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ABSTRACT A novel rotating machine fault diagnosis method based on multi-scale transfer fuzzy
entropy (MTFE) and support vector machine (SVM) is proposed in this paper. Compared with traditional
machine learning methods, our proposed method can identify various fault types of rotating machinery with
different data distribution by learning the transfer knowledge from different distribution source domains.
First, multi-scale fuzzy entropy (MFE) features of all samples are extracted as input. Second, build a transfer
learning model to find a projection matrix to map the MFE features of the source and target domains into
a common subspace, called MTFE features. In this process, the distribution structure of training data is
maintained and the distribution difference between training data and test data is reduced. Finally, the SVM
classifier identifies the fault type of the test data. Two cases including gearbox and rolling bearing are used for
validation. Experimental results demonstrate that our proposed MTFE method performs best in recognizing
various fault types comparing with other six methods.

INDEX TERMS Cross-domain fault diagnosis, rotating machinery, transfer learning, fuzzy entropy.

NOMENCLATURE
ApEn approximate entropy
CWRU Case Western Reserve University
FE fuzzy entropy
KNN k-nearest neighbour
K-S entropy Kolmogorov-Sinai entropy
LR logistic regression
MFE multi-scale fuzzy entropy
MFPT Machinery Failure Prevention Technology
MMD maximum mean difference
MMDE maximum mean difference embedding
MTFE multi-scale transfer fuzzy entropy
PCA principal component analysis
PE permutation entropy
PHM prognostic health management
PHM09 Prediction and Health Management Society

for the 2009 data challenge
SDE symbolic dynamic entropy
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SE sample entropy
SSTCA semi-supervised transfer component analysis
SVM support vector machine
TCA transfer component analysis
TL transfer learning
TLPP transfer locality preserving projection

I. INTRODUCTION
The prognostic health management (PHM) ensures that the
machinery can run normally, which has great significance to
reduce economic losses and guarantee operation safety [1].
Rotating machinery is widely used in industrial production.
Therefore, plenty of intelligent fault diagnosis algorithms
have been developed to identify fault types of important
components such as rolling bearings and gearboxes.

The artificial intelligent bases fault diagnosis is imple-
mented by the steps of data collection, feature extraction, and
health state recognition according to Ref [1]. By machine
learning theories, the diagnosis models are able to auto-
matically recognize the health conditions of machines. With
the rapid development of machine learning over the recent
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years, the advent of deep learning brings positive effects on
the enhanced benefits. Intelligent fault diagnosis approaches
mainly contain the following categories: expert system-
based approaches [2], SVM-based approaches [3], and deep
learning-based approaches [4]. However, it should be con-
cerned that the successes of intelligent fault diagnosis mod-
els are subject to enough labeled samples. Such assumption
is unpractical in engineering scenarios. To bridge the gap,
transfer learning theories are promising to construct diagnosis
models, in which the diagnosis knowledge can be transferred
across multiple diagnosis tasks.

Among traditional intelligent fault diagnosis models,
the quality of the features directly affects the classification
results. There are many feature extracting algorithms, such as
time-frequency domain features, complexity-based features,
features extracted based on artificial intelligence algorithms,
and so on [5]–[7]. Due to the complex working environment,
the nonlinear stiffness of the rolling body and other factors,
the vibration signal of rotating machinery is usually nonlinear
and non-stationary. In the diagnostic process of rotating
machinery, the traditional time and frequency domain fea-
ture extraction techniques for stationary linear signals are
always difficult to extract effective features [8]. At this time,
the nonlinear signal quantitative description method, which
represents the complexity of the signal [9], gradually enters
the horizon of researchers. Entropy can measure the disorder
degree of time series, so it can represent the abrupt behavior
of system dynamics when rotating machinery fails [10]–[12].
Kolmogorov proposed K-S entropy in 1958, which was used
to depict the complexity of a system. Developed on the K-S
entropy [13], Pincus proposed approximate entropy (ApEn)
[14], which measures the complexity of a signal by taking
into account the rate at which new information is generated
in a time series. Then, Costa proposed sample entropy (SE)
to resolve the issue of self-matching in ApEn [15]. Chen
introduces the fuzzy membership function into the sample
entropy and proposes a more accurate fuzzy entropy (FE)
[16]. In addition, some researchers symbolized the time series
to observe its permutation pattern, and typical studies include
permutation entropy (PE) and symbolic dynamic entropy
(SDE) [17], [18].

Combined with the multi-scale idea proposed by
Costa et al. [19], Zheng proposed the multi-scale fuzzy
entropy (MFE), which can extract the information of more
scales in vibration signals [20], [21]. The application of
existing entropy-based methods only provided the feature
extraction algorithm, which requires a large quantity of
labelled data to train the intelligent model for classification.
The above-mentioned entropy-based method is appropriate
to process the training and testing data following the same
distribution. This means we need to obtain data of the same
distribution prior to diagnosis. However, there are lots of
difficulties in obtaining such data in practical tasks:

(a) The device is not allowed to run for long periods of time
in a faulty state, and it is difficult to obtain large amounts of
data.

