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ABSTRACT Modeling of second primary lung cancer (SPLC) patients’ survival prediction has important
theoretical significance and practical needs. Cancer survivability prediction may provide advice for better
clinical decisions and personalized medicine. The Surveillance, Epidemiology, and End Results (SEER)
program provides large data sets for analysis with machine learning methods. SPLC cases are identified and
labeled from the SEER database; the data set is then preprocessedwith improved eigenvector centrality-based
feature selection (IECFS). The IECFS method utilizes interclass and intraclass dispersions and the ranking
criteria. By adjusting the value of the α parameter and the number of features selected, the method achieves
the best performance. The experiment is divided into five folds. This method yields a prediction accuracy
of 90.998% for the five-year survivability that is higher than the original classification accuracy (89.16%) and
the other state-of-the-art feature selection methods. For the three-year survivability, the proposed methods
yields a prediction accuracy of 83.16%, slightly outperforming all of the compared methods. The method is
effective and generalizable.

INDEX TERMS Second primary lung cancer, cancer survival prediction, improved eigenvector
centrality-based feature selection.

I. INTRODUCTION
In the past 70 years, cancer prognosis improvedmarkedly due
to the promotion of cancer screening, development ofmedical
technologies, and advances in supportive care. In the United
States, the 5-year relative survival in 2016 was estimated
to be 70%, twice as high as that in 1950s [1]. The number
of cancer survivors in the United States will grow from
16.9 million in 2019 to a projected number of 22.1 million
in 2030, accounting for 5% of the total population [2]. Due to
the improved prognosis as well as aged population, multiple
primary cancer (MPC) diagnoses for the same person are
increasingly common. The risk of cancer survivors develop-
ing a second primary cancer was estimated to be 14% higher
than that of the general population [3]. In the United States,
one in five cancers diagnosed today occurs in an individual
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with a previous history of cancer [4]. On the other hand, MPC
is much harder to treat due to a narrower range of options.
For example, MPC patients may have previously received
a maximum life-time dose of certain chemotherapy or the
same part of the body may have undergone radiotherapy
because of previous cancers [4], [5]. The prevalence and
limited treatment options have made MPC an important issue
for research, clinical treatment, and public health.

Second primary lung cancer (SPLC) has been the
most common MPC, representing 25% of second primary
malignancies [6]. In the Surveillance, Epidemiology, and
End Results (SEER) program between 1992 and 2008,
1,450,837 non-pulmonary cancer survivors were identified,
among whom 25,472 developed SPLC at a mean (standard
deviation) follow-up of 5.7 (3.6) years. More than half (57%)
of patients with SPLC died of the disease [6]. SPLC ranked
only second to the same-site MPC in cases of prostate cancer
and female breast cancer, the most common cancers among
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men and women, respectively [4]. The relatively high preva-
lence of SPLC is ascribed to the risk factors associated with
MPC.

Most SPLC studies have focused on predicting the initial
primary lung cancer patients’ risks of developing SPLC.
Other MPC survival prediction studies have been limited to
genital MPCs. They applied statistical method to improve
the prediction accuracy. Research on survival prediction of
diagnosed SPLC patients has been lacking. Cancer survival
rate prediction may provide guidance for better clinical deci-
sions and personalized medicine. SPLC is the most com-
mon multiple primary cancer. However, few researchers have
focused on the survival prediction of multiple primary can-
cer patients. Thus, prediction of the SPLC survival rate has
become essential in cancer studies. Survivability often refers
to the likelihood of a patient being alive after five years since
the time of cancer diagnosis. It is an indicator in medical
science for the evaluation of the treatment effectiveness.
The method proposed in this paper predicts five-year and
three-year survivability of SPLC patients. The novel IECFS
method is applied to select features and to improve prediction
accuracy.

