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ABSTRACT We have implemented a machine translation system, the PolyMath Translator, for LATEX
documents containing mathematical text. The current implementation translates English LATEX to French
LATEX, attaining a BLEU score of 53.6 on a held-out test corpus of mathematical sentences. It produces LATEX
documents that can be compiled to PDF without further editing. The system first converts the body of an
input LATEX document into English sentences containing math tokens, using the pandoc universal document
converter to parse LATEX input. We have trained a Transformer-based translator model, using OpenNMT,
on a combined corpus containing a small proportion of domain-specific sentences. Our full system uses this
Transformer model and also Google Translate with a custom glossary, the latter being used as a backup to
better handle linguistic features that do not appear in our training dataset. Google Translate is used when
the Transformer model does not have confidence in its translation, as determined by a high perplexity score.
Ablation testing demonstrates that the tokenization of symbolic expressions is essential to the high quality of
translations produced by our system. We have published our test corpus of mathematical text. The PolyMath
Translator is available as a web service at www.polymathtrans.ai.

INDEX TERMS Machine translation, natural language processing, multi-layer neural network, LaTeX.

I. INTRODUCTION
Machine translation for specialized domains such as legal or
medical text has received considerable attention. Advances
in these areas have been useful in practice and have also
given rise to new techniques in areas including domain adap-
tation [4], automatic term extraction [25] and domain-aware
approaches to general-purpose machine translation [2]. In the
present paper we consider the domain of mathematical text,
as produced by researchers in mathematics and related fields,
and post-secondary teachers of these subjects. To clarify,
we consider specialized natural language about mathematics,
which we may call informal mathematical writing (even if
highly technical), to distinguish it from formal mathematics
written in the language of pure logic. In particular, the present
paper considers the problem of translation of mathemati-
cal writing from English to French. The specific choice of
language pair is motivated by the authors’ particular Cana-
dian context. The domain of mathematical text has, to our
knowledge, not yet been the subject of research in machine
translation, beyond some very early work [14], [17], although
we mention extensive ongoing research in the related areas of
mathematical ontology and semantics [31], translation from
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informal mathematical writing into formal mathematics [29],
and mathematical information retrieval [10].

Mathematical text presents several features of interest to
the researcher. Most obviously, it often mixes natural lan-
guage with symbolic expressions (i.e. formulae) in the same
sentence, with the symbolic expressions playing a variety of
grammatical roles, including as nouns, pronouns or clauses.
Mathematical text has its own grammar and conventions, e.g.
‘‘Let x and y be integers’’ or ‘‘Consider the function h =
f+g.’’ (See also [23].) We hypothesize that most symbolic
expressions in mathematical text functions grammatically as
nouns, and thus may be adequately replaced by single-word
tokens for the purpose of machine translation of the surround-
ing language. Tokenization of entire symbolic expressions
has been used by other researchers, for example in the pro-
duction of the OPUS ‘‘Wikipedia’’ corpus [30], which we use
in the present paper. There are of course many examples of
symbolic expressions that do not function grammatically as
nouns. For example in the sentence ‘‘Since x>y, it follows
that x is positive.’’, the first symbolic expression ‘‘x>y’’ is a
clause. For this and other reasons, we expect that grammatical
and semantic understanding of symbolic expressions will
eventually improve machine translation of mathematical text.
However this is beyond the scope of the present article, which
relies on simple tokenization of whole symbolic expressions.
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Anecdotally, mathematical writing can be both more and
less complex than typical natural language. It is unique in
its frequent use of definitions [31], and often complex in
its precise description of logical relationships, using vocab-
ulary and grammar that is standard but uncommon outside
of mathematics, philosophy and law. While we are not aware
of research directly supporting this assertion, it is indirectly
supported by Yasseri et al.’s study of Wikipedia entries [32],
which found that themost complex examples studied, as mea-
sured by the Gunning fog index, were those in Philosophy
and Physics. (Mathematics was not considered.) Note that
the Gunning fog index depends on mean sentence length and
the frequency of long words. On the other hand, there is no
suggestion in that paper that the vocabulary of mathematical
text is larger than usual. On the contrary, anecdotal evidence
suggests the opposite. In particular, the authors are aware of
many examples of mathematical researchers giving compre-
hensible technical lectures in languages in which they are not
generally fluent. If this simplicity of vocabulary is confirmed,
then the domain of mathematical text offers an intriguing
possibility of better-than-usual machine translation in this
limited domain, while at the same time possessing unique
challenges.

