (w1,w2, . . . ,w|w|), wi ∈W,

is a sequence of tokens, where |w| is the number of tokens in
w; wi is the i-th token in w, for i = 1, . . . , |w|;W is the token
space.
Definition 2 (Identical Token Sequences): A token

sequence w and another token sequence w̃ = (w̃1, w̃2, . . . ,

w̃|w̃|) are identical token sequences, if |w| = |w̃| and wi = w̃i,
for i = 1, . . . , |w|.
Definition 3 (Sub-Token Sequence): A token sequence w̃

is a sub-token sequence of w, if |w̃| < |w| and there exists
an offset b ∈ {0, 1, . . . , |w| − |w̃|}, such that w̃i = wb+i, for
i = 1, . . . , |w̃|.
Definition 4 (Super-Token Sequence): A token sequence w̃

is a super-token sequence of w, if w is a sub-token sequence
of |w̃|.

B. DOCUMENT AND NAMED ENTITY
Document and named entity are defined in Definition 5–6.

Definition 5 (Document): A document d is a token
sequence.
Definition 6 (Named Entity): A named entity (NE, entity)

in a document d is a tuple

e = 〈w, b, y〉,

where w is a sub-token sequence of d ; b is the offset of w
in d ; y ∈ Y is the entity label; Y is the entity label space
consisting of possible entity types such as person, location
and organization as well as a nil label φ indicating not-an-
entity.

C. INSTANCE
We follow the convention of using the term ‘‘instance’’ to
describe an occurrence of a token sequence for prediction and
selection in interactive annotation. We formally define it in
Definition 7.
Definition 7 (Instance): An instance x in a document d is

a tuple

x = 〈w, b〉,

where w is a sub-token sequence of d ; b is the offset of w in
d . The instance space is denoted by X .

According to Definition 7, an instance can refer to a
sentence, a token (a token sequence consisting of only one
token), or a candidate NE mention. Although this definition
is general, the term ‘‘instance’’ in our approach is restricted
to the meaning of candidate NE mention. So, according to
Definition 6 and Definition 7, a named entity e can also be
represented by a tuple of an instance x and a label y:

e = 〈x, y〉.

Furthermore, five types of relations between instances are
defined in Definition 8–12.
Definition 8 (Identical-Form Instance): x̃ = 〈w̃, b̃〉 in a

document d is an identical-form instance of x = 〈w, b〉 in d ,
if w and w̃ are identical token sequences, and b̃ 6= b.
Definition 9 (Sub-Form Instance): x̃ = 〈w̃, b̃〉 in a docu-

ment d is a sub-form instance of x = 〈w, b〉 in d , if w̃ is a
sub-token sequence of w.
Definition 10 (Super-Form Instance): x̃ = 〈w̃, b̃〉 in a

document d is a super-form instance of x = 〈w, b〉 in d , if
w̃ is a super-token sequence of w.
For example, in Fig. 1, the first instance NINTENDO is an

identical-form instance of the second instance Nintendo,
and is a sub-form instance of Nintendo Co. Nintendo
Co. is a super-form instance of the first instanceNINTENDO.
Case is ignored to improve performance, as suggested by
Krishnan and Manning [10].
Definition 11 (Similar-Form Instance): x̃ is a similar-form

instance of x, if x̃ is an identical-, super- or sub-form instance
of x.
Definition 12 (Overlapping Instances): x = 〈w, b〉 and x̃ =
〈w̃, b̃〉 are overlapping instances, if [b, b+ |w| − 1]∩ [b̃, b̃+
|w̃| − 1] 6= ∅.
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IV. OUR APPROACH
This section describes our reinforcement learning-based
approach RL-DINEA which learns document-level label
propagation and instance selection for interactive NE annota-
tion. An overview of RL-DINEA is given in Subsection IV-A.
Preprocess is introduced in Subsection IV-B. The objective
function of our approach is defined in Subsection IV-C. The
RL model is detailed in IV-D.

A. OVERVIEW
An overview of RL-DINEA is presented in Fig. 2.
RL-DINEA takes a document d as input, and outputs a
sequence of named entities E . First, instances of candidate
NE mentions with draft labels and confidences are extracted
from d in a preprocessing step. Then, based on the extracted
instances, the RL model consisting of an environment and
a DQN agent performs document-level label propagation
and instance selection iteratively in the interactive annotation
setting. In this process, labels of the instances are refined.
Finally, the RL model outputs the named entities in d by
filtering out non-entity instances.

The time step t is initialized to 0 after preprocess. The
index i(t) of the current instance is initialized to 1, and the
index j(t) of the similar-form instance is chosen randomly.
X ,Y (t),C (t), i(t) and j(t) forms the current state s(t). Based
on s(t), the DQN agent chooses an action which consists
of a propagation sub-action and a selection sub-action. The
propagation sub-action a(t)I determines whether to propagate
the label Y (t)

j(t)
of the similar-form instance Xj(t) to the current

instance Xi(t) . The selection sub-action a(t)II requests the envi-
ronment to respond in one of the following ways: a) select
the current instance Xi(t) for manual annotation by humans,
b) query another identical-, super-, or sub-form instance,

or c) start to process next instance. The time step t is updated
by t ← t + 1 after the sub-actions are performed by the
environment.

The above process iterates until all the instances in X have
been processed. The terminal time step t is stored in τ , which
will be used in Subsection IV-C.

B. PREPROCESS
This subsection introduces preprocess which extracts
instances with draft label and estimated confidences from the
input document. Firstly, multiple existing NE taggers which
are called base taggers in this paper tag the input document,
and output extracted instances of candidate NE mentions.
Then, for each of the instances, an ensemble classifier assigns
a draft label to it, and estimates confidence.

There are two reasons to perform preprocess. First, based
on the instances produced in the preprocess, document-level
label propagation among similar instances can be explicitly
modeled in the interactive annotation setting. Second, after
the instances which are candidate NE mentions have been
extracted, manually annotating a selected instance is reduced
to assigning a label of entity type to it. In this way, human do
not have to determine the start and the end boundaries for any
selected instance, which makes manual annotation faster and
easier [7].

