
Received January 26, 2021, accepted February 26, 2021, date of publication March 4, 2021, date of current version March 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3064073

Enabling Large Intelligent Surfaces With
Compressive Sensing and Deep Learning
ABDELRAHMAN TAHA, MUHAMMAD ALRABEIAH , AND AHMED ALKHATEEB
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA

Corresponding author: Ahmed Alkhateeb (aalkhateeb@asu.edu)

ABSTRACT Employing large intelligent surfaces (LISs) is a promising solution for improving the coverage
and rate of future wireless systems. These surfaces comprise massive numbers of nearly-passive elements
that interact with the incident signals, for example by reflecting them, in a smart way that improves the
wireless system performance. Prior work focused on the design of the LIS reflection matrices assuming full
channel knowledge. Estimating these channels at the LIS, however, is a key challenging problem. With
the massive number of LIS elements, channel estimation or reflection beam training will be associated
with (i) huge training overhead if all the LIS elements are passive (not connected to a baseband) or with
(ii) prohibitive hardware complexity and power consumption if all the elements are connected to the baseband
through a fully-digital or hybrid analog/digital architecture. This paper proposes efficient solutions for these
problems by leveraging tools from compressive sensing and deep learning. First, a novel LIS architecture
based on sparse channel sensors is proposed. In this architecture, all the LIS elements are passive except for
a few elements that are active (connected to the baseband). We then develop two solutions that design the LIS
reflection matrices with negligible training overhead. In the first approach, we leverage compressive sensing
tools to construct the channels at all the LIS elements from the channels seen only at the active elements.
In the second approach, we develop a deep-learning based solution where the LIS learns how to interact with
the incident signal given the channels at the active elements, which represent the state of the environment
and transmitter/receiver locations. We show that the achievable rates of the proposed solutions approach the
upper bound, which assumes perfect channel knowledge, with negligible training overhead and with only a
few active elements, making them promising for future LIS systems.

INDEX TERMS Large intelligent surface, intelligent reflecting surfaces, reconfigurable intelligent surface,
smart reflect-array, beamforming, millimeter wave, compressive sensing, deep learning.

I. INTRODUCTION
Large Intelligent Surfaces (LISs) have been envisioned as
integral constituents of beyond-5Gwireless systems [2]–[17].
From a conceptual design perspective, by stacking a huge
number of sensing or radiating elements, the LIS ideally aims
to effectuate a continuous electromagnetically active surface.
These LIS elements are expected to interact in a smart way
with the incident signals in order to enhance the spectral effi-
ciency and coverage of wireless systems [2], [3]. What adds
to the appeal of such surfaces is that their function could be
performed with energy-efficient implementations, e.g., using
nearly-passive elements such as analog phase shifters [4]–[6].
Prior work focused on designing the LIS interaction matrices
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and evaluating their spectral efficiencies and coverage gains
while assuming the availability of global channel knowledge.
But how can these extremely large-dimensional channels
be estimated if the LIS is implemented using only reflect-
ing elements?Obtaining this channel knowledgemay require
huge—and possibly prohibitive—training overhead, which
represents the main challenge for the LIS system operation.
To overcome that, this paper proposes a novel LIS hardware
architecture along with two solutions based on compressive
sensing and deep learning. These solutions utilize the novel
architecture of the surface and design the interaction matrix
with very negligible training overhead.

A. PRIOR WORK
Under various names such as reconfigurable intelligent sur-
faces, intelligent reflecting surfaces, and smart reflect-arrays,
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LIS-assisted wireless communications have been drawing
increasing interest in recent years. From an implementation
perspective, LIS can be built using nearly-passive elements
with reconfigurable parameters [5]. Various LIS designs
have been proposed in the literature with more promi-
nence given to software-defined metamaterials [7], [8] and
conventional reflect-arrays [4], [6] among others. For all
those designs, different signal processing solutions have been
proposed for optimizing the design of the LIS interaction
matrices. An LIS-assisted downlink multiuser setup was con-
sidered in [5] with single-antenna users. computational low-
complexity algorithms were then proposed for optimizing
the design of the LIS interaction matrices, using quantized
phase shifters/reflectors for modeling the LIS elements. In
[9], an LIS-assisted downlink scenario was considered, where
both the LIS interaction matrix and the base station precoder
matrix were designed, assuming the case where a line-of-
sight (LOS)may exist between the base station and the LIS. In
[10], a new transmission strategy combining LIS with index
modulation was proposed to improve the system spectral
efficiency.

In terms of the overall system performance, an uplink mul-
tiuser scenario was considered in [11] and the data rates were
formulated for the case where channel estimation errors exist
in the available channel knowledge. A downlink LIS-assisted
multiple-input multiple-output (MIMO) non-orthogonal mul-
tiple access (NOMA) framework is proposed in [16] for
achieving higher system spectrum efficiency gains. The LIS
can be leveraged for wireless localization purposes as well; in
[17], an LIS-assisted downlink millimeter wave (mmWave)
positioning problem was analyzed from the Fisher Informa-
tion perspective. Based on this analysis, an algorithm was
developed for improving the positioning quality.

Deep learning solutions have been proposed in the lit-
erature for addressing design challenges in mmWave and
massive MIMO systems [18]–[20]. In [18], a deep learn-
ing based beam prediction solution was proposed for dis-
tributed mmWave MIMO systems to serve highly mobile
users with negligible training overhead and high data rate
gains, compared to coordinated beamforming strategies that
do not leverage machine learning. In [19], a deep learning
based blockage prediction solution was proposed to address
the reliability and latency challenges of sudden blockage of
the line-of-sight link in mmWave MIMO systems. A chan-
nel covariance prediction solution using generative adver-
sarial networks was proposed in [20] for mmWave Massive
MIMO systems to reduce the training overhead associated
with acquiring the channel knowledge.

The Critical Challenge: All the prior work in [5], [6],
[9]–[11], [16] assumed that the knowledge about the channels
between the LIS and the transmitters/receivers is available at
the base station, either perfectly or with some error. Obtaining
this channel knowledge, however, is one of the most crucial
challenges for LIS systems because of the massive number
of antennas (LIS elements) and the hardware constraints on
these elements. More specifically, if the LIS elements are

implemented using phase shifters that just reflect the incident
signals, then there are two main approaches for designing the
LIS reflection matrix. The first approach is to estimate the
LIS-assisted channels at the transmitter/receiver by training
all the LIS elements, normally one by one, and then use the
estimated channels to design the reflectionmatrix. This yields
a massive channel training overhead because of the very
large number of elements at the LIS. Instead of the explicit
channel estimation, the LIS reflection matrix can be selected
from quantized codebooks via online beam/reflection train-
ing. This is similar to the common beam training techniques
in mmWave systems that employ similar phase shifter archi-
tectures [21], [22]. To sufficiently quantize the space, how-
ever, the size of the reflection codebooks needs normally to
be in the order of the number of antennas, which leads to huge
training overhead. To avoid this training overhead, a trivial
solution is to employ fully-digital or hybrid analog/digital
architectures at the LIS, where every antenna element is con-
nected somehow to the baseband where channel estimation
strategies can be used to obtain the channels [23]–[25]. This
solution, however, leads to high hardware complexity and
power consumption because of the massive number of LIS
elements.

B. CONTRIBUTION
In this paper, we consider an LIS-assisted wireless communi-
cation system and propose a novel LIS architecture as well
as compressive sensing and deep learning based solutions
that design the LIS reflection matrix with negligible training
overhead. More specifically, the contributions of this paper
can be summarized as follows.

• Novel LIS hardware architecture: We introduce a new
LIS architecture where all the elements are passive
except a few randomly distributed active channel sen-
sors. Only those few active sensors are connected to the
baseband of the LIS controller and are used to enable the
efficient design of the LIS reflection matrices with low
training overhead.

• Compressive sensing based LIS reflectionmatrix design:
Given the new LIS architecture with randomly dis-
tributed active elements, we develop a compressive sens-
ing based solution to recover the full channels between
the LIS and the transmitters/receivers from the sampled
channels sensed at the few active elements. Using the
constructed channels, we then design the LIS reflection
matrices with no training overhead. We show that the
proposed solution can efficiently design the LIS reflec-
tion matrices when only a small fraction of the LIS
elements are active, yielding a promising solution for
LIS systems from both energy efficiency and training
overhead perspectives.