Practically, there is a great need for machine translation
of mathematical text, for researchers, teachers and students.
While the commercial possibilities of this domain may not be
as obvious as inmedicine or law, there is a large base of poten-
tial users, and a very large number of documents. For example
the MathSciNet R© database [24] contains over 3.6 million
items, and if we expand the definition of mathematical text to
include mathematically rich fields such as physics, computer
science and engineering, we may consider the 1.8 million
papers on the arXiv.org preprint server. In addition, there
aremillions of students of advancedmathematics with limited
fluency in English who rely on English-language textbooks
because of the lack of available translations.

The most salient obstacle to machine translation of mathe-
matical text has been its symbolic content. The vast major-
ity of mathematical documents are now written in LATEX,
a document-preparation system specific to mathematics,
which supports embedded mathematical symbols and expres-
sions, as well as providing document layout features. This
ubiquity is at once an obstacle to translation via existing tools
(which do not understand LATEX syntax) and an opportunity,
since once the LATEX ‘‘hurdle’’ is passed, the majority of mod-
ern mathematical text is now available to machine translation.

In this paper, we describe and evaluate a system for
translating mathematical text, which includes LATEX parsing
using pandoc [16], math tokenization, and sentence trans-
lation using the ‘‘Transformer’’ neural machine translation
model [27]. To our knowledge, this is the first system of
its kind in the literature. We demonstrate that our system
produces high-quality translations and that math tokenization
is essential to achieving this. We also examine how mathe-
matical text differs from text in other domains, and provide
evidence that mathematical text is simpler in some respects.

We publish a small corpus of English-French sentence pairs
with math tokenized.

The rest of the paper is organized as follows. In the Meth-
ods section we outline the custom corpora and glossary that
we use for model training and testing, and we then describe
our algorithms. The Results section begins with a brief com-
parison of corpora in three specialized domains:mathematics,
geography and sociology. We then evaluate our translation
system on both whole LATEX documents and a small test
corpus of mathematical sentence pairs, and perform ablation
testing to evaluate the importance of different components of
our system. The paper ends with a Discussion.

II. METHODS
A. DATA AND PREPROCESSING
We constructed a small custom glossary of 373 mathemat-
ical terms (words and short phrases) by combining several
publicly available lists (including [6], [22]) and adding a few
extra terms.

Since we are not aware of any published corpora specif-
ically designed for evaluating mathematical translation,
we prepared three corpora of aligned English and French sen-
tences: (i) ‘‘math-wiki’’ – a subset of the OPUS ‘‘Wikipedia’’
corpus (v1.0) [30]; (ii) ‘‘custom math’’, based on the second
author’s research papers in mathematics; (iii) ‘‘linear code’’,
based on course notes byM. Nevins on linear error-correcting
codes. All of these are described in detail below.
We have published the ‘‘linear code’’ corpus on the IEEE
DataPort [18].

The OPUS ‘‘Wikipedia’’ corpus is a corpus of paral-
lel sentences extracted from Wikipedia by Krzysztof Wołk
and Krzysztof Marasek [30], which is part of the OPUS
project [26]. The full corpus includes many language pairs,
of which we use only the English/French pair, which consists
of 803,670 sentence pairs containing 34M words (English
plus French). The subject matter is wide-ranging. In order to
focus on mathematical text, we applied a naïve subject matter
filter to this corpus. We extracted from the ‘‘Wikipedia’’
corpus only those sentence pairs in which the English sen-
tence contained at least two terms from our custom mathe-
matical glossary. We found 16,767 sentence pairs satisfying
this criterion. We call the resulting sub-corpus ‘‘math-wiki’’.
All symbolic expressions in this corpus, as in the original
‘‘Wikipedia’’ corpus, are tokenized. Due to the method used
to select sentences, some non-mathematical sentences are
included. The vocabulary of this reduced dataset contains
55,474 unique tokens, whereas the mean vocabulary size of
random subsets of the same corpus, of the same size, was
100,738 (mean over 5 random samples).

For comparison, we also extracted subsets of the
‘‘Wikipedia’’ corpus relevant to the domains of geography
and sociology, using the method described above, based on
word lists extracted from: the Wikipedia entry ‘‘Glossary of
geography terms’’, and a glossary by the American Sociolog-
ical Society [1]. As for the ‘‘math-wiki’’ corpus, we noticed
that our ‘‘geography’’ and ‘‘sociology’’ sub-corpora contain
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some sentences outside the target domain, so are most accu-
rately described as multi-domain corpora heavily weighted
towards the target subject.

