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ABSTRACT Biometric identification allows people to be identified by their unique physical characteristics.
Among such schemes, fingerprinting is well-known for biometric identification. Many studies related to
fingerprint-based biometric identification have been proposed; however, they are based purely on heavy
cryptographic primitives such as additively homomorphic encryption and oblivious transfer. Therefore, it is
difficult to apply them to large databases because of the expense. To resolve this problem, some schemes
have been proposed that are based on simple matrix operations rather than heavy cryptographic primitives.
Recently, Liu et al. proposed an improved matrix-based scheme using the properties of orthogonal matrices.
Despite being more efficient when compared to previous systems, it still fails to provide sufficient security
against various types of attackers. In this paper, we demonstrate that their scheme is vulnerable to an
attacker who operates with a cloud server by introducing statistical-inference attack algorithms. Moreover,
we propose concrete identity confirmation parameters that an adversary must always pass, and present
experimental results to demonstrate that our algorithms are both feasible and practical.

INDEX TERMS Biometric identification, cloud computing, privacy-preserving, statistical inference attack.

I. INTRODUCTION
Biometric identification is a convenient means of identifying
users in a specific group. To identify users, we use biometric
traits rather than passwords, identification cards, etc. It is
sufficient to substitute them because they are always present
on the person, unique, and highly invariant over time. This
means that biometric traits satisfy three critical properties:
universality, uniqueness, and permanence [1]. For this reason,
biometric traits are widely used in identification and authen-
tication systems in various fields. Concurrently, however,
the concerns about privacy continue. If a secret key is gener-
ated from the biometric data is disclosed, it cannot be reused
or replaced in the same system because of its uniqueness.
In addition to this problem, there are many concerns about
privacy in biometric systems [2], [3], and numerous studies
have been conducted to resolve this problem. [4]–[6].
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Most of the identification systemsmentioned above require
two basic algorithms, a feature extraction algorithm [7]–[10],
and a matching algorithm [11]–[17]. The feature extraction
algorithm is used to extract the features of biometric traits
such as fingerprints, palm veins, face, and irises. In the case
of fingerprints, for example, we first obtain the fingerprint
image, and then, generate the n-dimensional vector, called
FingerCode [18], from it by applying the relevant feature
extraction algorithm. The matching algorithm is used to com-
pare FingerCodes while preserving privacy. A comparison
of whether two FingerCodes are similar is easy because it
requires computing the Euclidean distance between two vec-
tors to check for similarity. However, it is not simple to com-
pare them while preserving privacy. Because FingerCodes
must be encrypted and a general encryption scheme (such
as AES or RSA) requires a decryption process to compute
the Euclidean distance between them, we have difficulty
checking whether two encrypted FingerCodes are identical.

To overcome this difficulty, many works related
to privacy-preserving matching algorithms have been
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proposed. [12]–[15]. Barni et al. [12] proposed a privacy-
preserving fingerprint authentication scheme using additively
homomorphic encryption. The output of their scheme is the
set of indices within some threshold, not the index having the
minimum distance between the candidate FingerCode and
the FingerCode in the database. By this process, the com-
putation cost is linearly increased in proportion to the size
of the encrypted data. As a result, their scheme takes 16 s
and uses 9.11 MB of bandwidth for each identifica-
tion request to the database (number of FingerCode=320,
length of the FingerCode=16, and component size of the
FingerCode=7bits). SCiFI [13] is a secure component-based
face identification system that matches images captured by
the client to the images stored on the server. They built
a secure-hamming distance and secure-minimum algorithm
based on additively homomorphic encryption and 1-out-of-N
oblivious transfer as cryptographic tools. These crypto-
graphic tools enhance the security of the protocol, but reduce
its efficiency. In [13], the authors reported that the iden-
tification scheme takes 31 s of online computation for a
database of 100 (a list of 100 faces representing a string
of 900 bits). Consequently, this scheme is not suitable for
practical biometric identification applications, because it is
time-consuming to perform the identification algorithm for
every request. In a similar work, Huang et al. [14] proposed
a new protocol that improves the efficiency of the previous
biometric identification schemes. They built an improved
Euclidean distance protocol based on ciphertext packing
techniques and use the encryption circuits to find the closest
match. This scheme required 18 s with a 7.6 MB bandwidth
cost per identification request on a 1 GB database. While it
appears more efficient than the previous schemes, it has the
problem wherein the client has to send the entire encrypted
database to the server when identification is requested.
Yuan and Yu [15] proposed a scheme that resolves the above
problem. They use a simple matrix operation instead of
heavy cryptographic tools to protect the owners’ biometric
information. This makes it possible to construct a practical
privacy-preserving biometric identification scheme. As a
result, the authors report that it takes 4.31 s for an identifica-
tion request over 10 GB. It is clear that the scheme is efficient
but not secure. Zhu et al. [19] demonstrated that the scheme
is not secure against collusion attacks between query clients
and cloud servers. Moreover, they provide an upper bound of
the collusion-resistance ability of any accurate secure nearest
neighbor (SNN) query scheme, which is a basic scheme used
for most of the biometric identification schemes [20]–[22].