The main contributions of this article are as follows:
• Identify and label the SPLC cases from SEER database
and study the survival prediction of them;

• Apply improved eigenvector centrality feature selection;
• Compare prediction results with different amount of
features and α;

• Compare prediction results with different feature selec-
tion methods; and

• Compare prediction results in different folds.
The average 5-year prediction accuracy of the proposed

method is 90.998%, higher than the original method’s accu-
racy (89.16%) and the results obtained by the compared FS
methods. The 3-year prediction accuracy is 83.16%, higher
than the original prediction accuracy (81.07%). The remain-
der of this article is organized as follows. Section 2 intro-
duces the related works on SPLC, feature selection and the
application of machine learning techniques to cancer sur-
vival prediction. Section 3 provides detailed methods and
experimental procedures. Section 4 presents experimental
results while section 5 presents the discussion of the results.
Section 6 concludes the paper and presents possible future
research directions.

II. RELATED WORK
MPC has been studied in epidemiology. The most important
category of risk factors for MPC is life-style factors, such
as tobacco smoking and alcohol consumption. According to
nine SEER registries, an estimated one-third of MPC hap-
pened in tobacco- and alcohol-related sites between 1975 and
2000 [3], [4]. Tobacco smoking was defined as a Group 1
human carcinogen according to the International Agency for
Research on Cancer (IARC) [7]. It is the leading risk factor
for lung cancer at large [8]. Tobacco smoking is linked to
approximately 80-90% of lung cancer deaths [9]. The other

most important type of risk factor for MPC is prior cancer
treatment, such as chemotherapy and radiotherapy. It was
reported in nested case-control studies among the European
and North American populations that larger numbers of
chemotherapy cycles with alkylating agents elevated the risk
of lung cancer among Hodgkin lymphoma survivors [10].
It was suggested that 8% of MPC is due to radiother-
apy [11]. Prior chemotherapy was also observed to additively
enhance the increased risk of second primary lung cancer
by the previous radiotherapy among multiple types of cancer
survivors [10], [12], [13].

The analysis of big data in health care and medical fields
has immense potential for improving the quality of care,
reducing medical waste, and reducing the burden of care [14].
Machine learning techniques have been widely applied
to medical big data to predict outcomes [15], [16]–[18].
Liu et al. applied an improved clustering algorithm for sam-
ple cutting to improve training sample category representa-
tion capability. The experimental results indicated that the
improved method improves the classification efficiency [19].
Ensemble learning methods that train a number of weak base
learners and then combine their outputs are popular in med-
ical prediction research [20]. Many researchers conducted
their studies on cases collected from the SEER database.
A Gaussian k-based naive Bayes (NB) classifier system was
proposed by Kaviarasi et al. [21] to enhance the classification
accuracy of the NB classifier and linear regression algorithm.
They proposed an online gradient boosting learning with
adaptive linear regressor and compared its performance with
state-of-the-art machine learning algorithms.

Some researchers compared machine learning techniques
with statistical methods to predict survivability for spinal
ependymoma patients. They discovered that lower grade his-
tology and greater extent of surgical resection were the key
prognostic factors and concluded that therapeutic factors are
associated with improved overall survival. Machine learning
methods are generally better for prediction, but the data set
was heterogeneous and complex with numerous missing val-
ues [22]. Several recently published papers on breast cancer
survival prediction were analyzed together for application
to stage-specific prediction tasks. Stage-specific prediction
models and joint models were created and compared. It was
concluded that data-driven knowledge obtained with machine
learning methods must be subject to over-time validation
prior to its clinical and professional application [23].

Roffo et al. proposed several feature selection meth-
ods. Reference [24] introduced an infinite feature selection
method exploiting the convergence properties of power series
of matrices. The Spearman’s rank correlation coefficient and
the standard deviation were combined and utilized. Replacing
the standard deviation measure with dispersion criteria and
applying the improved method to multiple primary cancers,
we proposed a two-stage prediction method [25]. In 2017,
Roffo et al. proposed a feature selectionmethod via eigenvec-
tor centrality [26]. They built a graph to measure class sepa-
rability based on mutual information and standard deviation.
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FIGURE 1. Flowchart of the proposed model.