For all model training and validation, and for most of our
testing, we used a combined corpus of pairs of aligned text
chunks (mostly sentences), called hereafter our ‘‘main cor-
pus’’, consisting of: the ‘‘math-wiki’’ corpus defined above;
a subset of the ‘‘Aligned Hansards of the 36th Parliament
of Canada’’ corpus [8]; and our own ‘‘custom math’’ corpus
derived mainly from several research papers of the second
author TS. The first sub-corpus (Hansards) was included to
provide greater breadth of vocabulary, grammar and style,
while the second two focus specifically on mathematical text.

The ‘‘Aligned Hansards of the 36th Parliament of Canada’’
corpus is a corpus of aligned text chunks (sentences or
smaller fragments) extracted from the official records of the
36th Canadian Parliament, including debates from the House
of Commons and the Senate [8]. The full corpus consists
of 1.28M English-French sentence pairs, containing 33.9M
words (English plus French). This is a high-quality corpus
consisting mostly of complete sentences. We chose it for its
size and quality, and also in the hope that the source material
would contain many examples of a formal expository style of
language with a structure similar to mathematical text. After
removing sentence pairs with irrelevant information such as
the title, date, and speaker names, we randomly shuffled
the entire filtered corpus and then selected 250,000 sentence
pairs.

The custom math corpus consists of 1,075 sentence pairs
in English and French, with the English sentences extracted
from several of the second author’s research papers in math-
ematics. The English sentences were manually translated
into French. All symbolic expressions were ‘‘tokenized’’,
i.e. replaced with token words such as ‘‘MATH66X’’. All
remaining LATEX formatting is removed.

These three sub-corpora were combined into one hetero-
geneous corpus containing a total of 267,842 English-French
parallel text chunks, which we refer to as the ‘‘main’’ corpus
in the remainder of this paper. Most of the text chunks are
sentences, so we refer to them as ‘‘sentences’’ hereafter.
Each sentence pair in the main corpus was word-tokenized
to ensure all tokens in a sentence including punctuation were
separated by a space and treated individually during training.
We randomly shuffled the main corpus, and then randomly
split the text pairs into training (80%), validation (10%), and
test (10%) sets.

For additional testing, we used a further custom cor-
pus, the ‘‘linear code’’ corpus, containing 160 sentence
pairs, extracted from mathematical course notes prepared by
M. Nevins on linear error-correcting codes, a subject that
did not appear in our main corpus. Beginning with French
sentences extracted from the source document we manually
translated the sentences to English, and removed LATEX com-
mands except within symbolic expressions. For all testing
except the ‘‘Google Raw’’ variant (see details below), we
tokenized all symbolic expressions.

B. PARSING METHODS
We use a modular design that decouples the LATEX parsing
and machine translation aspects. The first task is to parse
the LATEX document and extract all natural language text for
translation while preserving enough document structure and
LATEX commands to reconstruct a full document. The second
task, addressed in the next section, is to translate the extracted
natural language text to French.

For the first task of parsing the LATEX document, our main
tool was the Pandoc Universal Document Converter [16],
using the Python wrapper pypandoc. For our purposes,
since we aim to translate an English LATEX document to
French while preserving the original LATEX as much as pos-
sible, we are ‘‘converting’’ a document from LATEX to LATEX.
Our purpose in doing so is to leverage an intermediate docu-
ment representation internal to Pandoc, the JSON-formatted
abstract syntax tree (AST), and a mechanism for performing
operations on this syntax tree: pandoc filters, implemented
using the Python package pandocfilters. The abstract
syntax tree is organized by block elements, such as para-
graphs, bulleted lists, and tables, each of which contains a list
of ‘‘inline elements’’ including strings of individual words,
spaces, and math. Since the filters integrate into the Pandoc
LATEX-to-LATEX file conversion, the entire translation process
executes with one Pandoc function call. An overview of the
process is shown here:

We use two pandoc filters, each of which modifies the
abstract syntax tree. The first ‘‘core’’ Pandoc filter translates
all block elements that contain natural language text, by join-
ing strings of text and math symbols into whole sentences (or
sometimes phrases, as in titles), translating those sentences
(see next section), and putting the translated sentences back
into the abstract syntax tree. Note that the larger-scaled block-
based structure of the document is preserved in the abstract
syntax tree.

Typically, pandoc filters act on individual inline elements
such as strings. However, for translation of text, this is very
limited, as each string containing an individual token would
have to be translated separately, instead of a whole sentence.
Thus, we combined these inline elements into whole sen-
tences. We accomplished this in a ‘‘string-joining’’ func-
tion consisting of two layers: manipulating individual block
elements through the pandoc interface, and further manipu-
lating the inline elements directly. Importantly, we include
mathematical formulas (inline or displayed) in our sentences,
tokenized into ‘‘MATH’’ tokens of the form ‘‘MATHnX’’,
where n is the index of the token for later retrieval of its
corresponding mathematical formula. The original formulas
are saved in a JSON object with their corresponding token
name as a key. This way, full sentences containing these
formulas can be translated without the loss of any important
surrounding context.