• Deep learning based LIS reflection matrix design: By
leveraging deep learning tools, we propose a solution
that learns the directmapping from the sampled channels
seen at the active LIS elements and the optimal LIS
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reflection matrices that maximize the system achievable
rate. Essentially, the proposed approach teaches the LIS
system how to interact with the incident signal given
the knowledge of the sampled channel vectors, that we
call environment descriptors. The LIS learns that when it
observes these environment descriptors, it should reflect
the incident signal using this reflection matrix. Different
from the compressive sensing solution, the deep learning
approach leverages the prior observations at the LIS and
does not require any knowledge of the array structure.
It is worth mentioning that a conference version of this
work is presented in [1].

The proposed solutions are extensively evaluated using the
accurate ray-tracing based DeepMIMO dataset [26]. The
results show that the developed compressive sensing and
deep learning solutions can both approach the optimal upper
bound, which assumes perfect channel knowledge, when only
a few LIS elements are active and with almost no training
overhead. We have investigated the use of deep learning
approaches (supervised and reinforcement learning) to design
the reflection matrices in some of our prior conference work
[1], [27]. Therefore, in this work, we provide an in-depth
analysis of the performance of the supervised deep learning
solution. This is done through two avenues; the first avenue
is a comparative study that pits the deep learning and com-
pressive sensing solutions against each other for spectral and
energy efficiencies. The second one is a detailed study of the
impact of various system parameters on the deep learning
performance. These two studies shed some light on howmuch
adaptability and robustness an LIS-assisted system could gain
from using deep learning.

The rest of the paper is organized as follows. Section II
presents the system and channel models adopted in this paper.
Section III presents the formal description of the main prob-
lem in this paper, the design of the LIS interaction matrix.
Section IV proposes and discusses the novel sparse LIS
architecture. Sections V and VI present, respectively, the
proposed compressive sensing and deep learning solutions
to the problem of designing the interaction matrix. Section
VII puts the proposed architecture and solutions to test by
investigating the performance of each solution and the effect
of various design parameters. Finally, Section VIII concludes
this paper with a summary of the findings and a few conclud-
ing remarks.
Notation: We use the following notation throughout this

paper: A is a matrix, a is a vector, a is a scalar, A is a set
of scalars, and A is a set of vectors. ‖a‖p is the p-norm
of a. |A| is the determinant of A, whereas AT , AH , A∗,
A−1, A† are its transpose, Hermitian (conjugate transpose),
conjugate, inverse, and pseudo-inverse respectively. [A]r,:
and [A]:,c are the r th row and cth column of the matrix A
respectively. diag(a) is a diagonal matrix with the entries of
a on its diagonal. I is the identity matrix. 1N and 0N are
the N -dimensional all-ones and all-zeros vector respectively.
A�B and A⊗B are the Hadamard and Kronecker products

FIGURE 1. A block diagram of the adopted system model where the
transmitter-receiver communication is assisted by a large intelligent
surface (LIS). The LIS is interacting with the incident signal through an
interaction matrix 9.

of A and B, respectively. N (m,R) is a complex Gaussian
random vector with mean m and covariance R. E [·] is used
to denote expectation. vec(A) is a vector whose elements are
the stacked columns of matrix A.

II. SYSTEM AND CHANNEL MODELS
The adopted system and channel models for large intelligent
surfaces (LISs) are described in this section.

A. SYSTEM MODEL
Consider a communication system where a transmitter is
communicating with a receiver, and this communication is
aided by a large intelligent surface (LIS), as depicted in
Fig. 1. These transmitters/receivers can represent either base
stations or user equipment. Let the LIS be equipped with M
reconfigurable elements and assume that both the transmitter
and receiver have a single-antenna. It is worth noting here
that such an assumption is only adopted for simplicity of
exposition and the proposed solutions and the results in this
paper can be readily extended to multi-antenna transceivers.
To put that description in formal terms, we adopt an OFDM-
based system with K subcarriers. We define hTR,k ∈ C as
the direct channel between the transmitter and receiver at
the k th subcarrier, hT,k ,hR,k ∈ CM×1 as the M × 1 uplink
channels from the transmitter and receiver to the LIS at the
k th subcarrier, and by reciprocity, hTT,k ,h

T
R,k as the downlink

channels. The received signal at the receiver side could be
expressed as

yk = hTR,k9khT,ksk︸ ︷︷ ︸
LIS-assisted link

+ hTR,ksk︸ ︷︷ ︸
Direct link

+nk , (1)

where the matrix 9k ∈ CM×M , that we call the LIS interac-
tion matrix, characterizes the interaction of the LIS with the
incident (impinging) signal from the transmitter. sk represents
the transmitted signal over the k th subcarrier, and satisfies
the per-subcarrier power constraint E[|sk |2] = PT

K , with PT
being the total transmit power. The receive noise is denoted
by nk ∼ NC(0, σ 2

n ).
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The overall objective of the LIS is then to interact with the
incident signal (via adjusting 9k ) in a way that optimizes
a certain performance metric such as the system achievable
rate or the network coverage. To simplify the design and
analysis of the algorithms in this paper, we will focus on
the case where the direct link does not exist. This represents
the scenarios where the direct link is either blocked or has
negligible receive power compared to that received through
the LIS-assisted link. With this assumption, the receive signal
can be expressed as

yk = hTR,k9khT,ksk + nk , (2)
(a)
=
(
hR,k � hT,k

)T
ψksk + nk , (3)

where (a) follows from the diagonal structure of the inter-
action matrix 9k , whose diagonal entries could be stacked
in a vector ψk ∈ CM×1 such that 9k = diag

(
ψk
)
. This

diagonal structure results from the LIS operation where every
element m,m ∈ {1, 2, . . . ,M}, reflects only its incident
signal after multiplying it with an interaction factor

[
ψk
]
m.

Now, we make two important notes on these interaction vec-
tors. First, while the interaction factors,

[
ψk
]
m ,∀m, k , can

generally have different magnitudes (amplifying/attenuation
gains), it is more practical to assume that the LIS elements
are implemented using only phase shifters. Second, since the
implementation of the phase shifters is done in the analog
domain (using RF circuits), the same phase shift will be
applied to the signals on all subcarriers, i.e., ψk = ψ,∀k .
Accounting for these practical considerations, we assume that
every interaction factor is just a phase shifter, i.e., [ψ]m =
ejφm . Further, we will call the interaction vectorψ in this case
the reflection beamforming vector.

B. CHANNEL MODEL
In this paper, we adopt a wideband geometric channel model
for the channels hT,k ,hR,k between the transmitter/receiver
and the LIS [1], [18], [27]. Consider an uplink transmitter-
LIS channel, hT,k ∈ CM×1, consisting of L clusters, each
of which (i.e., `th cluster) contributes a single ray with a
time delay τ` ∈ R; azimuth/elevation angles of arrival, φ` ∈
[0, 2π ), θ` ∈ [0, π); an uplink path loss ρT; and a complex
coefficient α` ∈ C. Let p (τ ) denotes the pulse shaping
function for TS -spaced signaling evaluated at τ seconds. Let
the array response vector of the LIS at the angles of arrival,
φ`, θ`, be defined as a(φ`, θ`) ∈ CM×1. The delay-d channel
vector, hT,d ∈ CM×1, between the transmitter and the LIS can
then be formulated as

hT,d =

√
M
ρT

L∑
`=1

α` p(dTS − τ`) a (θ`, φ`) , (4)

Given this delay-d channel, the channel vector at subcarrier
k , hT,k , can be defined in the frequency domain as

hT,k =
D−1∑
d=0

hT,d e−j
2πk
K d . (5)

whereD is the channel tap length. The downlink LIS-receiver
channel hR,k can be defined similarly. The channel vectors,{
hT,k

}K
k=1 and

{
hR,k

}K
k=1, are assumed constant within the

period of one coherence time, TC , which mainly depends on
the dynamics of the environment and the user mobility. It is
worth noting that the number of channel paths L depends
highly on the operational frequency band and the propa-
gation environment. For example, mmWave channels nor-
mally consist of a few channel paths, ∼3-5 paths, [28]–[30],
while sub-6 GHz signal propagation generally experiences
rich scattering resulting in channels with more multi-path
components.