To overcome the vulnerability of the scheme, two
improved schemes have been proposed [23], [24]. However,
Liu et al. [25] noted that they are also insecure against known
plaintext attacks (KPAs) under their security assumptions,
and proposed a new privacy-preserving biometric identi-
fication scheme using the properties of orthogonal matri-
ces and additional random numbers. To the best of our
knowledge, this is the state-of-the-art scheme in the field
and the most efficient. In this paper, we show that their

scheme is vulnerable to an attacker who colludes with the
cloud server by introducing two statistical inference algo-
rithms. Note that many previous works [12], [26], [27] related
to biometric identification using homomorphic encryption
schemes [28]–[30] have been proposed; however, for prac-
tical reasons, we do not consider these schemes in this
paper. Specifically, our contribution can be summarized as
follows:

1) We propose statistical inference attack algorithms that
can be applied to biometric identification schemes that
use matrix operations with random numbers.

2) We highlight the security flaw in Liu et al.’s scheme
by applying our algorithm. By using this vulnerability,
we show that the adversary can impersonate another
user with a fake fingerprint.

3) By providing concrete experimental results, we ver-
ify that our attack is practical. We also analyze each
parameter in the attack algorithm, and then, propose
optimized parameters efficiently to generate fake fin-
gerprints.

The remainder of this paper is organized as follows.
In Section II, we review some preliminaries to understand
the scheme. In Section III, we review the scheme proposed
in [25]. In Section IV, we propose the new attack algorithm
and show that the scheme in [25] is not secure under the CPA
model. We analyze the performance of the attack algorithm
in Section V. Finally, we conclude the paper in Section VI.

II. BACKGROUND
A. SYSTEM MODEL
There are three entities defined in our scheme: a data owner
(DO), client (C), and cloud service provider (CS), as shown
in Figure 1. We use ‘‘the server’’ for ‘‘the cloud server’’
and we use ‘‘the owner’’ for ‘‘the data owner’’ in the rest
of the paper. The owner has the clients’ original fingerprints
in his local database and performs the identification process
on the server. The clients request identification when they
have to be identified by the owner. Then, the owner dele-
gates the operations needed for identification to the server
for computational efficiency. Note that the server only per-
forms the operations requested by the owner. During this
process without the results of the operations, the server
does not know any sensitive information. To achieve this,
most schemes are designed as follows. First, the data
owner encrypts the entire database (DB) and sends it to
the server. When the clients need to be identified by the
owner, they sends their fingerprint (Q) to the owner as
a candidate biometric trait. Then, the owner encrypts and
sends the fingerprint to the server to determine the closest
match. The server computes the Euclidean distance between
it and all the stored fingerprints, and then, the server finds
the closest match and sends the corresponding index to the
owner. Finally, the owner decides whether the client is valid
by computing the Euclidean distance between the candi-
date fingerprint and the fingerprint that corresponds to the
index.
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FIGURE 1. System model.

B. THREAT MODEL
We consider the server to be ‘‘honest-but-curious’’ that is,
the server must follow protocol but can analyze the protocol
transcript to infer the private information relevant to the
owner or clients. In the paper, we checkwhether the scheme is
secure against following attackers or not, exclude restrictions
on system policy(e.g., access control by the limitation of
the number of identification request). This model is widely
used to search encrypted data in cloud computing. As defined
in [20], we classify the attackers A into the following four
levels:

1) LEVEL-1 ATTACKER
The attackerA can access only the encrypted databaseE(DB)
and encrypted query E(Q). This attack model corresponds to
the ciphertext-only attack model in cryptography.