Later, they proposed a new feature infinite latent feature
selection method [27].

Zolbanin et al. used cancer data collected from the SEER
database to create two comorbid datasets: one for breast and
female genital cancers and another for prostate and urinary
cancers. Several popular machine learning techniques were
then applied to the resultant data sets to build predictive
models. The results showed that the availability ofmore infor-
mation about the comorbid conditions of patients improved
the predictive power of the model [28]. In addition to Zol-
banin’s study, Naghizadeh et al. also investigated comorbid
cancer patients focusing on data preprocessing, including
feature selection and data cleaning. The feature selection pro-
cedure was performed by applying the least angle regression,
least absolute shrinkage and selection operator, and stepwise
regression algorithms. They compared the performance of
four machine learning techniques for survivability predic-
tion of prostate cancer. It was found that neural network
outperformed decision tree, naive Bayes, and support vector
machine learning. The accuracy was increased, and the error
rate was decreased [29]. In this study, they investigated the
survivability for female and male MPCs. However, they did
not discuss the number of features selected in their article.
In our previous research on the MPC patients’ survivability,
150 features were selected. Currently there is no survival
prediction model for patients with SPLC. Reference [30] esti-
mated the trends in 5-year incidence of metachronous SPLC
and stablished a risk prediction model to identify candidates
with high SPLC risks. Reference [31] estimated the 10-year
risk of developing second primary lung cancer (SPLC) among
the survivors of initial primary lung cancer (IPLC). This paper

will study feature selection through grid searching in the
Results and Discussion Section.

III. MATERIALS AND METHODS
Cancer survivability prediction has been challenging due
to the lack of publicly available large-scale medical data.
SEER is an open-source database that provides de-identified,
coded, and annotated information on cancers in the United
States [6], [7]. The scale of data is large enough for
analysis. To predict the 5-year survival rate among SPLC
patients, non-pulmonary cancer survivors with lung can-
cer as the second primary lung cancer were selected from
the SEER (Incidence0 SEER 18 Regs Research Data, Nov
2018 Sub) database. The lung cancer survivors were excluded
from the study because of their relatively poor prognosis.
(The lung cancer 5-year survival rate is 21.2%, lower than
most of other cancer types [32].) The cancer diagnoses in
SEER cancer registries were all by law verified clinically or
microscopically, by a recognized medical practitioner [33].
The diagnosis of non-pulmonary cancers preceded the
lung cancer diagnosis for each individual subject in this
study.

Figure 1 is the flowchart of the proposed framework. The
steps are as follows:

1) Collect the data on non-pulmonary cancers and pul-
monary cancer from the SEER database;

2) Combine and label the data to create the SPLC data set,
and determine the survival rate;

3) Divide the data into 5 folds of the same size,
repeat (4)-(6) five times so that each portion has been
used as the testing set;

VOLUME 9, 2021 55665



P. Liu et al.: Prediction of SPLC Patient’s Survivability Based on Improved Eigenvector Centrality-Based Feature Selection

4) Select optimal features for modeling according to
IECFS;

5) Apply linear SVM as the classifier;
6) Record the predicted outcomes with the following

error criteria: accuracy, sensitivity, specificity, NPV,
and AUC and go to the next fold;

7) Calculate the average of the performance metrics; and
8) Compare the averaged metrics for different α values

and different amount of features.
The case numbers are shown on the left side of Figure 1.

After creating the SPLC data set, 6422 patients are divided
into five sub-groups of similar sizes. In the first fold, the first
four subgroups are used as the training set and the fifth
is used as the testing set. After going through IECFS and
SVM classifier, the test results are recorded. This process
is repeated five times so that all of the subgroups are tested
and recorded. Taking the average of the five folds, the final
results are achieved. Adjusting α and the number of features
for IECFS, the optimal results can be found.

A. DATA ACQUISITION
The clinical data are collected from the SEER database. The
SEER program collects cancer data throughout the United
States with the goal of reducing the cancer burden ultimately.
SEER-Stat is a software developed to provide easy access to
data analysis [6].