Resulted from decades of research on NER, there are many
existing NE taggers, and they can be used to tag NEs as
candidates for further processing. A base tagger can be any
existing NE tagger, no matter it is based on a rule-based
model [28] or a learning-based model (e.g., SVM [29],
CRF [30], BERT [31], XLNet [32], GPT [33]).

Given a document d , instances are extracted by tagging
d using K base taggers. The k-th base tagger outputs a
sequence of named entities Ek , which can be viewed as a

FIGURE 2. Overview of the reinforcement learning-based approach for document-level interactive named entity annotation.
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tuple 〈X k ,Y k 〉, where X k is a sequence of instances; Y k is a
sequence of labels. Instances in d can be obtained by uniting
X1,X2, . . . ,XK ,

X =
K⋃
k=1

X k . (1)

For each instance Xi in X (1), i = 1, 2, . . . ,M , where
M is the size of X , the ensemble classifier assigns a draft
label toXi, and estimates the corresponding confidence, based
on the K base taggers’ output and local context of Xi. The
ensemble classifier usually outperforms the best individual
base tagger [11]. In addition, the ensemble classifier estimate
confidences which are essential to our RLmodel, whereas not
all base taggers can do so.

Features used by the ensemble classifier include base tag-
ger features and context features.
• The base tagger features represent labels predicted by
the K base taggers for a given instance Xi, defined as

f kbase =

{
y if ∃〈Xi, y〉, 〈Xi, y〉 ∈ Ek ,
φ otherwise,

where Ek is the sequence of the named entities tagged
by the k-th base tagger on d , k = 1, 2, . . . ,K ; 〈Xi, y〉 ∈
Ek denotes the relation that 〈Xi, y〉 is an element of the
sequence Ek .

• The local context features are simply part-of-speech tags
(postags). f lpostag represents the postag of the token at
location l, l ∈ {start,end,prev, succ}, indicating loca-
tions of the start token within Xi, end token within Xi,
previous token before Xi, and succeeded token after Xi.

The ensemble classifier is implemented using LIBSVM
[34]. LIBSVM applies the ‘‘one-against-one’’ [35] approach
to solve the multiclass classification problem. |Y|(|Y|− 1)/2
binary classifiers are constructed, where |Y| is the number
of classes. In classification LIBSVM uses a voting strategy:
each binary classification is considered to be a voting. The
instance Xi is assigned with a label Yi corresponding to the
class with themaximumnumber of votes. ConfidenceCi ofXi
being assigned with Yi is defined as the posterior probability
P(Yi|Xi) estimated by LIBSVM.

C. OBJECTIVE FUNCTION
Given a set of documents D, interactive NE annotation aims
to maximize the following objective function:

J (D) .= Q(D)− λE(D), (2)

whereQ is the function of annotation quality (Definition 13);
E is the function of human effort (Definition 14); λ is a
trade-off parameter balancing human effort and annotation
quality, λ ∈ R≥0. Interactive annotation reduces to fully
manual annotation if λ is close to zero, and to pure prediction
if λ is sufficient large.2

2The exact value of λ depends on how Q(D) and E(D) are defined.

Definition 13 (Annotation Quality): Given a set of docu-
ments D, annotation quality is defined as the accuracy, which
is the number of correctly labeled instances over the total
number of instances:

Q(D) .=
1

Z (D)

∑
d∈D

M (d)∑
i=1

1(Y (d,τ (d))
i = G(d)

i ), (3)

where Z (D) is the total number of instances in D;M (d) is the
number of instances in document d ; Y (d,τ (d)) denotes labels
for instances in d at the terminal time step τ (d); G(d)

i denotes
the ground truth label for the i-th instance in d ; 1 denotes the
indicator function.

We use the d superscript in M (d) because a set of docu-
mentsD are involved in (3), and each document inD contains
different numbers of instances. The d superscript appears in
Y (d,τ (d))
i and G(d)

i for the same reason.
Annotation quality Q(D) is defined as accuracy in (3) but

not F1, because the increase of accuracy always leads to
the increase of F1 in our problem setting, and accuracy is
simpler than F1. F1 is the harmonic mean of precision and
recall [24]. Accuracy increases with the increase of true pos-
itive or true negative instances. When true positive instances
increase, both precision and recall increase. When true nega-
tive instances increase, false positive instancesmust decrease,
so precision increases and recall remains the same. When
accuracy reaches 1, precision reaches 1, recall reaches an
upper bound determined by the base taggers which produce
the instances, and F1 reaches an upper bound determined by
recall since precision is 1.
Definition 14 (Human Effort):Given a set of documentsD,

human effort is defined as the number of manually annotated
instances over the total number of instances:

E(D) .=
1

Z (D)

∑
d∈D

M (d)∑
i=1

M(X (d)
i ), (4)

where M(X (d)
i ) returns 1 if X (d)

i is a manually annotated
instance, or 0 otherwise.

The objective function can be rewritten as (5), according to
(2), (3) and (4).

J (D) .=
1

Z (D)

∑
d∈D

M (d)∑
i=1

(
1(Y (d,τ (d))

i = G(d)
i )− λM(X (d)

i )
)
.

(5)

Before casting learning document-level label propagation
and instance selection as an optimization problem, we for-
mally define them in Definition 15 and Definition 16.
Definition 15 (Instance Selection): Instance selection is a

function

S : XM
× YM

× [0, 1]M × N1:M 7→ {0, 1},

S(X ,Y (t),C (t), i(t)) determines whether to select the current
instance Xi(t) for manual annotation, where X , Y and [0, 1]
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are instance space, label space and confidence space, respec-
tively; M is the number of instances in the given document;
N1:M is the range of instance indexes in X . S returns 1 if yes,
or 0 otherwise.
Definition 16 (Document-Level Label Propagation):

Document-level label propagation is a function

P : XM
× YM

× [0, 1]M × N1:M × N1:M 7→ {0, 1},

where P(X ,Y (t),C (t), i(t), j(t)) determines whether to update
Y (t)
i(t)

and C (t)
i(t)

using Y (t)
j(t)

and C (t)
j(t)
; i(t) and j(t) are the indexes

of the current instance and the similar-form instance at time
step t , respectively. P returns 1 if yes, and 0 otherwise.
In our approach, human effort is determined directly by

the instance selection function S (Definition 15). Annotation
quality is determined directly by both the document-level
label propagation function P and S. In fact, P and S influ-
ence each other in the iterative process of interactive anno-
tation. So, human effort and annotation quality are jointly
determined by P and S.