2) LEVEL-2 ATTACKER
The attackerA can access the encrypted database E(DB) and
encrypted query E(Q), as well as some plaintexts P ∈ DB
in the database; however, the attacker A does not know the
corresponding encrypted database. This attack model corre-
sponds to the known-sample attack model in cryptography.

3) LEVEL-3 ATTACKER
In this attack model, the attacker A can access the encrypted
database E(DB), encrypted query E(Q), and plaintext with
the corresponding encrypted values {P,E(P)}. This attack
model corresponds to the known-plaintext attack (KPA)
model in cryptography

4) LEVEL-4 ATTACKER
In addition to all the abilities in Level-3, the attacker A
can query the forged templates and collude with the cloud
server. In other words, the attackerA can obtain any plaintext
with the corresponding encrypted values {P,E(P)} and any
query with the corresponding encrypted query {Q,E(Q)}.
This attack model corresponds to the chosen-plaintext
attack (CPA) model in cryptography.

C. EUCLIDEAN DISTANCE
Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be
n-dimensional vectors in Euclidean n-space. A Euclidean

TABLE 1. Definitions and notations.

distance between vectors a and b is the length of the line
segment connecting the two vectors. We use it to deter-
mine whether the fingerprints are similar. If the calculated
Euclidean distance is less than the threshold, we consider that
the two fingerprints belong to the same person. Because of
the fuzziness property of the biometric traits, the calculated
Euclidean distance is not required to be precisely the same.
The Euclidean distance between vectors a and b is defined as
follows:

distab =
√
(a1 − b1)2 + (a2 − b2)2 + · · · + (an − bn)2

=

√
6n
i=1(ai − bi)

2

III. REVIEW OF LIU et al.’s SCHEME
In this section, we review Liu et al.’s scheme [25] in detail.
Their scheme uses a similar construction technique to the
technique used in Zhu et al.’s scheme [23], but there are two
main differences. First, they use additional random numbers
when the users are enrolled. This ensures that the scheme
is secure against the KPA and CPA attacks. Second, they
apply the concept of orthogonal matrices to key generation.
Because of the properties of orthogonal matrices, the scheme
can be implemented more efficiently. The details are as
follows.

A. PREPARATION STAGE
Let bi be the i-th reference template vector extracted from
users by the algorithm in FingerCode [7]. When the users are
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enrolled, the vector bi is extended to a (n+ 5)−dimensional
vector as b′i = (αibi1, αibi2, · · · , αibin,−0.5αi

∑n
j=1 b

2
ij, αi,

0.5αiτ 2, ri, 0). Here, αi is a random positive real number,
bij is an 8-bit integer, ri is a random real number, and τ is
the presupposed threshold. Then, the data owner generates a
random (n+ 5)× (n+ 5)-dimensional orthogonal matrix M
as a secret key and encrypts the extended template vector b′i
by calculating ci = b′iM . Finally, the data owner sends ci to
the cloud server.

B. REQUEST STAGE
At this stage, the data owner extends the candidate
template vector bc as bc = (βcbc1, βcbc2, · · · , βcbcn,
βc,−0.5βc

∑n
j=1 b

2
cj, βc, 0, rc), where βc is a random pos-

itive real number, and rc is a random real number. Then,
the data owner encrypts the extended candidate template
vector b′c with the secret key M and sends the encrypted
vector cc = b′cM to the cloud server.

C. IDENTIFICATION STAGE
When the cloud server receives the identification request,
it computes rd i = ci · cc for all ci stored in the server.
If rd i > 0, the user is identified and can access the system as
an honest user. Otherwise, the user cannot access the system.

D. CORRECTNESS
LetM be an orthogonal matrix, then given two vectors a and
b, the orthogonal matrix M satisfies the following property:

a · b = (aM ) · (bM ),

where · is the inner product. Based on this orthogonal matrix
property, value rd i can be computed as follows:

rd i = ci · cc
= b′iM · b

′
cM

= b′i · b
′
c

= αiβc(
n∑
j=1

bijbcj −
1
2

n∑
j=1

b2ij −
1
2

n∑
j=1

b2cj +
1
2
τ 2)

=
1
2
αiβc(τ 2 −

n∑
j=1

(bij − bcj)2)

If equation rd i > 0 holds, then equation τ 2 >
∑n

j=1(bij −
bcj)2 also holds. Because equation

∑n
j=1(bij − bcj)2 is the

Euclidean distance between bi and bc, and τ is the presup-
posed threshold, the above equation holds that the candidate
template bc is sufficiently close to bi to satisfy the identifica-
tion condition.