Non-pulmonary cancer cases are extracted from the SEER
database first. Cases with ’positive histology’, ’complete
dates’, ’active follow-up’ are chosen, while cases with
’autopsy only’, ’death certificate only’, ’unknown cause of
death’, and ’unknown stage’ are excluded. Benign and in
situ cancer patients are excluded since they can be cured
at a much greater chance and should be treated differently.
Non-epithelial skin cancer patients are excluded due to its
lowmortality rate. Cases diagnosed after 2014 are excluded in
order to predict the study participants’ five-year survivability.
Pulmonary cases are extracted from the SEER database to
form a second data set. Most of the selection criteria are the
same except that only pulmonary cancer patients are chosen.

The SEER database provides many attributes. Some of
the attributes are similar to each other, while some unrelated
to this research. Table 1 lists the key attributes selected.
26 features are selected in both the non-pulmonary data set
and the pulmonary data set in this research. Researchers
have previously studied the survival time prediction for lung
cancer patients [34]. They selected 19 features from the SEER
database. This study investigated the survivability prediction
for SPLC patients. 18 features from [34] were selected and
8 more are kept. The only feature not selected is Radiation.
This feature is no longer available in the database. The added
8 features include: patient ID, marital status, state-county,
behavior, race, year of diagnosis, and sex. The patient ID
feature is added to select the SPLC patients from the SEER
database. Marital status, state-county, behavior, race, and sex
have been shown to be related to the patients’ prognosis
[6]. The year of diagnosis is very important since cancer

TABLE 1. Selected SEER attributes and their descriptors.

prognosis has been improved markedly and rapidly [1].
Most features are discrete and others are continuous.
Table 1 includes the chosen features and a brief description
of each feature. Discrete features are one-hot encoded and
the continuous features remains unchanged prior to feature
selection.

B. COMBINING DATA FOR SPLC CASES
Approximately 413,138 patients are identified with first inci-
dent cancers diagnosed before 2014 that meet the inclusion
criteria. Then, 88,569 patients with lung cancer are included
in the second data set. To find patients with SPLC, the records
with the same IDs are extracted from the two sets of data.
If lung cancer is diagnosed after the first incident cancer,
the record is considered as a SPLC and is added to the
final data set. Dropping patient IDs and survival months,
and including marital status, sex, age, race, and state-county,
the rest of the chosen features are kept for feature selection
described in the next paragraph. Survival in months since
the diagnosis of second primary lung cancer is considered
to be the patient’s survival time. The survival time tab is
transferred to five-year and three-year survivability to be
predicted. Patients who lived over 60 months are labeled
as 1, while others are labeled as 0 in five-year survivability
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prediction. In three-year survivability prediction, the 1 label
is given to patients who lived over 36 months.

Approximately 6,422 cases remain after the selection pro-
cess described above. Figures 2 and 3, and Table 2 display the
distribution of the patients’ survival time. About one-tenth of
the patients lived more than 60 months since the diagnosis of
the first incidence cancer. About one quarter of the patients
lived more than 36 months.

FIGURE 2. Histogram of patients’ survival time.

FIGURE 3. Patients’ survival time distribution.

TABLE 2. Percentage of patients’ survival time.

C. FEATURE SELECTION ACCORDING TO THE IMPROVED
EIGENVECTOR CENTRALITY FEATURE SELECTION
Feature selection, also called feature subset selection,
or attribute selection, is the process of selecting a subset
from the feature group to improve model performance. In the
application of machine learning, a large number of features is
always present. Some features may be irrelevant to the label,
and some may be dependent on each other. The irrelevant

and redundant features may lead to lengthy training time,
over-complicated model, and low generalization.

The original ECFS model jointly considers the variation of
the features (maximum standard deviation over two features)
and the relation of the two features to the class (mutual infor-
mation). This method ranks each feature fj according to the
score sj through calculation as the priority of each feature to
be selected. In the actual construction of the model, n features
can be selected from the top to the bottom by priority.