Given a set of documents D, the problem of learning
document-level label propagation and instance selection to
maximize the objective function J in (2) can be solved by
determining θ∗, such that:

θ∗ = argmaxθJ (D), (6)

where θ = 〈θP , θS〉 represents learnable parameters of the
document-level label propagation functionP and the instance
selection function S.

D. REINFORCEMENT LEARNING MODEL
The reinforcement learning model consists of an environment
providing states and rewards, and a DQN agent learning to
choose actions to maximize accumulated reward it receives
[36]. Interactive annotation of a whole document is framed
as anMDP. Based on theMDP, learning document-level label
propagation and instance selection to maximize the objective
function in (5) can be casted as a reinforcement learning
problem.

The MDP can be represented as a tuple 〈S,A,T ,R, γ 〉,
where S is the state space; A is the action space; T is the
transition function; R is the reward function; γ is the discount
rate, 0 ≤ γ ≤ 1. This is an episodic MDP. In each episode,
the agent handles one document d only. Each episode starts
by processing the first instance in d , and is terminated when
all instances in d have been processed.
In the above MDP, actions determine document-level label

propagation and instance selection. Rewards reflect the objec-
tive function J in (5). The parameters θ in (6) can be opti-
mized by training the DQN.

The MDP is detailed in Subsubsections IV-D1 to IV-D4,
and the DQN is described in Subsubsection IV-D5, followed
by the training algorithm in IV-D6.

1) STATES
The state of the environment at time step t is a tuple

s(t)=̇〈X ,Y (t),C (t), i(t), j(t)〉, (7)

whereX is the instances in the input document d ; Y (t) andC (t)

are labels and confidences at time step t , respectively; i(t) and
j(t) are indexes of the current instance and the similar-form
instance, respectively.

When an episode starts at time step t = 0, X ,Y (0) and
C (0) are produced in preprocess, i(0) is initialized to 1, and
j(0) is chosen randomly. Y (t),C (t), i(t) and j(t) are updated in
transitions, which will be described in Subsubsection IV-D3.
When the state s(t) is sent to the DQN agent, it is mapped to

a feature vector, which consists of label features, confidence
features, local context features, form features and overlapping
features.
• The label features include Y (t)

i(t)
, Y (t)

j(t)
, and match of them

1(Y (t)
i(t)
= Y (t)

j(t)
). Nominal values such as Y (t)

i(t)
and Y (t)

j(t)
are

represented using one-hot encoding.
• The confidence features includeC (t)

i(t)
,C (t)

j(t)
and difference

between them C (t)
i(t)
− C (t)

j(t)
.

• The local context features are postags of the tokens
within and around Xi(t) and Xj(t) , as described in Subsec-
tion IV-B.

• The form features represent whether Xj(t) is a identical-,
super-, or sub-form instance of Xi(t) , according to Defi-
nition 8, Definition 9 and Definition 10.

• The overlapping features indicate whether there exists
other instances overlapping withXi(t) andXj(t) , according
to Definition 12.

2) ACTIONS
Based on the current state s(t), the DQN agent chooses the
current action a(t) consisting of two sub-actions

a(t) = 〈a(t)I , a
(t)
II 〉,

where a(t)I is the propagation sub-action; a(t)II is the selection
sub-action.

The propagation sub-action a(t)I corresponds to the
document-level label propagation, a(t)I ∈ {0, 1}. When
a(t)I = 1, the environment propagates the label and the
confidence of the similar-form instance Xj(t) to the current
instance Xi(t) :

Y (t+1)
i(t)

← Y (t)
j(t)
,C (t+1)

i(t)
← C (t)

j(t)
.

Otherwise no propagation is performed.
The selection sub-action a(t)II determines not only instance

selection, but also whether to query another similar-form
instance, or to start to process next instance. Possible values
of a(t)II are human, identical, sub, super, and next. In the
case of a(t)II = human, Xi(t) will be manually annotated by
humans. The cases identical, super, and sub indicate that
the environment is requested to query a identical-, sub- and
super-form instance of Xi(t) , respectively. In the last case of
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next, the environment is requested to switch to process next
instance Xi(t)+1 if there is any unprocessed instance in d .

3) TRANSITIONS
After the agent has chosen the current action a(t) based on the
current state s(t), the environment responds with a transition
to the next state s(t+1) using the transition function:

s(t+1)← T (s(t), a(t)).

Calculation of the transition function is presented in
Algorithm 1. It takes s(t) and a(t) as input, and outputs s(t+1).

Algorithm 1 Calculation of the Transition Function
T (s(t), a(t))

Input: current state s(t) = 〈X ,Y (t),C (t), i(t), j(t)〉,
current action a(t) = 〈a(t)I , a

(t)
II 〉

Output: next state s(t+1)

1 Y (t+1)
← Y (t), C (t+1)

← C (t);
2 if a(t)I = 1 then
3 Y (t+1)

i(t)
← Y (t)

j(t)
, C (t+1)

i(t)
← C (t)

j(t)
;

4 i(t+1)← i(t), j(t+1)← j(t);
5 if a(t)II =human then
6 Y (t+1)

i(t+1)
←manual label of Xi(t+1) , C

(t+1)
i(t+1)
← 1.0;

7 i(t+1)← i(t) + 1;
8 j(t+1)← index of a randomly chosen similar-form

instance of Xi(t+1) ;

9 else if a(t)II ∈ {identical, sub, super} then
10 j(t+1)← index of a similar-form instance chosen

according to a(t)II ;

11 else if a(t)II = next then
12 i(t+1)← i(t) + 1;
13 j(t+1)← index of a randomly chosen similar-form

instance of Xi(t+1) ;

14 s(t+1)← 〈X ,Y (t+1),C (t+1), i(t+1), j(t+1)〉;
15 return s(t+1);

First, Y (t+1) and C (t+1) are initialized using Y (t) and C (t),
separately (line 1). If a(t)I = 1, perform document-level label
propagation (line 2 and line 3).