For example, consider a simple mathematical sentence
in LATEX: ‘‘Let Y have mean µ and variance σ 2, and an
unknown p.d.f. pY that is everywhere nonzero.’’ Within a
JSON-structured paragraph block, this sentence would be
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represented as a list of inline elements, the beginning of which
is shown in Fig. 1. Without manipulating the mathematical
formulas within this sentence, the sentence would be split
up by these objects, so the largest possible concatenated
phrases for translation would be ‘‘Let’’, ‘‘have mean’’, ‘‘and
variance’’, etc. which would pose a major limitation for
translation quality (as we demonstrate in Table 2 below).
After tokenizing ‘‘math’’ objects, the whole sentence is con-
catenated into a single ‘‘Str’’ element: [‘‘t’’:‘‘Str’’,‘‘c’’:‘‘Let
MATH1X have mean MATH2X and variance MATH3X, and
an unknown p.d.f. MATH4X that is everywhere nonzero.’’]
The format of the math tokens is such that they are treated
as unknown English words by the translation module(s),
and left unchanged in the translated sentences. Mathematical
expressions can now be treated as individual tokens during
translation, and the entire sentence can be translated, optimiz-
ing translation quality. Note that after the filter runs, pandoc
automatically converts the ‘‘Str’’ sentence object back into
individual ‘‘Str’’ word and ‘‘Space’’ objects, as in the original
abstract syntax tree.

FIGURE 1. Data flow of LATEX parsing module using the pandoc universal
document converter. The internal representation is the abstract syntax
tree (AST) which is in JSON format.

Once all natural language text in the modified LATEX docu-
ment has been translated to French, it remains to replace the
‘‘MATH’’ tokens with the original mathematical formulas,
using the saved JSON object created by the ‘‘core’’ pandoc
filter. This is accomplished by a second pandoc filter called
the ‘‘detokenizer’’.

Finally, pandoc creates a newLATEXfile using the translated
text and the structure of the original document. The entire
process is represented in Fig. 2. Note that some changes to
the LATEX commands are introduced as a result of pandoc’s
abstract syntax tree not being able to completely represent all
LATEX commands. However when the original and translated
documents are compiled to PDF format, very few differences
in format are seen.

C. TRANSLATION METHODS
For translating text, we trained a custom neural machine
translation (NMT) model using the Transformer archi-
tecture for neural sequence transduction introduced by
Vaswani et al. [27]. The Transformer is a neural sequence
transduction model, i.e. a ‘‘sequence-to-sequence’’ translator
implemented using a neural network that outputs, for any
position t in the output sequence y, a conditional distribution
p
(
yt
∣∣y<t , x) based on the entire input sequence x and the pre-

ceding outputs y<t . Like most other such models, the Trans-
former has an encoder-decoder structure. Attention mecha-
nisms apply weights to elements of the input sequence, which
vary according to the position t in the output sequence. This
allows the network to ‘‘pay attention’’ to certain inputs, for
example when producing the first word of an output sentence,
the network may pay most attention to the first word of the
input sentence. The key distinguishing feature of the Trans-
former model is its use of Multi-Head Self-Attention which
allows it view the input sequence from different ‘‘points of
view’’ by applying several parallel attention functions. For
example, when encoding the word ‘‘kicked’’ in the sentence
‘‘I kicked the ball’’, one may pay more attention to the ‘‘I’’
or the ‘‘ball’’, corresponding to asking the questions ‘‘who
performed the action?’’ or ‘‘what was kicked?’’ In this toy
example, the first point of viewwould aidmost in conjugating
the corresponding output verb, while the second point of view
would aid most in translating the verb root. A key feature
of the Transformer attention mechanism is that it is highly
parallelizable, allowing much faster training than previous
comparable models. We trained a Transformer ‘‘base model’’
as implemented in OpenNMT [12], using the training subset
of themain corpus described above. Training details are given
in the next section.

The output of our trained Transformer model is already
high-quality, as will be seen in the next section. However,
while we can expect our model to have good performance on
mathematical text (thanks to the inclusion of mathematical
text in our training set), we do not expect it to perform
as well on general English text as commercial translation
services such as Google Translate, due mainly to our limited
training set. For this reason, we used Google Translate, with
the custom math glossary described above, as a ‘‘backup’’
translator in our final system, as follows.