III. PROBLEM FORMULATION
Given the system and channel models in Section II, our
objective is to design the LIS interaction vector (reflection
beamforming vector), ψ ∈ CM×1, in order to maximize the
achievable rate at the receiver, which can be formulated as

R =
1
K

K∑
k=1

log2

(
1+ SNR

∣∣∣hTR,k9hT,k
∣∣∣2) , (6)

=
1
K

K∑
k=1

log2

(
1+ SNR

∣∣∣(hT,k � hR,k
)T
ψ

∣∣∣2) , (7)

where SNR = PT/
(
Kσ 2

n
)
represents the signal-to-noise

ratio. As mentioned in Section II-A, every element in the LIS
reflection beamforming vector, ψ , is implemented using an
RF phase shifter. These phase shifters, however, normally
have a quantized set of angles and cannot shift the signal
with any phase. To capture this constraint, we assume that
the reflection beamforming vector ψ can only be picked
from a pre-defined codebook P . Every candidate reflection
beamforming codeword in P is assumed to be implemented
using quantized phase shifters. With this assumption, our
objective is then to find the optimal reflection beamforming
vector ψ? that solves

ψ? = argmax
ψ∈P

K∑
k=1

log2

(
1+ SNR

∣∣∣(hT,k � hR,k
)T
ψ

∣∣∣2) ,
(8)

to result in the optimal rate R? defined as

R? = max
ψ∈P

1
K

K∑
k=1

log2

(
1+ SNR

∣∣∣(hT,k � hR,k
)T
ψ

∣∣∣2) .
(9)

The optimization problem in (8), unfortunately, has no close-
form solution. This is a consequence of (a) the time-domain
implementation of the reflection beamforming vector, i.e.,
using only one vector ψ for all subcarriers, and (b) the
quantized codebook constraint.

The main challenge: As characterized in (8), finding the
optimal LIS interaction vector ψ? and achieving the optimal
rate R? requires an exhaustive search over the codebook P .
Note that the codebook size should normally be in the same
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FIGURE 2. This figure illustrates the proposed LIS architecture where M active channel sensors are randomly distributed over
the LIS. These active elements have two modes of operation: (i) a channel sensing mode where it is connected to the
baseband and is used to estimate the channels and (ii) a reflection mode where it just reflects the incident signal by applying
a phase shift. The rest of the LIS elements are passive reflectors and are not connected to the baseband.

order as the number of antennas to make use of these anten-
nas. This means that a reasonable reflection beamforming
codebook for LIS systems will probably have thousands of
candidate codewords. With such huge codebooks, solving the
exhaustive search in (8) is very challenging. More specif-
ically, there are two main approaches for performing the
search in (8).

• Full channel estimation with offline exhaustive
search: In this approach, we need to estimate the full
channels between the LIS and the transmitter/receiver,
hT,k ,hR,k and use it to find the best reflection beam-
forming vector by the offline calculation of (8). Estimat-
ing these channel vectors, however, requires the LIS to
employ a complex hardware architecture that connects
all the antenna elements to a baseband processing unit
either through a fully-digital or hybrid analog/digital
architectures [23], [24]. Given the massive numbers of
antennas at large intelligent surfaces, this approach can
yield prohibitive hardware complexity in terms of
routing and power consumption among others. If the
LIS is operated and controlled via a base station or an
access point [5], then this channel estimation process can
be done at these communication ends. This, however,
assumes an orthogonal training over the LIS antennas,
for example by activating one LIS antenna at a time,
which leads to prohibitive training overhead given the
number of antennas at the LIS.

• Online exhaustive beam training: Instead of the
explicit channel estimation, the best LIS beam reflec-
tion vector ψ? can be found through an over-the-air
beam training process. This process essentially solves
the exhaustive search in (8) by testing the candidate
interaction vectors ψ ∈ P one by one. This exhaustive

beam training process, however, incurs again very large
training overhead at the LIS systems.

Our objective in this paper is to enable large intelligent
surfaces by addressing thismain challenge.More specifically,
our objective is to enable LIS systems to approach the optimal
achievable rate in (9) by adopting low-complexity hard-
ware architectures and requiring low training overhead.
For this objective, we first propose a novel energy-efficient
LIS transceiver architecture in Section IV. Then, we show
in Sections V-VI how to employ this LIS architecture to
achieve near-optimal achievable rates with negligible training
overhead via leveraging tools from compressive sensing and
deep learning.

IV. LARGE INTELLIGENT SURFACES WITH SPARSE
SENSORS: A NOVEL ARCHITECTURE
As discussed in Section III, a main challenge for the LIS
system operation lies in the high hardware complexity and
training overhead associated with designing the LIS interac-
tion (reflection beamforming) vector, ψ . To overcome this
challenge and enable LIS systems in practice, we adopt a
novel LIS architecture that relies on sparsely embedded active
sensors. To further illustrate this architecture, consider the
LIS depicted in Fig. 2, which consists of (i) a set of M
passive reflecting elements and (ii) another set of M active
channel sensors such that M � M . The M passive ele-
ments are all implemented using RF phase shifters, and they
are not connected to the baseband unit. On the other hand,
the M active sensors are assumed to be selected from the
passive sensors in the LIS. In particular, those sensors are
designed to have twomodes of operation (as shown in Fig. 2):
(i) A channel sensingmode where they work as receivers with
full RF chains and baseband processing, and (ii) a reflection
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mode where they act just like the rest of the passive elements
that reflect the incident signal.

Before proceeding further, we need to emphasize
two important points. First, while we describe the M
phase-shifting elements as passive elements, they are
normally implemented using reconfigurable active RF
circuits [4], [31].We just adopt that terminology to differenti-
ate them from the active channel sensors, i.e., they are passive
in the sense that they do not provide any sensing information
to the baseband. Second, our proposed architecture is differ-
ent from the one proposed in [32], where an all-passive LIS
assists the multiuser communication systems enabled by an
all-active access point. Next, we define the channels from the
transmitter/receiver to the active channel sensors of the LIS,
and then we discuss how to leverage this energy-efficient LIS
architecture for designing the LIS interaction vector ψ .
Sampled channel vectors: We define the M × 1 uplink

sampled channel vector, hT,k ∈ CM×1, as the channel vector
from the transmitter to theM active elements at the LIS. This
vector can then be expressed as

hT,k = GLIS hT,k , (10)

where GLIS is an M × M selection matrix that selects the
entries of the original channel vector, hT,k , that correspond to
the active LIS elements. If A defines the set of indices of the
active LIS antenna elements, |A| = M , then G LIS = [I]A,:,
i.e., GLIS includes the rows of the M × M identity matrix,
I, that correspond to the indices of the active elements. The
sampled channel vector, hR,k ∈ CM×1, from the receiver to
the M active sensors of the LIS is similarly defined. Finally,
hk = hT,k � hR,k is defined as the overall LIS sampled
channel vector at the k th subcarrier.

Designing the LIS interaction vector: In the system
model and the proposed LIS architecture in, respectively,
Section II-A and Fig. 2, the sampled channel vectors
hT,k ,hR,k can easily be estimated. This is done by, for exam-
ple, using an uplink training approach, in which the transmit-
ter can send a single pilot that is simultaneously processed
with all active elements to get hT,k . The same approach
could also be followed to estimate hR,k . With the knowledge
of these two sampled channels, the critical question now
becomes: can we use them to select the optimal reflection
beamforming vectorψ? that solves (9)? The next two sections
propose two approaches for addressing this problem leverag-
ing compressive sensing (in Section V) and deep learning (in
Section VI).

V. COMPRESSIVE SENSING BASED LIS INTERACTION
DESIGN
As shown in Section III, finding the optimal LIS interac-
tion (reflection beamforming) vector ψ? that maximizes the
achievable rate with no beam training overhead requires
the availability of the full channel vectors hT,k ,hR,k . Esti-
mating these channel vectors at the LIS, however, nor-
mally requires that every LIS antenna gets connected to the
baseband processing unit through a fully-digital or hybrid

architecture [23], [25], [33]. This can massively increase the
hardware complexity with the large number of antennas at the
LIS systems. In this section, and adopting the low-complexity
LIS architecture proposed in Section IV, we show that it is
possible to recover the full channel vectors hT,k ,hR,k from
the sampled channel vectors hT,k ,hR,k when the channels
experience sparse scattering. This is typically the case in
mmWave and LOS-dominant sub-6 GHz systems.