Specifically, given a training set F represented as
F =

{
f (1), . . . , f (n)

}
, a nondirected fully connected graph

G = (V ,E) can be built. The vertices V correspond to all
features, while the edges E represent the pairwise relations
between features. G can be represented as an adjacency
matrix A whose elements aij (1 ≤ i, j ≤ n) represent the
pairwise relationship between features [24]. The elements are
called pairwise probabilistic energy terms that are defined as:

aij = ϕ(f i, f j) (1)

In ECFS, they use:

ϕ(f i, f j) = αk + (1− α)6, (2)

where k is the mutual information part and6 is the maximum
of the standard deviation of the two features.

Next, ECFS configure the priority for each feature by quan-
tifying the path probability passing through a feature node.
To measure the discriminative power of a single node, all
possible paths that go through the node must be considered.
γij denotes a path of length l between nodes i and j through
other features, we can then estimate the probability using
Eqs. [3]-[5]:

Pγ =
l−1∏
k=0

avk ,vk+1 (3)

To account for the energy of all possible paths of the length l,
Pli,j is defined as the set of all paths of l between i and j:

Rl(i, j) =
∑
γ∈Pli,j

Pγ (4)

which is equivalent to:

Rl = Al, (5)

It was proven that as l approaches a large number L, Ale
converges to v0 [26]:

lim
l→L

[Ale] = v0 (6)

Therefore, ECFS can be realized by finding the eigenvalues
and eigenvectors of matrix A:

det(λI − A) =

∣∣∣∣∣∣∣∣∣
λ− a11 −a12 · · · −a1n
−a21 λ− a22 · · · −a2n
...

...
. . .

...

−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣∣ (7)
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The eigenvectors can be then calculated by solving Eq. (8):

(λI − A)v = 0 (8)

The absolute value of vij represents the score of the jth node
to the ith node. The score of the jth node can be calculated with
equation (8). vij denotes the jth element of the eigenvector vi,
i = 1, . . . , n:

sj =
n∑
i=1

|vij| (9)

s =
[
s1 s2 · · · sn

]
(10)

The original ECFS method use standard deviation and
mutual information to measure the complexity of two fea-
tures and their relationship. However, these two parts are not
comprehensive. We introduce our IECFS method where the
A matrix is different. The adjacency matrix A containing aij
of the graph G is defined as:

A = αDb + (1− α)Dw (11)

where Db and Dw represent interclass dispersion and intra-
class dispersion.

Db =
c∑
i=1

p(Ci)(f̄i − f̄ )(f̄i − f̄ )T (12)

Dw =
c∑
i=1

p(Ci)
1
ni

nj∑
j=1

(fij − f̄i)(fij − f̄i)T (13)

Dt =
1
N

c∑
i=1

nj∑
j=1

(fij − f̄i)(fij − f̄i)T (14)

Db represents interclass dispersion, which is the difference
between the samples in two classes. Dw is the intraclass
dispersion, representing the variance of the samples in the
same class. Dt is the total dispersion, equivalent to the sum
of Db and Dw. The dispersion between cases (Dt ) reflects
the average difference between the samples. Large intraclass
dispersion (Dw) reflects large difference between different
classes, while large interclass dispersion (Db) reflects large
variance between the samples in the same class. The intra-
class and interclass dispersion represent the samples’ separa-
bility in two aspects.
α ∈ [0, 1] is a hyperparameter that balances the importance

of Dw and Db. It can be adjusted to improve classification
performance.

To optimize the results of IECFS, we need to find the
best performing α and combination of features. The optimal
combination was found through grid-searching. All of the
accuracies and AUCs of α ∈ [0.1, 0.9] at the step of 0.05 and
number of features n ∈ [100, 150, 200] were calculated
and are listed in Tables 3 and 4. The elements in matrix A
represent the discriminative power when ith and jth elements
are jointly considered.

TABLE 3. Average of 5 folds’ accuracy and AUC for 5-year survivability
with different α.