We first run all sentences through our main Transformer
model. The output of this process is not just a translated sen-
tence but also a cumulative log conditional likelihood score∑

t log p
(
yt
∣∣y<t , x), where the sum is over all tokens in the

output sentence. Dividing this by the length of the sentence
gives the mean log conditional likelihood per token, which is
a measure of how confident the system is of its prediction.
This is commonly converted into a perplexity value, calcu-
lated as exp (−mean conditional likelihood), which is lowest
for the most confident predictions. The median perplexity
value for the Transformer model on the validation set is 1.68.
We established a threshold value for perplexity, and whenever
our Transformer model produced a sentence with perplexity
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FIGURE 2. Overview of PolyMath Translator. The pink-coloured modules are implemented using the
pandoc universal document converter, see also Fig. 1.

above this threshold, we discarded the output and instead
re-translated the input sentence using the Google Translate
API with our custom math glossary. We tuned the perplexity
threshold to maximize the BLEU score (see next section) on
the validation set, see Figure 3. The optimal threshold, which
we used for all testing, was 1.75. Our use of a perplexity
threshold to select a translation model may be considered to
be an elementary form of ensemble learning.

D. FRENCH-SPECIFIC LATEX MODIFICATIONS
Finally, since French LATEX has its own typographical con-
ventions, PolyMath adds a ‘‘french’’ option to the document
class and adds the following lines to the document header:

\usepackage[T1]{fontenc}
\usepackage{babel}

It also explicitly translates all LATEX-style double quotes
(i.e. two consecutive backquotes or two consecutive single
quotes) into \og and fg{} respectively.

E. TRAINING, VALIDATION AND TESTING
As noted earlier, our main corpus was randomly split
into training (80%), validation (10%), and test (10%)
sets. The training subset contains 214,272 English-French
sentence pairs, while the validation and test subsets each
contain 26,785 sentence pairs.

To evaluate the quality of machine translations as com-
pared to given reference (i.e. target) translations, we used
the BLEU metric [19] (‘‘Bilingual Evaluation Understudy’’),
specifically the implementation in the sacreBLEU python
package [21]. This metric is standard in the field and has been

FIGURE 3. Results of tuning the perplexity (‘‘PPL’’) threshold during
validation. If the Transformer model produces a perplexity value above
this threshold, then the input sentence is re-translated using Google
Translate with our custom math glossary. The maximum BLEU is obtained
for a threshold of 1.75.

shown to correlate well with human judgement of translation
quality.We follow themost common convention and scale the
metric to a score between 0 and 100, where 0 is the poorest
quality (no overlap with the reference translations) and 100 is
the highest quality.

The BLEU score takes into account the length of the trans-
lation output in comparison to the reference, as well as its
‘‘precision’’, through counting the number of matching uni-
grams, bigrams, trigrams, and four-grams within the output
and reference translations. Specifically, the BLEU score is
the product of a brevity penalty and an n-gram overlap score,
each defined as follows:

brevity penalty = min
(
1, exp

(
1−

reference-length
output-length

))
,

n-gram overlap =

(
4∏

n=1

precisionn

) 1
4

,
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where each term ‘‘precisionn’’ is basically the proportion of
the n-grams in the output that appear in the target. See [19]
or [9] for details.

We trained the Transformer model with a vocabulary
of 50,000 words on the training subset of the main cor-
pus. We set the batch size to 3072 tokens and a maximum
of 100,000 steps or 65 epochs of the entire corpus for training,
and we used default values of all other hyperparameters. We
did not tune any model hyperparameters. We used an early
stopping condition, to avoid over-fitting and save computa-
tional cost once the model converges, for which we used the
validation subset of the main corpus. The stopping condition
was: stop when the validation BLEU score does not improve
by more than 0.2 points over the last 4 evaluations. After
50,000 steps or 32 epochs, our model met the early stop-
ping criteria and stopped training with a validation BLEU
score of 28.7. This training required 12 hours on 8 Tesla
V100 GPUs.

During testing, each sentence is first translated by the
Transformer model, and if it has a test perplexity of less
than or equal to a threshold value of 1.75, this prediction
is retained, otherwise, the sentence is instead translated by
Google Translate with our custom math glossary. The thresh-
old value was tuned on the validation set as described in
Section II-C. We note that during testing on the ‘‘linear
code’’ corpus, the full PolyMath system used the Transformer
NMT model for 71% of the sentences, and used the ‘‘backup
system’’ of Google Translate with custom glossary for the
other 29% of the sentences.