Then, i(t+1) and j(t+1) are initialized using i(t) and j(t),
separately (line 3). If the value of a(t)II is human, which
means Xi(t+1) is selected for manual annotation, update Y (t+1)

i(t+1)

using the manual label of Xi(t+1) , set C (t+1)
i(t+1)

to 1.0, and
switch to next instance (line 5 to line 8). If the value of
a(t+1)II is identical, sub or super, query an identical-, sub-
or super-form instance, and update j(t+1) as the index of the
chosen instance (line 9 and line 10). Otherwise, switch to next
instance (line 11 to line 13).

Finally, construct s(t+1) and output it (line 14 and line 15).

4) REWARDS
In reinforcement learning, the agent’s goal is to maximize the
total reward it receives over the long run. To maximize the
objective functionJ in (5) which is a weighted sum of human
effort and annotation quality, we define the reward function
as

Rλ(s(t), a(t), s(t+1))=̇1Q(t, t + 1)−λ1E (t, t + 1), (8)

where1Q(t, t + 1) and1E (t, t + 1) represent the changes of
annotation quality and human effort from time step t to t+1,
respectively; λ is the trade-off parameter.

The change of annotation quality 1Q(t, t + 1) in (8) is
defined as the change of correctness of the current instance
Xi(t) ’s label:

1Q(t, t + 1)=̇1(Y (t+1)
i(t)

= Gi(t) )− 1(Y (t)
i(t)
= Gi(t) ), (9)

where Y (t+1)
i(t)

and Y (t)
i(t)

are labels of Xi(t) at time step t + 1 and
t , respectively; Gi(t) is the ground truth label of Xi(t) .
The increase of human effort1E (t, t + 1) is determined by

whether the current instance is selected for manual annotation
at time step t:

1E (t, t + 1)=̇1(a(t)II = human). (10)

The normalization factor Z (D) in (5) is eliminated in (9) and
(10), because Z (D) is a constant for a given set of documents
D in our approach.
In each episode, a given document d is processed. Accord-

ing to (8), (9) and (10), maximizing
∑τ

t=1 r
(t) is equivalent

to maximize J ({d}), where r (t) is the reward at time step
t , r (t)=̇Rλ(s(t−1), a(t−1), s(t)); τ is the terminal time step;∑τ

t=1 r
(t) represents the accumulated reward in the episode;

J ({d}) represents the objective value on d . In reinforce-
ment learning, the agent is trained to maximize the total
reward it receives over the long run. By training the agent
on D, J (D) in (5) can be optimized, and the parameters θ∗

of document-level label propagation and instance selection
in (6) can be solved.

5) DEEP Q-NETWORK
The deep Q-network [16] is used in the RL model to approx-
imate the optimal action-value function, from which the opti-
mal policy is derived. The DQN is trained by adjusting its
parameters to reduce the mean-squared error in the Bellman
equation. By introducing a target network, the stability of
learning is improved. In addition, experience replay speeds
up the learning process.

Reinforcement learning aims to learn an optimal policy
which maximizes the expected accumulated reward [36].
Formally, a policy is a function π : S 7→ A, which maps
a state s to an action a. The accumulated reward after time
step t is referred to as return, denoted by G(t):

G(t)
=̇r (t+1) + γ r (t+2) + γ 2 r (t+3) + · · · + γ τ−t−1r (τ ),

where r (t+1) is the reward at time step t + 1; τ is the terminal
time step; γ is the discount rate. The optimal action-value
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function Q∗ is defined as the maximum expected return
achievable by following any policy, after observing a state
s and taking an action a:

Q∗(s, a)=̇max
π

E[G(t)
|s(t) = s, a(t) = a, π].

Once Q∗ has been solved, the greedy policy under Q∗ is an
optimal policy:

π∗(s) = argmax
a

Q∗(s, a).

The Q-learning algorithm [37] estimates Q∗ by using the
Bellman equation as an iterative update,

Qn+1(s, a)← Qn(s, a)+α
[
r+γ max

a′
Qn(s′, a′)− Qn(s, a)

]
,

where α ∈ (0, 1] is a learning rate. The algorithm converges
to the optimal action-value function, Qn → Q∗, as n → ∞.
This basic approach estimate the action-value function
separately for each state-action pair, leading to lack of gener-
alization. Our problem involves a continuous state space, so a
function is needed to approximate Q∗.
Deep Q-learning approach [16] approximates Q∗ using a

deep Q-network with parameters θ , Q(s, a; θ ) ≈ Q∗(s, a).
The DQN can be trained by minimizing a sequence of loss
functions:

L(θn) = Es,a,r
[(
r + γ max

a′
Q(s′, a′; θ−n )− Q(s, a; θn)

)2]
,

(11)

where θn are the parameters of the DQN at iteration n; θ−n
are the parameters used to compute the target at iteration n.
As the error decreases, the approximated function Q(s, a; θ )
converges to Q∗(s, a).

By introducing a target network separately from the online
network, the stability of learning is improved. Parameters
θ−n of the target network are periodically updated with θn of
the online network. Thereby correlations between the target
network and the online network are reduced.

Experience replay allows the DQN agent to learn from
earlier memories, and can speed up learning and break
undesirable temporal correlations. The replay memory is a
buffer which stores transitions (s, a, r, s′). During the training
process, updates are applied on a batch of samples drawn
randomly from the buffer.

The deep Q-network consists of two linear layers followed
by rectified linear units, along with two separate output lay-
ers. Each of the two linear layers has 20 hidden units. The
first output layer has two units, and outputs state-action value
for the propagation sub-action a(t)I . The second output layer
has five units, and outputs state-action value for the selection
sub-action a(t)II .