A. RECOVERING FULL CHANNELS FROM SAMPLED
CHANNELS
With the proposed LIS architecture in Fig. 2, the LIS can eas-
ily estimate the sampled channel vectors hT,k ,hR,k through
uplink training from the transmitter and receiver to the LIS
with a few pilots. Next, we explain how to use these sampled
channel vectors to estimate the full channel vectors hT,k ,hR,k .
First, note that the hT,k in (4), (5) (and similarly for hR,k ) can
be written as

hT,k =

√
M
ρT

D−1∑
d=0

L∑
`=1

α` p(dTS − τ`) a (θ`, φ`) e−j
2πk
K d , (11)

=

L∑
`=1

β`,k a (θ`, φ`) , (12)

where β`,k =
√

M
ρT
α`
∑D−1

d=0 p(dTS − τ`)e
−j 2πkK d . Further,

by defining the array response matrixA and the k th subcarrier
path gain vector βk as

A = [a (θ1, φ1) , a (θ2, φ2) . . . , a (θL , φL)] , (13)

βk =
[
β1,k , β2,k , . . . , βL,k

]T
, (14)

we can write hT,k in a more compact way as hT,k = A βk .
Now, we note that in several important scenarios, such as
mmWave and LOS-dominant sub-6 GHz, the channel expe-
riences sparse scattering, which results is a small number of
paths L [24], [29]. In order to leverage this sparsity, we follow
[25] and define the dictionary of array response vectors AD,
where every column constructs an array response vector in
one quantized azimuth and elevation direction. For example,
if the LIS adopts a uniform planar array (UPA) structure, then
we can define AD as

AD = AAz
D ⊗ AEl

D (15)

with AAz
D and AEl

D being the dictionaries of the azimuth and
elevation array response vectors. Every column in AAz

D (and
similarly forAEl

D ) constructs an azimuth array response in one
quantized azimuth (elevation) direction. If the number of grid
points in the azimuth and elevation dictionaries is NAz

D and
NEl
D , respectively, and the number of horizontal and vertical

elements of the UPA is MH,MV, where M = MHMV, then
AD has dimensionsM ×NAz

D NEl
D . Now, assuming that size of

the grid is large enough such that the azimuth and elevation
angles θ`, φ`,∀`matches exactly L points in this grid (which
is a common assumption in the formulations of the sparse
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channels estimation approaches [24], [25], [34]), then we can
rewrite hT,k as

hT,k = AD xβ,k , (16)

where xβ,k is an NAz
D NEl

D sparse vector with L � NAz
D NEl

D
non-zero entries equal to the elements of βk . Further, these
non-zero entries are in the positions that correspond to the
channel azimuth/elevation angles of arrival. Next, let ĥT,k
denote the noisy sampled channel vectors, then we can write

ĥT,k = GLIShT,k + vk , (17)

= GLISAD xβ,k + vk , (18)

= 8 xβ,k + vk , (19)

where vk ∼ NC
(
0, σ 2

n I
)
represent the receive noise vector

at the LIS active channel sensors and GLIS is the selection
matrix defined in (10). Now, given the equivalent sensing
matrix, 8 and the noisy sampled channel vector ĥT,k , the
objective is to estimate the sparse vector xβ,k that solves the
non-convex combinatorial problem

min
∥∥xβ,k∥∥0 s.t.

∥∥∥̂hT,k −8 xβ,k
∥∥∥
2
≤ σ. (20)

Given the sparse formulation in (20), several compressive
sensing reconstruction algorithms, such as orthogonal match-
ing pursuit (OMP) [35], [36], can be employed to find an
approximate solution for xβ,k . With this solution for xβ,k , the
full channel vector hT,k can be constructed according to (16).
Finally, the constructed full channel vector can be used to find
the best LIS reflection beamforming vector, ψn CS ∈ P , out
of the codebook P , via an offline search using (8).

In this paper, we assume for simplicity that the M active
channel sensors are randomly selected from the M LIS ele-
ments, assuming that all the elements are equally likely to
be selected. It is important, however, to note that the spe-
cific selection of the active elements designs the compressive
sensing matrix 8 and decides its properties. Therefore, it is
interesting to explore the optimization of the active element
selection, leveraging tools from nested arrays [37], co-prime
arrays [38], [39], incoherence frames [40], and difference
sets [33], [41].

B. SIMULATION RESULTS AND DISCUSSION
To evaluate the performance of the proposed compressive
sensing based solution, we consider a simulation setup at two
different carrier frequencies, namely 3.5GHz and 28GHz.
The simulation setup consists of one large intelligent surface
with a uniform planar array (UPA) in the y-z plane, which
reflects the signal coming from one transmitter to another
receiver, as depicted in Fig. 6. This UPA consists of 16× 16
antennas at 3.5GHz and 64×64 antennas at 28GHz. We gen-
erate the channels using the publicly available ray-tracing
based DeepMIMO dataset [26], with the ’O1’ scenario that
consists of a street and buildings on the sides of the street.
Please refer to Section VII-A for a detailed description of the
simulation setup and its parameters.

FIGURE 3. This figure plots the achievable rates using the proposed
compressive sensing based solution for two scenarios, namely a
mmWave 28GHz scenario and a low-frequency 3.5GHz one. These
achievable rates are compared to the optimal rate R? in (9) that assumes
perfect channel knowledge. This figure illustrates the potential of the
proposed solutions that approach the upper bound, while requiring only
a small fraction of the total LIS elements to be active.

Given this described setup, and adopting the novel LIS
architecture in Fig. 2, we apply the proposed compressive-
sensing based solution described in Section V-A as follows:
(i) We obtain the channel vectors hT,k ,hR,k using the ray-
tracing based DeepMIMO dataset, and add noise with the
noise parameters described in Section VII-A. (ii) Adopt-
ing the LIS architecture in Fig. 2, we randomly select M
elements to be active and construct the sampled channel
vectors ĥT,k , ĥR,k . (iii) Using OMP with a grid of size
NAz
D NEl

D ,N
Az
D = 2MH,NEl

D = 2MV, we recover an approxi-
mate solution of the full channel vectors and use this to search
for the optimal LIS interaction vector using (8). The achiev-
able rate using this proposed compressive sensing based solu-
tion is shown in Fig. 3 compared to the upper bound with
perfect full channel state information (CSI), hT,k and hR,k ,
calculated according to (9).

Gains and Limitations: In Fig. 3, we plot the achievable
rates of the proposed compressive sensing based solution and
upper bound versus the ratio of the active elements to the
total number of antennas, i.e.,M/M . As shown in this figure,
the proposed novel LIS architecture with the compressive
sensing based solution can achieve almost the optimal rate
with a small fraction of the LIS antennas being active. This
illustrates the significant saving in power consumption that
can be achieved using the LIS architecture in Fig. 2 that
includes a few active channel sensors. Further, since the
LIS reflection beamforming vector ψ is obtained through an
offline search with no beam training, the proposed solution
approaches the optimal rate with negligible training overhead,
ideally with two uplink pilots to estimate ĥT,k , ĥR,k . This
enables the proposed LIS systems to support highly mobile
applications such as vehicular communications and wireless
virtual/augmented reality.
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FIGURE 4. This figure summarizes the key idea of the proposed deep learning solution. The sampled channel
vectors are considered as environment descriptors as they define, with some resolution, the
transmitter/receiver locations and the surrounding environment. The deep learning model learns how to map
the observed environment descriptors to the optimal LIS reflection vector.

Despite this interesting gain of the proposed compressive
sensing based solution, it has some limitations. First, recover-
ing the full channel vectors from the sampled ones according
to Section V-A requires the knowledge of the array geometry
and is hard to extend to LIS systems with unknown array
structures. Second, the compressive sensing solution relies
on the sparsity of the channels and its performance becomes
limited in scenarios with rich NLOS scattering. This is shown
in Fig. 3 as the compressive sensing based solution requires a
higher ratio of the LIS elements to be active to approach the
upper bound in the 3.5GHz scenario that has more scattering
than the mmWave 28GHz case. Further, the compressive
sensing solution does not leverage previous observations to
improve the current channel recovery. These limitationsmoti-
vate the deep learning based solution that we propose in the
following section.

VI. DEEP LEARNING BASED LIS INTERACTION DESIGN
In this section, we introduce a novel application of deep
learning in the reflection beamforming design problem of
large intelligent surfaces. The section is organized as follows:
First, the key idea of the proposed deep learning (DL) based
reflection beamforming design is explained. Then, the system
operation and the adopted deep learning model are diligently
described. We refer the interested reader to [42] for a brief
background on deep learning.

A. THE KEY IDEA
The large intelligent surfaces are envisioned as key compo-
nents of future networks [5]. These surfaces will interact with
the incident signals, for example by reflecting them, in a

way that improves the wireless communication performance.
To decide on this interaction, however, the LIS systems
or their operating base stations and access points need to
acquire some knowledge about the channels between the LIS
and the transmitter/receiver. As we explained in Section III,
the massive number of antennas at these surfaces makes
obtaining the required channel knowledge associated with
(i) prohibitive training overhead if all the LIS elements are
passive or (ii) infeasible hardware complexity/power con-
sumption in the case of fully-digital or hybrid based LIS
architectures.