TABLE 4. Average of 5 folds’ accuracy and AUC for 3-year survivability
with different α.

D. EXPERIMENTAL PROCEDURES
The data are then randomly divided into five subgroups. Four
out of the five subgroups are used as the training set and the
rest of the data are used as the testing set. The experiment
is repeated five times so that each subgroup has been used
as the test data. 5138 and 1284 observations were included
in the training and testing data sets, respectively. When com-
bining the features of the two cancers, some features were
the same. Excluding these features from the feature pool,
40 features were kept and transformed to one-hot encoded
1687-dimensional data of zeros and ones. The improved-
ECFS reduced the data dimensionality. Different values of α
were adopted for comparison. Linear SVM was adopted as
the classifier. The compared feature selection methods in the
classification stage are as follows: mutual information-based
feature selection, pairwise correlation-based feature selection
method, and the original ECFS [35].
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E. PERFORMANCE METRICS
The classification accuracy is quantified as recognition accu-
racy, precision, and recall. The formulas are as follows:

accuracy =
TP+ TN

TP+ TN + FP+ FN
(15)

Specificity =
TN

TN + FP
(16)

Sensitivity =
TP

TP+ FN
(17)

NPV =
TN

TN + FN
(18)

True positive (TP) represents the patients who lived longer
than 60 months and were predicted to do so, True nega-
tive (TN) represents the patients who did not survive up
to 60 months and whose prediction was also negative. FP
(false positive) is the number of patients who did not live up
to 60 months but were predicted to be positive, and FN (false
negative) is the number of patients whose labels are 1 but are
predicted to be 0.

Accuracy is the ratio of all correctly predicted cases to the
total sample. Specificity measures the ability of the classifier
to predict negative cases and is the fraction of the correct
negative predictions over all negative samples. The sensitivity
measures the classifier’s performance for positive cases and
is the fraction of correct positive predictions over all positive
samples. These twometrics are commonly applied to medical
classifiers. NPV is the abbreviation for negative predictive
value. It reflects the probability that a predicted negative is
a true negative [36].

F. SIMULATION SETUP
This proposed method is implemented in MATLAB 2015b.
The operating system is 64 bit windows 10. The RAM mem-
ory is 16 GB, and the processor is an Intel(R) Core(TM)
i7-6700HQ CPU @2.60GHz 2.59 GHz. The compared fea-
ture selection methods can be found in [27].

The classifier adopted is support vector machine. The
MATLAB fitcsvm function with default sequential minimal
optimization (SMO) algorithm is adopted.

IV. RESULTS
In the feature selection step, each feature is assigned a score.
The features are then ranked according to the score. The
feature with the highest score ranks the first and the feature
with the lowest score ranks last. The number of features
are then selected according to the ranking. If N features are
selected, then the top N features are selected.

Tables 3 and 4 include the grid-searching results for the
best α and number of feature selections combination. The α
values ranging from 0.1 to 0.9 are tested. The number of fea-
ture selections are 100, 150, and 200. The best combinations
are marked in bold in the tables.

Tables 5 and 6 contain the confusion matrices of TP TN FP
and FN, the performance metrics including accuracy, speci-
ficity, sensitivity, the negative predictive value (NPV), and

FIGURE 4. ROC for one of the five folds of the 5-year survival prediction.

FIGURE 5. ROC for one of the five folds of the 3-year survival prediction.

the area under curve (AUC). The best metrics with the same
amount of feature selection are also marked in bold. In addi-
tion to the proposed improved eigenvector centrality-based
feature selection method (IECFS), the compared feature
selection methods are mutual information-based feature
selection (muteInf) [37], correlation-based feature selection
(CFS), and the original eigenvector centrality-based feature
selection (ECFS) [26].

Figures 4 and 5 show the ROC curves for one of the folds.
Figures 6 and 7 display the accuracy score for all five folds

with 150 features. These two figures are plotted to show the
consistency and the metabolizability of the proposed IECFS
method.