6) TRAINING ALGORITHM
Training algorithm of the deep Q-network for interactive
NE annotation is presented in Algorithm 2. Input of the
algorithm includes a set of training documents D, number
of training epochs N , the parameter ε balancing exploration

Algorithm 2 Training Algorithm of the Deep Q-Network
for Interactive Named Entity Annotation
Input: a set of documents D, number of training epochs

N , exploration parameter ε, trade-off parameter
λ, discount rate γ

Output: parameters of the deep Q-network θ
1 Initialize θ randomly;
2 for epoch = 1 to N do
3 for d ∈ D do
4 Obtain X ,Y (0),C (0) by preprocess;
5 t ← 0;
6 i(t)← 1;
7 j(t)← index of a similar-form instance chosen

randomly;
8 s(t)← 〈X ,Y (t),C (t), i(t), j(t)〉;
9 do
10 if Random(R[0,1]) < ε then
11 a(t)← Random(A);

12 else
13 a(t)← argmax

a∈A
Q(s(t), a; θ);

14 s(t+1)← T (s(t), a(t));
15 r (t+1)← Rλ(s(t), a(t), s(t+1));
16 Update θ by performing gradient descent on

L with respect to θ ;
17 t ← t + 1;
18 while i(t) < |X |;

19 return θ ;

and exploitation, the trade-off parameter λ balancing human
effort and annotation quality, and the discount rate γ which
is used in the loss function defined in (11). The algorithm
outputs the learned parameters θ .

First, initialize θ randomly (line 1). Then, run N epochs
(line 2 to 18). In each epoch, iterate over D. In each iteration,
an episode is started and terminated for a document d in D
(line 4 to 18). During each episode, θ is updated. Finally, after
N × |D| episodes, output θ .

After starting an episode for a document d , preform pre-
process and obtain X ,Y (0),C (0) (line 4). Then set the time
step t to 0, set the index of the current instance i(t) to 1, set j(t)

to the index of an instance chosen randomly, and construct
the initial state (line 5 to line 8).

Then loop until all instances in X have been processed
(line 9 to line 18). At each time step t , with probability ε select
a random action a(t), otherwise select a(t) with the maximal
Q-value (line 10 to 13). Then transition to the next state s(t+1)

by T using s(t) and a(t) (see Algorithm 1). Notice that Y (t+1),
C (t+1), i(t+1) and j(t+1) are returned by T using s(t+1). Obtain
a reward using Rλ defined in (8). At last, perform a gradient
descent step on the loss function L in (11) with respect to θ
(line 16), and increase the time step t (line 17).
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The parameters of the training algorithm are set as the
following:

• The number of training epochsN is empirically set to 50.
• The parameter ε in ε-greedy exploration is annealed
from 1 to 0.1 over 500k transitions.

• The parameter λ is set to 0, 0.01, 0.02, 0.04, 0.08, 0.16,
0.32, 0.64 and 1, separately, to control the trade-off
between human effort and annotation quality in interac-
tive annotation.

• The discount rate γ is set to 1, to establish the equiva-
lence between maximization of the accumulated reward
and maximization of the objective function in (5).

Early stopping is applied to prevent overfitting. We first
train with a constant learning rate α = 2.5×10−5 on the train-
ing set andmonitor the performance on the development set at
each epoch. Then, at the epoch with the highest development
performance, we start a learning rate annealing schedule:
decrease α an order of magnitude, train for 5 epochs, and
stop. The final performance reported are averaged over the
last 5 epochs before stopping.

V. EXPERIMENTS
This section describes datasets used in our experiments, base
taggers for preprocess, baseline approaches, and evaluation
metrics.

A. DATASETS
Three publicly available datasets are used, which are
AKSW-News, CoNLL’03 and Ontonotes 5.0. Table 2 gives
detailed information of the datasets, including number of
documents, average number of sentences per document, and
textual genre. Each document in the datasets contains more
than one sentences, so that we can evaluate whether labels can
be propagated across sentences in interactive NE annotation.

TABLE 2. Detailed information of the datasets.

The AKSW-News dataset consists of 325 newspa-
per articles [11], most of which are reports from the
aerospace domain. The CoNLL-2003 shared task [38] dataset
(CoNLL’03) is a subset of Reuters 1996 news corpus, and
is widely used in NER task. Since one of our base taggers
(StanfordNER) is trained on the training part of CoNLL’03,
we only use the testing part. The Ontonotes 5.0 [39] dataset
contains 3,145 annotated documents, which come from a
wide range of sources including newswire, bible, transcripts,
magazines, and web blogs. 719 documents are sampled ran-
domly from the dataset and are used in our experiments.

Each dataset is divided equally into four parts: 1)TRAIN-E
for training the ensemble classifier combining multiple base

taggers, 2) TRAIN-Q for training the Q-network, 3) DEV for
tuning parameters, and 4) TEST for evaluation.

B. BASE TAGGERS
Seven existing NE taggers are used as base taggers for
instance extraction in preprocess. Three classes are con-
sidered in the experiments, namely person, location and
organization. F1s of the taggers on the datasets in our
experiments are listed in Table 3. All the taggers perform
significantly worse on Ontonotes 5.0 than on AKSW-News
and CoNLL’03, due to that Ontonotes 5.0 is a mixed-genre
corpus (see Table 2).

TABLE 3. F1s of the seven base taggers on the datasets in our
experiments.

The Stanford Named Entity Recognizer3 (StanfordNER)
is a CRF-based tagger [30]. According to its introduction3,
this implementation does not precisely correspond to the
paper [30] published in 2005. New distributional features and
amixture of CoNLL,MUC-6,MUC-7 andACE named entity
corpora for training make it fairly robust across domains.

BiLSTM-CNN-CRF [40], [41] is a neural network archi-
tecture that benefits from both word- and character-level
representations automatically, by using combination of bidi-
rectional LSTM, CNN and CRF. It requires no feature engi-
neering or data preprocessing, thus making it applicable to a
wide range of sequence labeling tasks.

Base taggers also include Illinois Named Entity Tagger
(Illinois) [42], General Architecture for Text Engineering
(GATE) [28], Apache OpenNLP Name Finder (OpenNLP),
Ottawa Baseline Information Extraction (Balie) [43] and
LingPipe.4 Although their performance is lower compared
to StanfordNER and BiLSTM-CNN-CRF, we believe that
more base taggers are beneficial because they produce more
instances as candidate NEs and hence increase the potential
performance of our approach.