The channel vectors/matrices, however, are intuitively
some functions of the various elements of the surrounding
environment such as the geometry, scatterer materials, and the
transmitter/receiver locations among others. Unfortunately,
the nature of this function—its dependency on the various
components of the environment—makes its mathematical
modeling very hard and infeasible in many cases. This depen-
dence, though, means that the interesting role the LIS is play-
ing could be enabled with some form of awareness about the
surrounding environment. With this motivation, and adopting
the proposed LIS architecture in Fig. 2, we propose to utilize
the sampled channels seen by the few active elements of
the LIS as environment descriptors. These descriptors are
expected to capture some information about the multi-path
signature [18]–[20], as shown in Fig. 4. By tapping into
the environment-specific information in those descriptors,
a prediction on the optimal LIS interaction vector could
be made using a deep learning algorithm. The algorithm
is simply expected to learn a mapping function that relates
the descriptor vector space with that of the LIS interaction
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vector. In an abstract sense, this could be seen as teaching
the LIS system how to interact with the wireless signal
given the knowledge of the environment descriptors. This
is a desirable ability for the LIS to have, especially con-
sidering that the sampled channel vectors can be obtained
with negligible training overhead as explained in Section IV.
Ideally, the algorithm will learn a perfect prediction function
that maps an environment descriptor to the optimal interac-
tion vector, which means the LIS can approach the optimal
rate in (9) with negligible training overhead and with low-
complexity architectures (as only a few elements of the LIS
are active).

B. PROPOSED SYSTEM OPERATION
In this section, we describe the system operation of the pro-
posed deep learning based LIS interaction approach. The pro-
posed system operates in two phases, namely (I) the learning
phase and (II) the prediction phase.

Learning phase: In this phase, the LIS employs an exhaus-
tive search reflection beamforming approach, as will be
explained shortly, while it is collecting the dataset for the
deep learning model. Once the dataset is fully acquired,
the LIS trains the deep learning model, which in turn will
be leveraged in the prediction phase. Let the term ‘‘data
sample’’ indicates the data point captured in one coherence
block, and define the concatenated sampled channel vector
as h = vec

([
h1,h2, . . . ,hK

])
. Further, let h(s) denotes the

concatenated sampled channel vector at the s th coherence
block, where s = 1, . . . , S and S is the total number of data
samples used to construct the learning dataset. As depicted in
Algorithm 1, at every coherence block s, the proposed LIS
system operation consists of four steps, namely (1) estimating
the sampled channel vector, (2) exhaustive beam training, (3)
constructing a new data point for the learning dataset, and (4)
data transmission. After collecting the whole dataset with S
data samples, the deep learning model is trained. We describe
these steps in detail as follows.
1. Sampled channel estimation (lines 1,2): For every

channel coherence block s, the transmitter and receiver trans-
mit two orthogonal uplink pilots. The LIS active elements
will receive these pilots and estimate the sampled chan-
nel vectors to construct the multipath signature, which is
expressed as

ĥT,k (s) = hT,k (s)+ vk , ĥR,k (s) = hR,k (s)+ wk , (21)

ĥk (s) = ĥT,k (s)� ĥR,k (s), (22)

ĥ(s) = vec
([̂

h1(s), ĥ2(s), . . . , ĥK (s)
])
. (23)

where vk ,wk ∼ NC
(
0, σ 2

n I
)
are the receive noise vectors at

the LIS active channel sensors.
2. Exhaustive beam training (lines 3-6): In this step,

the LIS performs an exhaustive search over reflection code-
words using the reflection codebook P . Specifically, the
LIS attempts every candidate reflection beamforming vec-
tor, ψn, n = 1, . . . , |P|, and receives a feedback from the

Algorithm 1 Deep Learning Based Reflection Beamforming
Prediction
Input: Reflection beamforming codebook P .

Phase I: Learning phase
1: for s = 1 to S do F For every channel coherence block
2: LIS receives two pilots to estimate ĥ(s).
3: for n = 1 to |P| do F Beam training
4: LIS reflects using ψn beam.
5: LIS receives the feedback Rn(s).
6: Construct r(s) =

[
R1(s),R2(s), . . . ,R|P |(s)

]T .
7: Store new entry in the learning dataset,

D←
(̂
h(s), r(s)

)
.

8: LIS reflects using ψn? beam, n? = argmaxn [r(s)]n.
9: Train the DL model using the learning dataset D.

Phase II: Prediction phase
10: while True do F For every channel coherence block
11: LIS receives two pilots to estimate ĥ.
12: Predict the rate vector r̂ using the trained DL model.
13: LIS reflects using ψnDL beam, nDL = argmaxn [̂r]n.

receiver indicating the achievable rate attained by using this
interaction vector, Rn(s), which is defined as

Rn(s)=
1
K

K∑
k=1

log2

(
1+ SNR

∣∣∣(hT,k (s)�hR,k (s))T ψn

∣∣∣2) .
(24)

Note that, in practice, the computation and feedback of the
achievable rate Rn(s) will have some error compared to (24)
because of the limitations in the pilot sequence length and
feedback channel, which are neglected in this paper. For the
rest of this paper, we define the achievable rate vector at the
sth coherence block as r(s) =

[
R1(s),R2(s), . . . ,R|P |(s)

]T .
3. Learning dataset update (line 7): The new data entry

comprised of the sampled channel vector ĥ(s), estimated in
step (1), and the corresponding rate vector r(s), constructed
in step (2), is added to the deep learning dataset D, such that
D← (̂h(s), r(s)).
4. Data transmission (line 8):After the beam training task,

given the constructed achievable rate vector r(s), the best
reflection beamforming vector, ψn? , that corresponds to the
highest achievable rate, where n? = argmaxn [r(s)]n, is used
to reflect the transmitted data from the transmitter for the rest
of the coherence block.
5. Deep learning model training (line 9): After acquiring

the data entries for all S coherence blocks, the deep learning
model is trained using the entire datasetD. This model learns
how to map an input (the sampled channel vector ĥ) to an
output (predicted achievable rate with every candidate inter-
action vector r̂ =

[̂
R1, R̂2, . . . , R̂|P |

]
, as shown in Fig. 5. It is

worth mentioning here that while we assume that the system
will switch one time to Phase II after the deep learning model
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FIGURE 5. The adopted neural network architecture consists of fully connected layers. Each layer is followed by a
non-linear ReLU activation layer. The deep learning model learns how to map the observed sampled channel vectors to the
predicted achievable rate using every LIS interaction vector.

is trained, the system will need to retrain and refine the model
frequently to account for the changes in the environment.

Prediction phase: Following the deep learning model
training in the learning phase, the LIS leverages the trained
model to predict the reflection beamforming vector directly
from the estimated sampled channel vector, ĥ. As shown in
Algorithm 1, Phase II performs the following steps repeatedly
for every channel coherence block.
1. Sampled channel estimation (line 11): This step is

the same as the first step in the learning phase. The active
elements of the LIS receive uplink pilots to estimate and
construct the concatenated sampled channel vector, ĥ.
2. Achievable rate prediction (line 12): In this step, the

estimated sampled channel vector, ĥ, is fed into the trained
deep learning model. It predicts the achievable rate vector,
r̂, which is used to identify the best DL-based reflection
beamforming vector.
3. Data transmission (line 13): In this step, the pre-

dicted deep learning reflection beamforming vector, ψnDL ,
that corresponds to the highest predicted achievable rate,
where nDL = argmaxn [̂r]n, is used to reflect the transmitted
data from the transmitter for the rest of the coherence block.
Note that instead of selecting only the interaction vector with
the highest predicted achievable rate, the LIS can generally
select the kB beams corresponding to the kB highest predicted
achievable rates. It can then refine this set of beams online
with the receiver to select the one with the highest achievable
rate. In Section VII-F, we evaluate the performance gain if
more than one reflection beam, i.e. kB reflection beams, are
selected.

C. DEEP LEARNING MODEL
Recent advances in machine learning have proven deep learn-
ing to be one of the most successful learning paradigms [43].
With this motivation, a deep neural network is chosen in this
work to be the model with which the desired LIS interaction

function is learned. In the following, the elements of this
model are described.

Input Representation: A single input to the neural net-
workmodel is defined as a stack of environment descriptors at
K sub-carrier frequencies, i.e., the sampled channel vector ĥ.
This sets the dimensionality of a single input vector to KM .
A common practice in machine learning is the normalization
of the input data. This guarantees a stable and meaningful
learning process [44]. The normalization method of choice
here is a simple per-dataset scaling; all samples are normal-
ized by one constant value over the whole input data,

ĥnorm(s) =
ĥ(s)

maxs
∥∥∥̂h(s)∥∥∥

∞

, s = 1, . . . , S. (25)

Besides helping the learning process, this normalization
choice preserves distance information encoded in the envi-
ronment descriptors. This way the model learns to become
more aware of the surroundings, which is the bedrock for
proposing a machine-learning-powered LIS.