V. DISCUSSION
Tables 3 and 4 display the average accuracies and AUCs for
α and number of features combination. The best combination
for the 5-year survivability prediction is α = 0.8 N = 150.
The best combination for the 3-year survivability prediction
is α = 0.35 N = 150. The best number of feature selection
in the MPC patients’ survival prediction is also 150 [25].
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TABLE 5. Classification results for 5-year survivability.

TABLE 6. Classification results for 3-year survivability.

FIGURE 6. 5-year survivability’s prediction accuracies of the five folds.

The AUC values do not match their accuracy scores. In some
cases, the combination with high accuracy has low AUCs.

After selecting the best α and N, the performance of differ-
ent feature selection methods are compared in Tables 5 and 6.

FIGURE 7. 3-year survivability’s prediction accuracies of the five folds.

The proposed IECFS method has the best accuracy scores
among all of the feature selections. The improvement is not
significant. This is caused by the five-fold averaging process.
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The results for all five folds are recorded and averaged for
the comparison. The IECFS has the best metrics except for
the specificity. CFS has the poorest prediction but the best
specificity. The three-year survival prediction also proves that
the IECFS is themost suitable feature selectionmethod. Inter-
estingly, when 100 features are selected, the ECFS method
achieves very good predicting result that is only slightly
worse than that of the IECFS. The improvement of the
three-year survivability is not significant but it is consistent
in every fold. The proposed IECFS method achieves the best
accuracy score in all folds. This proves the robustness of our
model.

The comparison of the feature selection methods shows
that the mutual-information-based feature selection and the
correlation-based feature selection methods have poorer pre-
diction outcome. However, when the number of the selected
features increases, their performances improve. When only
100 features are selected, the MuteInf method has worse
performance than the original prediction. As the number of
features increase, it performs better than the original method.
CFS’s performance also improves with increasing number
of features. However, when 250 features are selected, it is
still worse than the original method. The ECFS and IECFS
methods are different. In 3-year prediction, when 100 features
are selected, these methods have the highest accuracy score
when different number of features are selected. In 5-year pre-
diction, when 250 features are selected, they have the poorest
accuracy when different numbers of features are selected.
This is caused by their ranking criteria.

Figures 4 and 5 shows the ROC curves for one of the
five folds for three-year and five-year survival prediction.
Three of the curves are close to each other. An examination
of the data presented in Tables 5 and 6 shows that the AUC
values of mutual-information-based feature selection, ECFS,
and IECFS are close to each other.

As mentioned in the previous sections, the test is five-
folded. The average performance metrics are calculated and
compared. The five folds of survivability prediction are also
plotted in Figures 6 and 7. For both Figures, 150 features
are selected. Each fold has a different test set. Comparing
Figure 6 with Figure 7, we observe that the IECFS displays
a larger improvement of the prediction for five-year’s surviv-
ability in all folds. The three-year’s survivability prediction
has a smaller improvement but it outperforms other methods
in all folds.

VI. CONCLUSION
SPLC is the most common MPC. Predicting the survivability
of SPLC patients can help the doctors, patients, and families.
However, few researchers have studied the survival prediction
of MPC patients. Thus, the prediction of SPLC survival rate
has become essential in cancer studies. In this research, SPLC
cases were identified and labeled to study survival prediction.
The proposed IECFS method outperforms the state-of-the-art
feature selection methods.

The IECFS method outperforms the compared methods
in all five folds, proving that the IECFS method is robust
and generalizable. The improvement of the IECFS method
over the original ECFS method is moderate, but consistent.
The IECFS method outperforms the ECFS method for a wide
range of numbers of features.

This study focused on SPLC and proposed a novel IECFS
method. We did not apply any data balancing method or
data cleaning method because these methods introduce ran-
domness into the prediction. In future work, we will con-
sider utilizing the methods. Feature selection can be further
improved by jointly considering multiple feature selection
methods through statistical voting. In the future, we may also
study other MPCs’ survivability. We may also study the risk
of developing MPCs after the initial primary cancers.
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