IV. STATISTICAL ATTACK ON LIU et al.’s SCHEME
A. BASIC IDEA
This attack aims to generate a fake fingerprint vector that
can pass the identification process as if it were an authorized
user. It can be viewed as a type of impersonation attack. First,

TABLE 2. This algorithm updates bc to approximate bi∗ in a specific
range of each element using a statistical inference technique.

TABLE 3. This algorithm generates a forged template bc of bi∗ by
repeatedly calling SIA. We assume that the template is a 640-dimensional
vector, where each element is represented by 1 byte.

an adversarial user (adversary) A selects the target (finger-
print) vector bi∗ to be forged. If the cloud server colludes
with the adversary, they can obtain the relative distance rd i
between the target vector bi∗ and vector bc forged by adver-
sary A. Adversary A changes bc1 to 0, and then sends an
identification request for vector bc to the data owner. Adver-
sary A repeats the request by increasing bc1 individually.
For the target vector bi∗ and forged vector bc, the relative
distance rd i is only influenced by the value of the first element
of the vector and random value β. Therefore, if adversary
A removes the randomness affected by the random value β
of the relative distance rd i, adversary A can guess bi1 by
using the relative distance rd i. To remove the randomness of
the relative distance rd i, adversary A can use the statistical
properties of β. Because the random value β is chosen as the
uniform distribution, the mean value for the set of repeatedly
collected values β converges to the mean value of the dis-
tribution with a high probability. By this property, adversary
A can guess bi∗1 when the relative distance rd i is maximal
because the maximal relative distance rd i indicates that the
target vector bi∗ and forged vector bc are sufficiently close to
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FIGURE 2. Example of SIA and FFGA.

pass the identification process. By iterating this process and
performing an additional process, adversary A can estimate
the values of all elements of vector bi∗ . Concrete parameters
such as the iteration count, range of the random values,
and distribution are discussed in Section V, and the detailed
process is introduced in the next section.

B. OUR ATTACK ALGORITHMS: FFGA WITH SIA

STEP 1. Given target vector bi∗ , adversary A sets the candi-
date vector bc to (0, 127, · · · , 127) and sends an identifica-
tion request for vector bc to the data owner. Then, adversary
A and the cloud server can obtain the relative distance rd i
between bi∗ and bc. Adversary A repeats this process for c
times and calculates the mean for a set of rd i, denoted as
meani.

STEP 2. Adversary A repeats the process of STEP 1,
increasing the first element of the candidate vector bc by
one. By repeating the process, the adversary can obtain 256
meani and guess bi∗1 as I1, where meanI1 is the maximum.
Adversary A sets bc to (I1, 127, · · · , 127), where I1 is the
first element of bi∗ .
STEP 3.AdversaryA sets bc to (I1, 0, 127, · · · , 127), and

then repeats the process of STEP 1 and STEP 2. Through
the iterative process, adversary A can guess the full-size fin-
gerprint vector bc = (I1, I2, · · · , I640), where bc is internally
updated in the SIA algorithms.
STEP 4. AdversaryA repeats the above process by reduc-

ing the range of the inference domain by the range param-
eter w. In STEP 2, adversary A sets the range of the

i-th element from 0 to 255. In this step, adversary A sets
the range of the i-th element from (Ii − (range − w)) to
(Ii + (range − w)), where range is a guess range in our
algorithm andw is a range parameter. AdversaryA repeatedly
performs the above process with reduced ranges until the
range of Ii is less than 2 and then obtains the final guessed
vector bc = (I1, I2, · · · I640). If the relative distance rd i
between the final guessed vector bc and target vector bi∗ is
larger than 0, the attack is successful.