The last pre-processing step of input data is to convert
them into real-valued vectors without losing the imaginary-
part information. This is done by splitting each complex entry
into real and imaginary values, doubling the dimensionality
of each input vector. The main reason behind this step is the
modern implementations of DL models, which mainly use
real-valued computations.

Target Representation: The learning approach used in
this work is supervised learning. This means the model
is trained with input data that are accompanied by their
so-called target responses [42]. They are the desired
responses the model is expected to approximate when it
encounters inputs like those in the input training data. Since
the target of the training process is to learn a function map-
ping descriptors to reflection vectors, the model is designed
to output a set of predictions on the achievable rates of
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every possible reflection beamforming vector in the code-
book |P|. Hence, the training targets are real-valued vectors,
r(s), s = 1, . . . , S, with the desired rate for each possible
reflection vector.

For the same training-efficiency reason expressed for the
input representation, the labels are usually normalized. The
normalization used in this work is per-sample scaling where
every vector of rates r(s) is normalized using its maximum
rate value maxn [r(s)]n. The output of the normalization pro-
cess is denoted by r̂(s). The choice of normalizing each vector
independently guards the model against being biased towards
some strong responses. In terms of our LIS application,
it gives the receivers equal importance regardless of how close
or far they are from the LIS.

Neural NetworkArchitecture:TheDLmodel is designed
as a Multi-Layer Perceptron (MLP) network, sometimes
referred to as a feedforward Fully Connected network. It is
well-established that MLP networks are universal function
approximators [45]. This motivates adopting an MLP net-
work to capture the relation between the environment descrip-
tors and the LIS interaction (reflection beamforming) vectors.
As depicted in Fig. 5, the proposed MLP model consists of
Q layers. The first Q − 1 of them alternate between fully
connected and non-linearity layers and the last layer (output
layer) is a fully connected layer. For the fully connected
layers, each Layer q in the network has a stack of Nq neurons,
each ofwhich sees all the outputs of the previous layer. For the
non-linearity layers, they all employ Rectified Linear Units
(ReLUs) [42].

Training Loss Function: The model training process aims
at minimizing a loss function that measures the quality of
the model predictions. Given the objective of predicting the
best reflection beamforming vector, ψnDL , having the highest
achievable rate estimate, maxn R̂n, themodel is trained using a
regression loss function. At every coherence block, the neural
network is trained to make its output, r̂, as close as possible
to the desired output, the normalized achievable rates, r.
Specifically, the training is guided through minimizing the
loss function, L (θ), expressed as

L (θ) = MSE (r, r̂) , (26)

where θ represents the set of all the neural network
parameters and MSE (r, r̂) indicates the mean-squared-error
between r and r̂.

VII. SIMULATION RESULTS
In this section, we evaluate the performance of both deep
learning (DL) and compressive sensing (CS) based reflec-
tion beamforming approaches. The flow of this section is as
follows. First, we describe the adopted experimental setup
and datasets. Then, we compare the performance of the deep
learning and compressive sensing solutions at both mmWave
and sub-6 GHz bands. After that, we investigate the impact
of different system and machine learning parameters on the
performance of the deep learning solution.

FIGURE 6. This figure illustrates the adopted ray-tracing scenario where
an LIS is reflecting the signal received from one fixed transmitter to a
receiver. The receiver is selected from an x-y grid of candidate locations.
This ray-tracing scenario is generated using Remcom Wireless InSite [46],
and is publicly available on the DeepMIMO dataset [26].

A. SIMULATION SETUP
Given the geometric channel model adopted in Section II
and the nature of the reflection beamforming optimization
problem, with its strong dependence on the environmental
geometry, it is critical to evaluate the performance of the
proposed solutions based on realistic channels. This moti-
vates using channels generated by ray-tracing to capture the
dependence on the key environmental factors such as the
environment geometry and materials, the LIS and transmit-
ter/receiver locations, the operating frequency among others.
To do that, we adopted the DeepMIMO dataset, described in
detail in [26], to generate the channels based on the outdoor
ray-tracing scenario ‘O1’ [46], as will be discussed shortly.
The DeepMIMO is a parameterized dataset published for
deep learning applications in mmWave and massive MIMO
systems. The machine learning simulations were executed
using the Deep Learning Toolbox of MATLAB R2019a.
The source code of this paper is available on [47]. Next,
we explain in detail the key components of the simulation
setup.

1) SYSTEM MODEL
Following the system model in Section II-A, we adopt an
LIS-assisted communication system where one LIS aims to
reflect the signal received from a transmitter to a receiver.
The transmitter is assumed to be fixed in position while
the receiver can take any random position in a specified
x-y grid as illustrated in Fig. 6. We implemented this setup
using the outdoor ray-tracing scenario ’O1’ of the Deep-
MIMO dataset that is publicly available at [26]. As shown
in Fig. 6, we select BS 3 in the ’O1’ scenario to be the
LIS and the user in row R850 and column 90 to be the
fixed transmitter. The uniform x-y grid of candidate receiver
locations includes 54300 points from row R1000 to R1300
in the ’O1’ scenario where every row consists of 181 points.
Unless otherwise stated, the adopted LIS employs a UPAwith
64× 64 (M = 4096) antennas at the mmWave 28GHz setup
and a UPA with 16× 16 (M = 256) antennas at the 3.5GHz
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FIGURE 7. This figure illustrates the optimal and predicted index map of the LIS reflection bemforming codebook. Each pixel represents the location
of a candidate receiver on the x-y user grid under-study (shown in Fig. 6). The pixel color represents the index of the optimal/predicted reflection
beamforming vector for the user at this location. In this scenario with 64× 64 LIS, the optimum achievable rate, R?, averaged across all candidate
locations, is 5.06 bps/Hz, while the achievable rate of the proposed deep learning based predicted beams is 4.74 bps/Hz.

setup. The active channel sensors described in Section IV are
randomly selected from theM UPA antennas. The transmitter
and receiver are assumed to have a single antenna each.
The antenna elements have a gain of 3dBi and the transmit
power is 35dBm. The antenna element spacing is set to half
the wavelength, 0.5λ, where λ is the operating wavelength.
The rest of the adopted DeepMIMO dataset parameters are
summarized in Table 1.

2) CHANNEL GENERATION
The channels between the LIS and the transmitter/receiver,
hT,k ,hR,k , for all the candidate receiver locations in the x-y
grid, are constructed using the DeepMIMO dataset genera-
tion code [26] with the parameters in Table 1. With these
channels, and given the randomly selected active elements
in the proposed LIS architecture, we construct the sampled
channel vectors hT,k ,hR,k . The noisy sampled channel vec-
tors ĥT,k , ĥR,k are then generated by adding noise vectors to
hT,k ,hR,k according to (23), with the noise power calculated
based on the bandwidth and other parameters in Table 1, and
with receiver noise figure of 5dB. These noisy sampled chan-
nels are then used to design the LIS interaction (reflection
beamforming) vectors following the proposed compressive
sensing and deep learning approaches.

3) LIS INTERACTION (REFLECTION BEAMFORMING)
CODEBOOK
We adopt a DFT codebook for the candidate LIS interac-
tion vectors. More specifically, considering the UPA struc-
ture, we define the LIS interaction codebook as DFTMH ⊗

DFTMV . The codebook DFTMH ∈ CMH×MH is a DFT
codebook for the azimuth (horizontal) dimension where
the mHth column, mH = 1, 2, . . . ,MH, is defined as

TABLE 1. The adopted DeepMIMO dataset parameters.

[1, e−j
2π
M H

mH , . . . , e−j(MH−1) 2π
MH

mH ]T . The codebook DFTMV

is similarly defined for the elevation (vertical) dimension.
As an example, Fig. 7 illustrates the optimal index map of

the LIS reflection bemforming codebook at fc = 28 GHz,
M = 64 × 64 antennas, and L = 1 channel path. The map
orientation and directions are set according to the adopted
ray-tracing scenario, previously shown in Fig. 6. The pixel
position represents the candidate location of the receiver on
the x-y grid under-study. The pixel color represents the index
number of the optimal reflection beamforming vector for
each candidate location, calculated according to (8), under the
assumption of perfect full channel knowledge, hT,k and hR,k ,
at the LIS. By comparison, Fig. 7(b) depicts the predicted
index map of the LIS reflection bemforming codebook using
the proposed Deep Learning (DL) based reflection beam-
forming with onlyM = 8 active channel sensors.