C. BASELINE APPROACHES
Baseline approaches are CI [12], and two Clustering+CI
approaches (TokenTrigram+CI and LabelTrigram+CI) [8].
Constrained inference is implemented based on off-the-shelf
StanfordNER as Goldberg et al. [8] do in their experiments.
All of them adopt rule-based instance selection.

3http://nlp.stanford.edu/software/CRF-NER.shtml (version 3.6.0).
4http://alias-i.com/lingpipe/ (version 4.1.0).
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• The CI baseline approach is a pure constrained
inference-based approach proposed by Kristjansson
et al. [12]. Labels of the manual annotated tokens are
utilized as constraints, and prediction of other tokens
around the manual annotated tokens is influenced. CI
simply selects the least confident tokens for manual
annotation.

• The TokenTrigram+CI baseline approach [8] applies
rule-based clustering for document-level label propaga-
tion before constrained inference and instance selection.
In each iteration, token wi and token wj are gathered into
a cluster if

(wi−1,wi,wi+1) = (wj−1,wj,wj+1),

where wi−1 and wi+1 are the tokens before and after wi.
Then, one token is selected randomly from the least
confident cluster for manual annotation. Other tokens in
the cluster are forced to share the same label with the
selected token. In this way, manually annotated labels
are propagated across sentences within a document.

• The LabelTrigram+CI baseline approach [8] adopts
rule-based strategy for document-level label propagation
too, like TokenTrigram+CI. wi and wj are clustered
together if

(yi−1,wi, yi+1) = (yj−1,wj, yj+1),

where yi−1 and yi+1 are the predicted labels forwi−1 and
wi+1.

AL [13], [14] and k-best CI+AL [7] approaches are not
included in our experiments because they require humans to
check and correct labels for all tokens in a selected sentence.
Besides, Zhang et al. [14] require humans to write regexes.
Whereas our RL-DINEA and the above-mentioned baseline
approaches require humans to assign one label to one NE
mention or one token in each iteration.

D. EVALUATION METRICS
Metrics of human effort and annotation quality are used to
measure the performance of RL-DINEA and the baseline
approaches.

• Precision, recall and F1 [24] are used to measure anno-
tation quality for comparing RL-DINEA with the base-
line approaches. F1 is the harmonic mean of precision
and recall. Although annotation quality is defined in
(3) for RL-DINEA as accuracy, which is the ratio of
correctly labeled instances over total instances extracted
by the base taggers, accuracy is not applicable to the
baseline approaches, because they are not approaches
that predict labels for instances extracted by the base
taggers.

• Human effort is defined in (4) as the number of
instances selected for manual annotation, normalized by
the total number of instances extracted in the preprocess.

VI. RESULTS AND ANALYSIS
This section presents experimental results and analysis. Pre-
cisions, recalls and F1s under different amounts of human
effort of RL-DINEA and the baseline approaches are com-
pared in Subsection VI-A. Document-level label propagation
strategies based on learning and rules are compared in Sub-
section VI-B. Trade-off between human effort and annotation
quality using the parameter λ in RL-DINEA is described
in Subsection VI-C. Contribution of F1 by propagation and
selection to RL-DINEA is analyzed in Subsection VI-D.
Ablation studies of the base taggers and the state features are
presented in Subsection VI-E and Subsection VI-F, respec-
tively. At last, convergence of the training algorithm is dis-
cussed in Subsection VI-G.

A. RESULTS
Averaged on the three datasets,5 RL-DINEA outperforms
all the baseline approaches both in terms of precision and
F1 under the same amount of human effort (see the top and
bottom parts of Fig. 3 (D)), and performs slightly worse in
some cases in terms of recall (see the middle part of Fig. 3
(D)). The results will be described in detail below.

In terms of precision, RL-DINEA outperforms all the
baseline approaches on all the datasets (see the upper part
of Fig. 3). Initially, when no human effort is spent,
RL-DINEA outperforms the baseline approaches due to
ensemble of multiple base taggers and document-level
label propagation. With the increase of human effort,
RL-DINEA maintains the advantage. At last, when human
effort reaches 1, precision reaches 1 because all instances
have been selected for manual annotation.

In terms of recall, RL-DINEA performs best on
AKSW-News and CoNLL’03, but is worst on Ontonotes 5.0
(see the middle part of Fig. 3). Ontonotes 5.0 is a mixed-genre
corpus, and the base taggers have relatively poor performance
on it (see Table 3). This results in a relatively low upper
bound of recall that RL-DINEA can achieve on Ontonotes
5.0, which is 0.913, while the upper bounds of recall on
AKSW-News and CoNLL’03 are 0.983 and 0.986, respec-
tively. RL-DINEA does not select or predict named entities
which have not been recognized by the base taggers.

Nevertheless, the precision of RL-DINEA on Ontonotes
5.0 is not affected by the relatively poor performance of the
base taggers (see the upper part of Fig. 3 (C)). A large portion
of the instances produced by the base taggers with poor per-
formance on Ontonotes 5.0 should be classified as negative.
In fact, the ensemble classifier trained on this kind of data
may tend to achieve a high precision but a low recall, which
are 0.917 and 0.777, respectively. Based on the ensemble
classifier, RL-DINEA achieves much higher precisions than
its recalls under different amounts of human effort.

5For each dataset, linear interpolation is used to estimate the precisions
under the amount of human effort of 0.1, 0.2, . . . , and 0.9. Then for each
amount of human effort, the estimated precisions on the three datasets are
averaged. The averaged recalls and F1s are obtained similarly.
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FIGURE 3. Human effort/precision, recall and F1 curves of our approach and the baseline approaches.

In terms of F1, RL-DINEA performs the best on the
three datasets in most cases (see the bottom part of Fig. 3).
The only exception is that RL-DINEA fails to beat CI and
TokenTrigram+CI on Ontonotes 5.0 when the amount of
human effort is more than 0.6. This is due to the low recall
of RL-DINEA on Ontonotes 5.0.