C. SECURITY ANALYSIS FOR LIU et al.’s SCHEME
In this section, we show that Liu et al.’s scheme is not secure
against a level-4 attacker using the SIA and FFGA. Using the
proposed attack algorithms, the adversaryA can obtain a fake
fingerprint that can pass the identification process. Whether
the attack is successful depends on the parameters used
in the scheme. Considering the conditions for a successful
attack, rd i is greater than 0. That is, the equation 1

2αiβc[τ
2
−∑n

j=1(bij − bcj)2] > 0 holds. In the equation, because αi
and βc are random positive real numbers, the values do not
affect the sign of the equation. Therefore, we must only find
vector bc that satisfies τ 2 >

∑n
j=1(bij − bcj)2 for the

given vector bi and presupposed threshold τ . If τ = 25,
for example, we must find vector bc that satisfies 625 >∑n

j=1(bij − bcj)
2. This means that we need to find vector bc

that the Euclidean distance between bi and bc is less than 625.
If τ = 1, we must find vector bc that satisfies 1 >∑n

j=1(bij − bcj)
2. This means that we must find an identical

vector with bi∗ . Due to the nature of biometric data, it is
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difficult to extract the same value whenever the biometric
data are extracted. While it is not common, it may be required
depending on the environment. We also propose the parame-
ter that the attack is successful when τ is 1.
Given the target fingerprint vector bi∗ , it is possible to find

vector bc close to bi∗ using algorithms SIA and FFGA. The
most important parameters affecting attack accuracy are an
iteration count c and presupposed threshold τ . The iteration
count c affects the attack complexity and can be selected
by the attacker. The presupposed threshold τ is determinis-
tically selected by the data owner or the system implements
the biometric identification scheme; further, it determines
the acceptance rate for the biometric identification scheme.
Therefore, we apply various parameters to our attack algo-
rithm to select the most ideal parameter to succeed in the
attack. Because of the experiment, it was confirmed that a
vector with a Euclidean distance of less than 625 can be
generated when τ is 25 and c is set to 30, 000 with w = 20.
The experimental results for various parameters are explained
in the next section.

V. PERFORMANCE ANALYSIS
A. COMPLEXITY ANALYSIS
We analyzed the time complexity of our attack algorithm
in this section. When we run the SIA algorithm to generate
a fake fingerprint vector, the Euclidean distance is calcu-
lated by substituting values from 0 to 255 in 640 locations;
thus, 256 operations are required. Considering the iteration
count c used to eliminate the randomness of βc, 256 ×
640 × c operations are required, where c is set to a value
between 10, 000 and 50, 000. In FFGA, SIA is called 7 times
(with w = 20) repeatedly to apply the reduced domain to
SIA. Thus, the number of total operations is 1.334 × 233 <
256 × 640 × c × 7 < 1.669 × 235, where c is set to a
value ranging from 10, 000 to 50, 000. Table 4 shows that
our proposed attack is much faster than some known attacks
in the worst-case. It is noteworthy that Liu et al.’s scheme is
secure against various attacks, but our proposed attack breaks
it within a reasonable time.

TABLE 4. Comparison on time complexity of various attacks.

Figures 3(a) and 3(b) show that the execution time changes
as the iteration count c increases when τ is 25 and τ is 1,
respectively. In Figure 3(a), when τ is 25, the attack can be
sufficiently successful when c is 30, 000 (we explain this
result in the next section); therefore, it takes only 1,219 s
for an attacker to generate a fake fingerprint. Note that we
only consider the execution time of our attack algorithms, and

FIGURE 3. Time costs in our attack algorithms.

not the communication time in the network. As mentioned
before, the case where τ is 1 is not common. Nevertheless,
we conducted an experiment and measured the time to prove
that we can also find the fingerprint vector identical to the
target vector through our attack algorithms. When τ is 25,
it can be generated in 30, 000 iterations, but when τ is 1, it was
experimentally found that 100, 000 iterations were required
to generate a fake fingerprint. As shown in Figure 3(b),
it takes 3,789 s for an attacker to generate a fake fingerprint
vector identical to the target vector.

From Figures 3(a) and 3(b), it can be seen that τ does
not significantly affect the execution time, and the execution
time increases linearly with the iteration count c. As a result,
the attack’s success time can be predicted even if the vector
size increases or the value of τ changes later. From the
results, we can see that our attack has performed well within
a realistic time frame.