After training the Transformer model and integrating the
other components described above, we evaluate the qual-
ity of the PolyMath system by computing mean BLEU
scores for our two test corpora: the testing subset of the
main multi-domain corpus; and the ‘‘linear code’’ corpus
of mathematical text. We also perform ablation testing, i.e.
we compare the entire PolyMath Translation system with
versions in which certain of its features are disabled. Specif-
ically, we examine two variants: ‘‘PM-Transformer’’, which
includes the usual LATEX parsing and math tokenization but
then translates sentences using only our Transformer NMT
model; and ‘‘PM-Google’’ which is similar but translates
sentences using only Google Translate, with no custom
glossary.

We performed further ablation testing on the linear code
corpus. The ‘‘PM-Piece’’ model parses the LATEX as usual
except that the symbolic expressions are not tokenized;
instead, translation is performed ‘‘piecewise’’, i.e. each sen-
tence fragment between symbolic expressions (if any) is
translated separately and then text fragments and symbolic
expressions reassembled to make a full sentence. The BLEU
scores are calculated on the full translated sentence. Finally,
the ‘‘Google Raw’’ model is that each sentence is passed
to Google Translate in its original form, which may include
LATEX commands inside of symbolic expressions but does
not include any LATEX commands for text or document
formatting.

III. RESULTS
We first performed an exploratory comparison of our three
sub-corpora of the OPUS Wikipedia corpus, correspond-
ing to the domains: mathematics, geography, and sociology.
As noted in Section II-A, these sub-corpora are not truly
single-domain, but instead aremulti-domain corpora inwhich
the selected domain is heavily weighted. For each corpus,
we compute: mean sentence length (in English), vocabulary
(in English), and BLEU score for English-to-French trans-
lation using Google Translate (without a custom glossary).
The sentence length is the total number of tokens (including
punctuation). To avoid the confounding effects of corpus size
and sentence size on vocabulary, the vocabulary reported is
the number of unique tokens in first 100,000 tokens. The
results are shown in Table 1. Sentences in the math corpus
are shorter (mean 33.0 tokens) than in the other two cor-
pora (mean 51.2 and 52.4), and the vocabulary is smaller
(13.2K vs. 16.2K and 17.6K).

TABLE 1. Characteristics of three sub-corpora of the OPUS Wikipedia
corpus. Each corpus is multi-domain, however the target domain is
over-represented. Vocabulary is the number of tokens in the first
100,000 tokens in the corpus. The BLEU score is for English-to-French
translation using Google Translate.

Table 2 shows our main results, which are mean BLEU
scores calculated on our two test corpora: the test subset of the
multi-domain ‘‘main corpus’’; and the ‘‘linear code’’ corpus
of exclusively mathematical text. Note that both test cor-
pora consist of sentence pairs already preprocessed, with any
LATEX commands outside of symbolic expressions removed.
The results of testing on full LATEX documents are reported
later.

The highlight of these BLEU results is the score of 53.6 on
mathematical text (the ‘‘linear code’’ corpus). This is much
higher than the state-of-the-art for general multi-domain
English-to-French machine translation, which is 41.8 [27].

The rest of Table 2 shows the results of ablation testing.
On the ‘‘linear code’’ test corpus, using only the Trans-
former NMT model resulted in a 3.2 point drop in BLEU
score; while using only Google Translate (with no custom
glossary) resulting in a 7.1 point drop in BLEU score. It is
also noteworthy that the Transformer model outperformed
Google Translate, even on multi-domain text. This may be
partly due to the similarity of training and test data, which
gave the Transformer model an advantage. However it does
suggest that our main corpus was large enough to support a
comprehensive language model.

The further ablation testing showed large drops in per-
formance when math tokenization was not used. The ‘‘PM-
Piece’’ system, which broke sentences into fragments at each
symbolic expression and translated the pieces separately,
resulted in a BLEU score of 38.0 (a drop of 15.6 points).
The ‘‘Google Raw’’ system, in which each sentence is
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TABLE 2. Mean BLEU scores on two held-out test corpora: (first column)
the ‘‘test’’ subset of our multi-domain main corpus; and (second column)
the ‘‘linear code’’ corpus consisting entirely of mathematical text. The
rows correspond to: (i) (Full PM) the full PolyMath Translator system; (ii)
(PM-Transformer) the PolyMath system except only using the Transformer
model; (iii) (PM-Google) the PolyMath system except only using Google
Translate; (iv) (PM-Piece) the PolyMath system without math
tokenization, translating only ‘‘piecewise’’, i.e. individually translating
each sentence fragment between symbolic expressions (if any), but still
calculating the BLEU score on whole sentences; (v) (Google Raw) Google
Translate applied to ‘‘raw’’ sentences including some LATEX commands in
symbolic expressions but not including any LATEX formatting commands.

submitted directly to Google Translate in its original form
(including symbolic expressions but without LATEX format-
ting commands) resulted in a BLEU score of 31.6, which
is 22.0 points below our best method; a more informative
comparison is that it is 14.9 points below ‘‘PM-Google’’, i.e.
the PolyMath system using only Google Translate and not
our Transformer model. Together these tests demonstrate that
translation of full sentences with math tokenization results in
a large improvement in translation quality.