Averaged on the three datasets, in terms of human effort
required to achieve the same F1, RL-DINEA significantly
reduces human effort compared to the baseline approaches
(see Table 4). Taking F1 of 0.95 as an example, which is
the best F1 that LabelTrigram+CI can achieve in our experi-
ments, RL-DINEA requires only human effort of 0.19, while
the baseline approaches require at least human effort of 0.33.

The above results demonstrate the effectiveness of RL-
DINEA. RL-DINEA which learns document-level label
propagation and instance selection, outperforms the three
baseline approaches, including CI which do not propagate
any label at document level, and TokenTrigram+CI and
LabelTrigram+CI which adopt rule-based document-level
label propagation.

TABLE 4. Human effort required by our approach and the baseline
approaches to achieve different annotation qualities (F1s).

B. COMPARISON BETWEEN LEARNING- AND
RULE-BASED DOCUMENT-LEVEL LABEL PROPAGATION
Learning-based document-level label propagation in RL-
DINEA outperforms rule-based propagation in baseline
approaches (TokenTrigram+CI and LabelTrigram+CI) sig-
nificantly, in terms of contribution to the improvement of
annotation quality under the same amount of human effort
(see Fig. 4). Our learning-based propagation consistently
improves annotation quality under different amount of human
effort on all datasets, while rule-based propagation may
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FIGURE 4. Improvement of F1 contributed by learning- and rule-based document-level label propagation.

deteriorate annotation quality when human effort is increased
to a certain degree.

When the amount of human effort is zero, RL-DINEA
improves annotation quality by propagation, while
TokenTrigram+CI and LabelTrigram+CI do not. This is
because RL-DINEA can propagate a label from any instance,
regardless of whether it is manually annotated or not, while
TokenTrigram+CI and LabelTrigram+CI only make propa-
gation from manually annotated instances.

After some instances have been selected for manual
annotation, LabelTrigram+CI achieves more improvement
of annotation quality by propagation than RL-DINEA
on CoNLL’03 and Ontonotes 5.0 (see Fig. 4 (B) and
(C)). LabelTrigram+CI also outperforms TokenTrigram+CI,
because LabelTrigram+CI adopts a more aggressive propa-
gation strategy, which propagates a label to more instances.

As human effort increases, RL-DINEA consistently
improves annotation quality by propagation, while
TokenTrigram+CI and LabelTrigram+CI which adopt
rule-based propagation start to deteriorate annotation quality,
especially the latter with more aggressive propagation strat-
egy. TokenTrigram+CI and LabelTrigram+CImay introduce
some errors, which means that some tokens are assigned
with wrong labels by propagation [8]. This kind of errors
will further cause more errors, because the wrong labels
are used as constraints in the inference. In fact, deteri-
oration of annotation quality by the rule-based propaga-
tion in TokenTrigram+CI and LabelTrigram+CI is also
shown in the bottom part of Fig. 3 (D), in which CI
without any document-level label propagation outperforms
TokenTrigram+CI and LabelTrigram+CIwhen human effort
is greater than 0.5. From the results in Fig. 4, RL-DINEA
suffers much less from errors introduced by propagation,
compared to TokenTrigram+CI and LabelTrigram+CI.

When human effort reaches 1, RL-DINEA makes no
improvement of annotation quality by propagation, while
TokenTrigram+CI and LabelTrigram+CI continue to dete-
riorate annotation quality. For RL-DINEA, all candidate NE
mentions have been manually annotated, so there is no prop-
agation, and hence no improvement of annotation quality.

While for TokenTrigram+CI and LabelTrigram+CI, more
tokens are selected for manual annotation, some more errors
may be introduced by propagation and further constrained
inference.

Our learning-based document-level propagation shows
good adaptability to various situations, due to its data-driven
nature. Propagation in RL-DINEA is modeled as actions in
the MDP, and the reward function is designed to penalize
incorrect propagation. Propagation is learned by training
the deep Q-network with different value of the trade-off
parameter λ on different datasets.

C. TRADE-OFF BETWEEN HUMAN EFFORT AND
ANNOTATION QUALITY
Trade-off between human effort and annotation quality in
RL-DINEA is controlled using the parameter λ. Lower value
of λ leads tomore human effort and higher annotation quality;
and vice versa. The results with different values of λ on
AKSW-News are presented in the 3D space in Fig. 5. Each
round dot represents a tuple of human effort, annotation qual-
ity and objective value evaluated on the TEST set after each
training epoch. The early results during the training process
appear in green, and the late results appear in red. To make it
clear, projections of the results onto the plane of human effort
and annotation quality are also presented in Fig. 5.
When λ = 0, RL-DINEA immediately achieves the

annotation quality (accuracy) of 1.0 under the human effort
of 1.0. This means RL-DINEA learns to select all instances
for manual annotation, and reduces interactive annotation
to fully manual annotation where no document-level label
propagation is needed.

In the case of λ = 0.04, RL-DINEA starts from fully man-
ual annotation with the annotation quality of 1.0, the human
effort of 1.0, and the objective value of 0.9600. Aiming to
maximize the objective value, RL-DINEA gradually learns
to select less instances for manual annotation, and to propa-
gate labels among instances. Finally, the annotation quality
decreases to 0.9944, the human effort decreases to 0.5220,
and the objective value increases to 0.9735.
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FIGURE 5. Results with different values of the trade-off parameter λ in the 3D space of human effort, annotation quality and objective value during the
training process.

FIGURE 6. Improvement of F1 contributed by document-level label propagation and instance selection in our approach.

In the case of λ = 0.16, RL-DINEA does not start from
fully manual annotation, due to higher value of λ. It finally
achieves lower annotation quality of 0.9743 under lower
human effort of 0.1523. The objective value increases from
0.9003 to 0.9500.

When the value of λ increases to 1, RL-DINEA reduces
interactive annotation to pure prediction without any human
effort. During the process, the annotation quality increases
from 0.9338 to 0.9439, and the objective value is always equal
to the annotation quality since the human effort is always 0.
In this case, improvement of the annotation quality is all due
to document-level label propagation.