4) DEEP LEARNING PARAMETERS
We adopt the deep learning model described in Section VI-C.
To reduce the neural network complexity, however, we input
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the normalized sampled channels only at the first KDL = 64
subcarriers, ĥk , k = 1, . . . ,KDL and KDL ≤ K , which
sets the length of the DL input vector to be 2MKDL. This
is motivated by the fact that the channel is highly correlated
in the frequency domain, a consequence of channel sparsity,
especially in the mmWave range. The length of the DL output
vector is M = |P|, as described in Section VI-C. The neural
network architecture consists of four fully connected layers.
Unless otherwise mentioned, the number of hidden nodes of
the four layers is (M , 4M , 4M ,M), where M is the number
of LIS antennas. Given the size of the x-y grid of the candidate
receiver locations in Fig. 6, the deep learning dataset has
54300 data points.We split this dataset into two sets, namely a
training set and a testing set with 85% and 15% of the points,
respectively. A dropout layer is added after every ReLU layer.
Unless otherwise mentioned, we consider a batch size of 500
samples, a 50% dropout rate, an L2 regularization factor of
10−4, and 20 epochs of training. The learning rate starts from
0.1 and drops by 50% every 3 epochs.

5) COMPRESSIVE SENSING PARAMETERS
We consider the developed compressive sensing solution in
Section V to recover the full LIS-transmitter/receiver chan-
nels and design the LIS reflection beamforming vectors. For
approximating the solution of (20), we use OMP with a grid
of size NAz

D NEl
D points, where NAz

D = 2MH,N El
D = 2MV.

Next, given this described setup, and adopting the novel
LIS architecture in Fig. 2 with onlyM active channel sensors,
we evaluate the performance of the developed compressive
sensing and deep learning solutions.

B. ACHIEVABLE RATES WITH COMPRESSIVE SENSING
AND DEEP LEARNING BASED LIS SYSTEMS
In this subsection, we evaluate the achievable rates of the
proposed compressive sensing (CS) and deep learning (DL)
based reflection beamforming solutions for LIS systems,
as previously described in Section V-A and Section VI-B,
respectively. These rates are compared to the genie-aided
upper bound, R?, in (9) which assumes perfect knowledge of
the full channel vectors, hT,k and hR,k , at the LIS. The average
achievable rate used for assessing the performance of these
proposed solutions can be formulated as

R =
1
K

K∑
k=1

log2

(
1+ SNR

∣∣∣(hT,k � hR,k
)T
ψ

∣∣∣2) , (27)

where ψ ∈
{
ψnCS ,ψnDL

}
is the reflection beamforming

vector chosen by the CS or DL based reflection beam-
forming solutions, respectively. To reduce the computational
complexity of the performance evaluation, we compute the
achievable rate summation over the first subcarrier instead of
computing over all the K = 512 subcarriers.

In Fig. 8, we consider the simulation setup in SectionVII-A
at the mmWave 28GHz band with LIS employing a UPA of
64 × 64 antennas. The channels are constructed to include
the strongest L = 10 channel paths. Fig. 8 shows that

FIGURE 8. The achievable rate of both proposed CS and DL based
reflection beamforming solutions are compared to the upper bound R?,
for different numbers of active receivers, M. The figure is generated at
fc = 28 GHz, M = 64× 64 antennas, and L = 10 paths.

the proposed deep learning solution approaches the optimal
upper bound with a very small number of active antennas. For
example, with onlyM = 4 active antennas (out ofM = 4096
total antennas), the deep learning solution achieves almost
85% of the optimal achievable rate. This figure also illustrates
the performance gain of the deep learning solution compared
to the compressive sensing solution, especially when the
number of active antennas is very small. Note that the two
solutions approach the upper bound with 28 − 36 active
antennas, which represent less than 1% of the total number
of antennas (M = 4096) in the LIS. This illustrates the
high energy efficiency of the proposed LIS architecture and
reflection beamforming solutions, as will be demonstrated in
the upcoming subsection.

Additionally, to evaluate the performance at sub-6 GHz
systems, we plot the achievable rates of the proposed deep
learning and compressive sensing solutions compared to the
optimal rate R? as illustrated in Fig. 9. This figure adopts
the simulation setup in Section VII-A at a 3.5GHz band.
The LIS is assumed to employ a UPA with 16× 16 antennas,
compared to 64 × 64 in the 28GHz band, given the path
loss difference between the 3.5GHz and 28GHz bands. Each
channel incorporates the strongest L = 15 paths, compared
to L = 10 in the 28GHz band, motivated by the fact that the
channels are less sparse in the sub-6 GHz systems compared
to the mmWave systems.

Fig. 9 shows that the proposed deep learning and compres-
sive sensing solutions are also promising for sub-6 GHz LIS
systems. This is captured by the convergence to the upper
bound with only 4 active elements in the deep learning case
and around 18 elements in the compressive sensing case.
This figure also illustrates the gain from employing the deep
learning approach over the compressive sensing approach in
the sub-6 GHz systems, where the channels are less sparse
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FIGURE 9. The achievable rate of both proposed CS and DL based
reflection beamforming solutions are compared to the upper bound R?,
for different numbers of active receivers, M. The figure is generated at
fc = 3.5 GHz, M = 16× 16 antennas, and L = 15 paths.

than mmWave systems. This gain, however, has the cost of
collecting a dataset to train the deep learning model, which is
not required in the compressive sensing approach.

In Fig. 8 and Fig. 9, the number of active sensors (M ) is
a design parameter that controls the size of the input of the
neural network. As that number varies, the relation between
the input vector and the output target vector also varies.
This suggests that the neural network architecture needs to
be designed carefully to capture that relation. In Fig. 8, the
neural network architecture used for M = {1, 2, 4, 12, 20}
has the following number of nodes (M , 4M , 4M ,M). This
architecture changes to (3M , 4M , 4M ,M) to account for the
change in the input-output relation as the number of sensors
increases to M = {28, 36}. For the results in Fig. 9, we have
found that the architecture with

(
4MKDL, 16384, 16384,M

)
performs consistently well across all choices ofM .

C. ENERGY EFFICIENCY
In this subsection, we evaluate the energy efficiency of
both proposed CS and DL based reflection beamforming
approaches, compared to the upper bound on spectral energy
efficiency, which assumes perfect full channel knowledge
at the LIS. Starting with a formulation of a generic power
consumptionmodel for the proposed LIS architecture, we can
then evaluate the energy efficiency, as formulated in [5], [48].
Consider the proposed LIS architecture shown in Fig. 2 and
described in Section IV, withM active elements connected to
the baseband through fully-digital architecture of b-bit ADCs.
Let PBB,PRFchain,PADC,PPS,PLNA denote the power con-
sumption in the baseband processor, RF chains, ADC, phase
shifter (passive reflector), and LNA, respectively. The LIS
power consumption model, Pc, can be generally formulated
as [48]

Pc = MPPS +M (PLNA + PRFchain + 2PADC)+ PBB. (28)

FIGURE 10. The spectral energy efficiency of both proposed CS and DL
based reflection beamforming solutions are compared to the upper
bound R?, for different numbers of active receivers, M. The figure is
generated at fc = 28 GHz, M = 64× 64 antennas, and L = 10 paths.

The power consumption of the ADC, PADC, can be further
calculated as

PADC = FOMW × fS × 2b, (29)

where b is the number of bits, fS is the Nyquist sampling
frequency, and FOMW is the Walden’s figure-of-merit for
power efficiency ranking of the ADCs [49], [50]. Finally, the
energy efficiency can be formulated as

ηEE =
R×W
Pc

bits/Joule, (30)

where W is the transmission bandwidth and R is the achiev-
able rate.

Next, using (28)-(30), we evaluate the energy efficiency
of both proposed CS and DL based reflection beamforming
solutions compared to the upper bound, as depicted in Fig. 10.
The various power consumption variables are assumed to
be PBB = 200 mW, PRF = 40 mW, PPS = 10 mW,
PLNA = 20 mW, andW = 100MHz [48]. Assume b = 4 bits
according to the trade-off figure between the achievable rate
and power consumption for fully-digital architecture, illus-
trated in [48]. Also, assume FOMW = 46.1 fJ/conversion-
step at 100 MHz bandwidth according to the architecture in
[50], [51]. In Fig. 10, The energy efficiency values across
different numbers of active channel sensors are calculated
from the achievable rate values of Fig. 8.
Fig. 10 shows the high energy efficiency gained from

employing the proposed LIS architecture with few active
channel sensors. This figure also illustrates that both pro-
posed CS and DL based beamforming solutions can approach
the upper bound with only 28 − 36 active antennas. The
DL solution achieves more energy efficiency gains when
compared to the CS solution. Also, according to (28)-(30),
since the upper bound is a monotonically decreasing bound
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when the number of active elements increases, it’s safe to state
that the optimal operating point for the DL based reflection
beamforming approach is atM = 28 active antenna elements,
with an optimal energy efficiency of ∼ 12Mbits/J, for the
described scenario only.