In Table 3 we illustrate that the PolyMath Translator is
a complete LATEX document translation system, integrating
natural language translation with LaTeX document parsing
and French language support. A single sentence, containing
LATEX commands for symbolic expressions, text formatting
and document formatting, is translated first by Google Trans-
late and then by the PolyMath Translator. Unsurprisingly,
the output of Google Translate is almost unusable: not only
can it not be compiled since it not valid LATEX, but since
Google Translate is not LATEX-aware, it mistakenly translates
the LATEX command ‘‘\in’’ into ‘‘\ dans’’. It also does not
understand the LATEX system for representing accented char-
acters. In contrast, the PolyMath Translator directly gives the
desired result: a piece of LATEX code that compiles to give
a perfect translation of the sentence with formatted text and
symbolic expressions.

Finally, all of the LATEX source documents used in this
study, as well as the present manuscript in preprint form,
were translated to French by the PolyMath Translator system,
and the results compiled to PDF using TeXShop or Overleaf.
Most of the output documents compiled to PDF without any
manual editing required. The translated version of the present
manuscript in preprint form is included in the Supplemen-
tary Material, compiled to PDF; this is the output of the
PolyMath Translator, with minor manual edits made to only
6 lines of the output file (mostly related to figures). There
are some slight differences in format between the original
manuscript and the French version, due to the pandoc internal
representation (the abstract syntax tree) not being a perfect
representation of the LATEX input. However, the formatting is
very similar to the original paper, and the English to French
translation is very good.

We have made the PolyMath Translator available as a
web-service at polymathtrans.ai.

IV. DISCUSSION
We have implemented a prototype machine translation sys-
tem for LATEX documents containing mathematical text,
the PolyMath Translator. The current implementation trans-
lates English LATEX to French LATEX, attaining a BLEU score
of 53.6 on a held-out test corpus of mathematical sentences.
(See Table 2.) This is much higher than the state-of-the-art
for general multi-domain English to French machine trans-
lation, which is 41.8, as attained by the ‘‘big’’ Transformer
model [27]. Further, it is comparable to other state-of-the-art
BLEU scores on specialized domains; for example in [11],
maximum BLEU scores for German-to-English translation
domain-specific corpora were: 37.8 (law), 49.0 (medicine),
and 59.4 (information technology).

Our ablation testing demonstrated that tokenization of
symbolic expressions, i.e. the temporary conversion of an
entire symbolic expression to a single token, was essential
to obtaining high quality translations. Indeed, Table 2 shows
that two alternative approaches: piecewise translation of sen-
tences, and translation of ‘‘raw’’ entire sentences, lead to
much lower mean BLEU scores.

This was not surprising to us, due to our earlier hypoth-
esis that symbolic expressions usually (though certainly not
always) function as nouns in mathematical text, in which case
replacing them with a single token retains the grammatical
structure of a sentence. In contrast, breaking a sentence into
pieces at symbolic expressions and translating the pieces
separately (as in the method ‘‘PM-Piece’’ in Table 2) seems
very unpromising for sentences containing several symbolic
expressions, since the resulting pieces are so small as to lose
grammatical and semantic context.

Our main contribution is the implementation and evalu-
ation of the PolyMath translation system, which includes
LATEX parsing, tokenization of symbolic expressions, and
a Transformer-based model trained on a heterogeneous
corpus containing a small proportion of domain-specific
sentences. This system is available as a web-service at
polymathtrans.ai.
Our secondary contributions are: an examination of how

mathematical text differs from text in other domains; and the
publication of the ‘‘linear code’’ corpus of English-French
sentence pairs with symbolic expressions tokenized. [18]