B. EXPERIMENT ANALYSIS
To determine the exact parameters for a successful attack,
we computed the Euclidean distance for various parameters.
We implemented the attack algorithms using C language
in Windows with a dual-core 3.60 GHz Intel(R) Core(TM)
i7-4770 CPU and 8 GB memory. Similar to the previous
works [23]–[25], we used the 640-dimensional random vec-
tors with 1-byte elements as the fingerprint vectors. The
scheme we are trying to attack is about how to compare the
two encrypted fingerprint vectors while preserving privacy.
An experiment can be tested with random data, not real-value,
since the length of the biometric vector and the number of
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FIGURE 4. Comparison of the Euclidean distance depending on the various parameters.

mathematical operations implemented in the scheme have
greater effect on the calculation time than the actual value of
the vector. In fact, most of the works [23]–[25] assume that
the fingerprint vector has already been extracted and use a
random-value vector as the fingerprint vector in their exper-
iment. Therefore, there is no big difference between using
real-value vector and using random-value vector. As men-
tioned earlier, we consider only twomain parameters, τ and c,
because the other parameters are determined by the target
vector bi and do not affect the identification result. To obtain
accurate experimental results, other random values r and α
are fixed to 123.13 and 37.25, which are used to generate the
extended vector b′i, respectively.
In the Figures 4(a) and 4(b), we checked the changes in

the Euclidean distance according to the iteration count c
and the presupposed threshold τ . Figure 4(a) shows that
the Euclidean distance decreases as c increases. To pass the
identification process, the Euclidean distance should be less
than threshold τ 2. For example, when τ is 75, the Euclidean
distance between the target vector bi and fake vector bc
should be less than 5, 625. Let us consider two cases: 1) when
τ is 75 and c is 10, 000; and 2) when τ is 75 and c is 20, 000.
In cases 1) and 2), the Euclidean distances are 12, 728 and
2, 426, respectively. In case 1) because the Euclidean dis-
tance is greater than 5, 625, the fake vector bc is denied in
the identification process. However, because the distance in
case 2) is less than 5, 625, the fake vector bc can pass the
identification process. When τ is 100, there is no need to

set c to more than 10, 000 because the values in the graph
are all less than 10, 000. As shown in Figure 4(a), if c is
greater than 30, 000, all distances are within the threshold
value regardless of τ . Notably, the experiments with τ val-
ues greater than 100 are meaningless, as c decreases as
τ increases. Figure 4(b) shows that the Euclidean distance
decreases as c increases when τ is 25. When c is 20, 000
and 30, 000, the Euclidean distances are 1, 072 and 237,
respectively. In this case, we know that more than 30, 000
iterations are not required to pass the identification process
because the Euclidean distance when c is 30, 000 is much less
than the threshold distance 625.

In the Figures 4(c) and 4(d), we checked how the Euclidean
distance changes according to the length of the range and
c when τ is 25. Figure 4(c) shows that the Euclidean dis-
tance decreases as the length of the range decreases. Because
FFGA repeats SIA in a reduced domain, we can increase the
accuracy and decrease the operation times.We set the interval
of the range to 20, which is obtained as an experimental
result because we can obtain more accurate results when the
interval of the range is 20 in our algorithms. Figure 4(d) shows
that the Euclidean distance decreases as the length of the
range decreases when τ is 25 and c is 30, 000. In the figure,
the distance when the length of the range is 27 exceeds the
threshold value, but the distance when the length of the range
is 7 is within the threshold value. Therefore, when c is 30, 000
and τ is 25, we can generate a fake fingerprint vector that can
pass the identification process.
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The results of the experiments verify that Liu et al.’s
scheme is not secure against a level-4 attack by our proposed
algorithms.

VI. CONCLUSION
Privacy-preserving biometric identification schemes enable
valid identification without any risk to private biometric
information. Although these schemes have been researched
extensively, many concerns regarding security and efficiency
remain. In this paper, we introduce new algorithms SIA and
FFGA that generate fake fingerprint capable of passing the
identification processes, and show that Liu et al.’ scheme
is not secure against a level-4 attacker who uses our pro-
posed algorithms. Moreover, we provide an analysis of the
attack complexity and experimental results to which concrete
parameters were applied. In the future work, we plan to
expand our attack and apply it to various biometric identi-
fication schemes, and we plan to design a privacy-preserving
biometric identification that is secure against our attack.
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