D. HOW MUCH TRAINING IS NEEDED FOR THE DEEP
LEARNING MODEL?
The data samples in the deep learning dataset are cap-
tured when the receiver is randomly sampling the x-y grid.
In Fig. 11, we study the performance of the developed deep
learning approach for designing the LIS interaction vectors
for different dataset sizes. This illustrates the improvement
in the machine learning prediction quality as it sees more
data samples. For Fig. 11, we adopt the simulation setup in
Section VII-A with an LIS of 64× 64 UPA and a number of
active channel sensors M = 2, 4, and 8. The setup considers
a mmWave 28GHz scenario and the channels are constructed
with only the strongest path, i.e., L = 1. Fig. 11 shows
that with only 8 active antennas, the proposed deep learning
solution can achieve almost 90% of the optimal rate in (9)
when the model is trained on 14 thousand data points (out of
the 54300 points) in the x-y grid. Further, this figure high-
lights the performance gain of the deep learning approach
compared to the compressive sensing solution. This gain
increases with larger dataset sizes as the compressive sensing
solution does not leverage the prior channel estimation/LIS
interaction observations and its performance does not depend
on the size of the dataset.

E. IMPACT OF IMPORTANT SYSTEM AND CHANNEL
PARAMETERS
In this subsection, we evaluate the impact of the key system
and channel parameters on the performance of the developed
deep learning solution.

1) NUMBER OF LIS ANTENNAS
Fig. 12 examines the achievable rate performance of the
developed solutions for designing the LIS interaction vectors
when the LIS employs either a 32 × 32 or a 64 × 64 UPA.
This figure adopts the same mmWave scenario considered in
Fig. 11. As illustrated, with only M = 8 active receivers,
the proposed deep learning solution approaches the optimal
rate in (9) that assumes perfect channel knowledge for dif-
ferent LIS sizes. This shows the potential of the proposed
LIS architecture and deep learning solution in enabling large
intelligent surfaces with large numbers of antennas.Note that
the proposed solution does not require any beam training
overhead (as it relies on the deep learning prediction of
the best beam) and needs only 8 active receivers to realize
this near-optimal performance in Fig. 12.

2) TRANSMIT POWER
In Fig. 13, we study the impact of the transmit power (and
receive SNR) on the achievable rate performance of the
developed deep learning solution. This is important in order

FIGURE 11. The achievable rate of the proposed DL based reflection
beamforming approach is compared to the upper bound R? and the CS
beamforming approach, for different numbers of active receivers, M. The
adopted setup considers an LIS with 64× 64 UPA, at 28GHz with L = 1
channel path. This figure highlights the promising gain of the proposed
deep learning solution that approaches the upper bound using only 8
active elements (less than 1% of the total number of antennas). This
performance requires collecting a dataset of around 20-25 thousand data
points (user locations).

FIGURE 12. The achievable rate of the proposed DL based reflection
beamforming approach is compared to the upper bound R? for different
sizes of intelligent surfaces, namely with LIS of 32× 32 and 64× 64 UPAs.
The number of active elements (channel sensors) equals M = 8. This
figure is generated at 28GHz with L = 1 channel path.

to evaluate the robustness of the learning and prediction
quality, as we input the noisy sampled channel vectors to
the deep learning model. In Fig. 13, we plot the achievable
rates of the proposed deep learning solution as well as the
upper bound in (9) for three values of the transmit power,
PT = −5, 0, 5 dBW. These transmit powers map to receive
SNR values of−3.8, 6.2, 16.2 dB, respectively, including the
LIS beamforming gain of the 4096 antennas. The rest of the
setup parameters are the same as those adopted in Fig. 11.
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FIGURE 13. The achievable rate of the proposed deep learning based
reflection beamforming approach is compared to the upper bound R?, for
different values of user transmit power, PT. The figure is generated for an
LIS with M = 64× 64 UPA and M = 8 active elements, at 28GHz with
L = 1 channel path. This figure shows that the proposed DL solution is
capable of learning and approaching the optimal achievable rate even
with a relatively small transmit power.

Fig. 13 illustrates that the proposed deep learning solution
can perform well even with relatively small transmit powers
and low SNR regimes.

3) NUMBER OF CHANNEL PATHS
In Fig. 14, we investigate the impact of the number of channel
paths on the performance of the developed deep learning
solution. In other words, we examine the robustness of the
proposed deep learning model with multi-path channels. For
this figure, we adopt the same simulation setup of Fig. 11
with an LIS employing 64 × 64 UPA. The channels are
constructed considering the strongest L = 1, 2, or 5 channel
paths. As shown in Fig. 14, with the increase in the number
of channel paths, the achievable rate by the proposed deep
learning solution converges slower to the upper bound. This
shows that the proposed deep learning model can learn from
multi-path channels if a large enough dataset is available.

F. REFINING THE DEEP LEARNING PREDICTION
In Fig. 8-Fig. 14, we considered the proposed deep learning
solution where the deep learning model uses the sampled
channel vectors to predict the best beam and this beam is
directly used to reflect the transmitted data. Relying com-
pletely on the deep learning model to determine the reflection
beamforming vector has the clear advantage of eliminating
the beam training overhead and enabling highly mobile appli-
cations. The achievable rates using this approach, however,
may be sensitive to small changes in the environment. A can-
didate approach for enhancing the reliability of the system is
to use the machine learning model to predict the most promis-
ing kB beams. These beams are then refined through beam
training with the receiver to select the final beam reflection

FIGURE 14. The achievable rate of the proposed DL based reflection
beamforming approach is compared to the upper bound R?, for different
numbers of channel paths, L. The figure is generated for an LIS with
64× 64 UPA and M = 4 active elements, at 28GHz. As the number of
channel paths increases, the achievable rate achieved by the proposed DL
solution converges slower to the upper bound. Hence, using more
training data can help learn multi-path signatures.

FIGURE 15. The achievable rate of the proposed DL based reflection
beamforming approach is compared to the upper bound R?. The
simulation considers an LIS with 64× 64 UPA and M = 4 active channel
sensors, at 28GHz with L = 1 channel path. The figure illustrates the
achievable rate gain when the beams selected by the deep learning
model are further refined through beam training over kB beams.

vector. Note that the most promising kB beams refer to the kB
beams with the highest predicted rates from the deep learning
model. To study the performance using this approach, we plot
the achievable rate of the deep learning solution in Fig. 15,
for different values of kB. As this figure shows, refining the
most promising kB yields higher achievable rates compared to
the case when the LIS relies completely on the deep learning
model to predict the best beam, i.e., with kB. The gain in
Fig. 15 is expected to increase with a more time-varying and
dynamic environment, which is an interesting extension in
future work.
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VIII. CONCLUSION
In this paper, we considered LIS-assisted wireless communi-
cation systems and developed efficient solutions that design
the LIS interaction (reflection) matrices with negligible train-
ing overhead. We first introduced a novel LIS architecture
where only a small number of the LIS elements are active
(connected to the baseband). Then, we developed two solu-
tions that design the LIS reflection matrices for this new
architecture with almost no training overhead. The first solu-
tion leverages compressive sensing tools to construct the
channels at all the antenna elements from the sampled chan-
nels seen only at the active elements. The second approach
exploits deep learning tools to learn how to predict the
optimal LIS reflection matrices directly from the sampled
channel knowledge, which represents what we call envi-
ronment descriptors. Extensive simulation results based on
accurate ray-tracing showed that the two proposed solutions
can achieve near-optimal data rates with negligible training
overhead and with a few active elements. Compared to the
compressive sensing solution, the deep learning approach
requires a smaller number of active elements to approach
the optimal rate, thanks to leveraging its prior observations.
Further, the deep learning approach does not require any
knowledge of the LIS array geometry and does not assume
sparse channels. To achieve these gains, however, the deep
learning model needs to collect enough dataset, which is
not needed in the compressive sensing solution. There are
several interesting extensions for the compressive sensing
solution, including the optimization of the sparse distribution
of the active sensors leveraging tools from nested and co-
prime arrays. For future work, it is interesting to investigate
solutions for developing fully standalone LIS architectures,
where the LIS is not controlled by the infrastructure but rather
operating on its own while interacting with the environment.
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