Our exploratory comparison of text from different
domains, summarized in Table 1, suggests that mathematical
text has shorter sentences and a smaller vocabulary than text
from other specialized domains. The finding of a small vocab-
ulary is consistent with our anecdotal evidence mentioned
in the Introduction, and also with our observation, noted in
Section II-A that the vocabulary of our ‘‘math-wiki’’ subset
of the OPUS Wikipedia corpus was approximately half of
the vocabulary of other random multi-domain subsets of the
same corpus of the same size. However the finding of shorter
sentences is opposite to the tentative inference we drew in
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TABLE 3. Illustration of two translations of English LATEX into French. The top row shows an excerpt from a compiled LATEX document. The corresponding
LATEX source code was entered into to two English-to-French translation systems: (i) Google Translate correctly translates the words, however is unaware
of LATEX syntax, resulting in an un-compilable document (e.g. ‘‘\in’’ is translated to ‘‘\ dans’’); while (ii) PolyMath correctly translates the entire LATEX
document into a French LATEX document that compiles without further editing.

the Introduction from Yasseri et al.’s study of Wikipedia
entries [32], which found that the most complex examples
studied were from Philosophy and Physics. (Mathematics
was not considered.) We also found (see Table 1) that Google
Translate produced higher-quality translations of mathemat-
ical text than text from other domains, which is consistent
with our findings of a smaller vocabulary and shorter sentence
lengths inmathematical text, and supports the general conclu-
sion that, from a natural language point of view, mathematical
text is simpler than text in most other domains. The conclu-
sion is broadly consistent with the finding of Jin et al. [11]
(mentioned above) that BLEU scores for domain-specific
corpora were higher for information technology than for
law and medicine (if we consider that ‘‘information tech-
nology’’ overlaps with computer science and hence with
mathematics).

Our own experiments with our PolyMath translation sys-
tem also support the general conclusion that mathematical
text is simpler and easier to translate than text in other
domains. Indeed, as noted earlier, our BLEU score of 53.6 on
mathematical text is higher than the state-of-the-art for gen-
eral English to French machine translation, which is 41.8,
attained by the ‘‘big’’ Transformer model [27]. Our lower
BLEU score of 32.5 on our multi-domain main corpus
(29.0 using the Transformer model only), is more in line
with expectation, especially since we used the ‘‘base model’’
Transformer and only trained for 12 hours on 8 V100s, while
the state-of-the-art result of 41.8 required training a ‘‘big’’
Transformer model for 3 days on 8 V100s. Comparing our
BLEU results for the two testing corpora, we conclude that,
since we used the same translation system, our increased
score on mathematical text is due to the relative simplicity
of this domain.

In summary, mathematical text seems to be simpler and
easier to translate than text from most other domains. This
offers an intriguing possibility of better-than-usual machine

translation, and other natural language processing, in this
domain, as suggested by our high BLEU score of 53.6 on
a test corpus, using a prototype translation system that has
evident room for improvement.

The PolyMath Translator produces LATEX documents that
can be compiled to PDF without further editing. Since
French LATEX has its own typographical conventions, Poly-
Mathmakes small changes to the header and quotationmarks,
as detailed in the Methods section. Once we added this step,
we found that in all of our experiments the output of Poly-
Math compiled to PDF (using TeXShop) without error; thus
PolyMath is robust in its handling of LATEX syntax.

Several obvious opportunities exist for improving this sys-
tem. We can expand and improve our corpora and glos-
sary, using both automated tools, for example automatic
multi-word terminology extraction [28], [30], and manual
proofreading. This might involve the use of large document
collections including arXiv, which includes some publicly
available LATEX sources, see [5]. We can incorporate recent
advances in machine translation research in areas including
deep learning [20], [34], Bayesian modelling [33], and meth-
ods for incorporating whole document context [15]. Further,
given the relative ease of machine translation in the mathe-
matical text domain, and at the same time, the lack of curated
corpora of mathematical sentence pairs, we are optimistic
that semi-supervised translation [3], [11] and multi-language
models [7] will be successful in this domain.

Also, we will investigate alternative methods of LATEX
parsing that will allow us to exactly retain all of the LATEX
commands in the original document, rather than passing them
through the pandoc internal representation, which introduces
some changes as mentioned above.

An intriguing possibility specific to the domain of math-
ematical text is to improve translations by semantic under-
standing of the content of mathematical formulas, see
e.g. [10], [13]. A simpler early target would be to classify the

VOLUME 9, 2021 38085

arXiv


A. Ohri, T. Schmah: Machine Translation of Mathematical Text

formulas by their parts of speech, usually nouns, pronouns
or clauses; and encode them in a way that is usable by the
translation modules.

While the future research possibilities are exciting, one
of our main conclusions is that high-quality translation of
text in mathematics and neighbouring domains, in LATEX
format, is possible now, without waiting for future research
breakthroughs. We hope that automatic translation of LATEX
articles between multiple languages soon becomes standard
practice.
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