D. ANALYSIS OF DOCUMENT-LEVEL LABEL PROPAGATION
AND INSTANCE SELECTION
Analysis of the results shows that both document-level label
propagation and instance selection contribute to improv-
ing F1 of RL-DINEA, compared to the ensemble classifier
described in Subsection IV-B (see Fig. 6). When λ is 0,
all improvement of F1 is contributed by instance selec-
tion, because all instances of candidate NE mentions have
been manually annotated and there is no document-level
label propagation. In cases of λ from 0.01 to 0.64, both

document-level label propagation and instance selection con-
tribute to the improvement of F1. When λ increases to 1,
no instance is selected for manual annotation, and hence no
improvement of annotation quality is contributed by instance
selection.

Improvement of F1 contributed by document-level label
propagation and instance selection is related to perfor-
mance of the ensemble classifier. Lower performance of the
ensemble classifier means more space of improvement of
F1 for both document-level label propagation and instance
selection. F1s of the ensemble classifier on AKSW-News,
CoNLL’03 and Ontonotes 5.0 are 0.920, 0.932 and 0.840,
respectively. Correspondingly, document-level label propa-
gation and instance selection improve F1 more significantly
on Ontonotes 5.0 than on AKSW-News and CoNLL’03
(see Fig. 6).

Besides, improvement of F1 contributed by document-level
label propagation is also related to number of sentences
per document. A document containing more sentences
often contains more similar instances, so there are often
more document-level label propagations. This explains why
document-level label propagation improves F1 more signif-
icantly on AKSW-News than on CoNLL’03. The average
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FIGURE 7. Numbers of correct and incorrect propagations from identical-, super- and sub-form instances.

number of sentences per document in AKSW-News is more
than twice that in CoNLL’03 (see Table 2), although the F1s
on these two dataset are not significantly different.

The numbers of correct and incorrect propagations from
identical-, super- and sub-form instances are shown in see
Fig. 7. For each dataset, numbers are normalized by total
number of instances in the dataset. The case of λ = 0 is
omitted because there is no propagation in this case.

RL-DINEA benefits much more from propagations from
identical-form instances than super- and sub-form instances.
Averaged on all datasets and different values of λ, the pro-
portions of propagations from identical, super- and sub-form
instances over the total propagations are 71.4%, 14.1% and
14.5%, respectively. The proportions of correct propagations
from identical, super- and sub-form instances over the total
ones are 78.5%, 53.8% and 42.2%, respectively. Propaga-
tions from sub-form instances do not always have positive
effect because the base taggers and the ensemble classifier
would usually be much more certain about labels assigned
to super-form instances, since they are longer and have more
contextual information [10].

E. ANALYSIS OF BASE TAGGERS
A series of experiments are conducted to better understand
how the base taggers contribute to precision, recall and F1 of
our approach. The base taggers are added one by one to

the experiments according to their F1s in ascending order
(see Table 3). In the first experiment, only LingPipe and
Balie are used. In each subsequent experiment, one more base
tagger is added.

The precision improves significantly as the number of
base taggers integrated increases when no or little amount
of human effort is spent (see the upper part of Fig. 8). As
the amount of human effort increases, the gaps gradually
narrow. The experiments which use less base taggers achieve
the precision of 1 under less amount of human effort, because
there are less instances in these experiments (see (1)).

The recall always improves as the number of base taggers
integrated increases (see the middle part of Fig. 8). This is
intuitive, since more base taggers extract more instances of
candidate NE mentions from documents (see (1)).

The F1 always improves as the number of base taggers
integrated increases (see the bottom part of Fig. 8). This
means that RL-DINEA can benefit from the development of
NER techniques, since any NE tagger can be used as a base
tagger in RL-DINEA.

F. ANALYSIS OF STATE FEATURES
Two ablation studies are conducted to show the contribution
of each kind of state features to the overall performance of
our approach. In the first study, each kind of features is used
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FIGURE 8. Results of ablation experiments of base taggers.

FIGURE 9. Results of ablation experiments using state features individually.

individually to train the DQN agent. In the second study,
features are aggregated to train the DQN agent.

Among the five kinds of state features described in
Subsection IV-D, confidence, label and postag features have a
significant effect when being used individually, whereas over-
lapping and form features do not (see Fig. 9). Nevertheless,

when these features are aggregated, all of them contribute to
the performance (see Fig. 10).

G. ANALYSIS OF CONVERGENCE
Objective value curves in Fig. 11 show good convergence of
the training algorithm for RL-DINEA. The objective value
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FIGURE 10. Results of ablation experiments using aggregated state features.

FIGURE 11. Objective value curves during the training process with different values of the trade-off parameter λ.

is a weighted sum of human effort and annotation quality,
defined in (5), and is measured on the TEST set after each
training epoch. With the values of λ ranging from 0 to 1,
the objective values increase gradually with respect to the
number of training epochs. This demonstrates that the train-
ing algorithm is insensitive to the choice of λ.
In some cases, early stopping is triggered by the results on

the DEV set to prevent overfitting. The typical case is when
the λ is set to 0. After the first training epoch, the training
algorithm immediately learns that the optimal policy is to
select all instances for manual annotation. Then the learning
rate α is decreased by an order of magnitude, and the training
algorithm stops after five training epochs.

VII. CONCLUSION
This paper proposes a reinforcement learning-based approach
RL-DINEA to learn document-level label propagation and
instance selection for interactive named entity annota-
tion. The policy to select optimal actions is learned by

training the deep Q-network. Experiments are conducted
on AKSW-News, CoNLL’03, and Ontonotes 5.0 datasets.
To achieve the same annotation quality (0.95 measured by
F1 averaged on the three datasets), RL-DINEA reduces
human effort by more than 42% compared to the baseline
approaches, including one approach without document-level
label propagation, and two approaches with rule-based
document-level label propagation. RL-DINEA outperforms
all the baseline approaches, in terms of annotation quality
(averaged on the three datasets) under the same amount
of human effort. In addition, any named entity tagger can
be integrated as a base tagger into RL-DINEA, and the
precision, recall and F1 of RL-DINEA improve signifi-
cantly as strong base taggers are integrated. So, in future
work, we will integrate strong base taggers based on BERT,
XLNet, GPT, etc. We will explore cross-document label
propagation, and extend our approach to other interactive
annotation tasks, such as image segmentation and video
segmentation.
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