(b) The equipment may fail with only one type of failure,
and all types of fault data cannot be accumulated.

(c) It is not possible to implement simulations on every
device to be analyzed.

Therefore, in a real-world scenario, it is difficult to obtain
a sufficient amount of labelled data to train the model.
Model can only be trained with data that does not meet the
same distribution assumptions. This is the cross-domain fault
diagnosis problem that this paper focuses on.

To solve the problem, many researchers are trying to find
further mathematical transformation of features to reduce the
distribution difference between training data and test data,
and then input them into classifiers, which is the idea of
transfer learning (TL) based on features.

Pan and Yang et al. proposed maximum mean difference
embedding (MMDE) algorithm to find a kernel function that
minimizes the maximum mean difference (MMD) between
the training and the test data in a higher dimensional Hilbert
space [22], [23]. Then transfer component analysis (TCA)
method is evolved on the basis of MMDE, but the difference
is that TCA consider the correlation of labels and learn a
dimensional reduction matrix to minimize the MMD of the
projected data [24]. Zheng et al proposed transfer local-
ity preserving projection (TLPP) algorithm in 2017, which
retains the distribution structure of test data and training data
while minimizing MMD and achieves high accuracy rate in
cross-domain rotating machinery fault diagnosis experiments
[25]. These transfer learning methods make it possible to
accomplish identify the fault type by different distributed
data.

In this paper, the idea of transfer learning is combined with
the theory of entropy value, and a method of transfer entropy
is proposed, which can extract the common characteristics
of the entropy value of test data and training data. First,
the MFE features of vibration signal are extracted. Second,
MFE features are used as input to construct a model to learn
a projection matrix, so that the features after projection keep
the spatial adjacent structure, and the MMD value is the
minimum. Third, after the model parameters are optimized
using bayesian optimization method, output the features after
projection, which is called multi-scale transfer fuzzy entropy
(MTFE). Finally, the MTFE feature of the training data was
used to train the support vector machine (SVM) classifier,
judge the fault type of the test data and calculate the recog-
nition accuracy. The contributions of this paper are mainly as
follows:

(1) In this paper, a new data-driven fault diagnosis
method is proposed, which extract the MTFE features and
then use SVM classifier to accomplish fault identification.
By extracting features with transfer capability, the diag-
nostic model can be trained with data that has differ-
ent distribution, so as to solve the problem of insufficient
data.

(2) The feature dimension of MFE is also added to the
parameter optimization process, which can help improve the
diagnostic accuracy.
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(3) The fault diagnosis experiment of gearbox and rolling
bearing shows that compared with other traditional machine
learning methods, MTFE-SVM method can obtain higher
diagnostic accuracy. It means that themethod proposed in this
paper has a good practical application prospect.

The organization of the rest of this paper is as follows.
The MFE procedure and the discussion of its transfer ability
are introduced in Section II. The detailed steps of MTFE
are provided in Section III. Section IV contains two sets of
diagnostic tests for gearbox and rolling bearing and analyses
the results. Finally, Section V draws the conclusion of this
paper.

II. THEORY BASIS
The problem definition and theory basis for MTFE algorithm
are provided in this chapter.

A. PROBLEM DEFINITIONS
First, the problem of fault diagnosis in the actual scenario is
defined. Following [26], define the source domain as Ds =

{Xs,Ps (Xs)} and the target domain as Dt = {Xt ,Pt (Xt)},
then give source tasks and target tasks as follows: Ts =
{Ys, fs} , Tt = {Yt , ft }. f represents the mapping between the
label and the data, fs is known and ft need to be learned by
using source domain.

In order to simulate the actual fault diagnosis scenario as
much as possible, in this paper, the following two points need
to be noted. First, dataset Xs = {xsi}ni=1 and Xt = {xti}

m
i=1 are

collected from different laboratory, which mean Ps (Xs) 6=
Pt (Xt). This is because it is expensive and difficult to collect
data with the same distribution as the target domain data in
the actual situation, so other different but similar data are
needed tomake up for the lack of data. Second, the data for the
training model consists of the source domain and part of the
normal sample of the target domain, and the test data consists
of the target domain. This is because in the actual situation,
the normal state sample of the equipment to be diagnosed
can be obtained, and this part of data is added to the training
model, which is also helpful to identify the fault type. Third,
the type of failure in the test data should be equal or less than
the training data.

B. TRANSFER ABILITY OF MFE FEATURES
In the transfer learning theory, the source domain and the
target domain need to be similar, if the difference is too
large, it is difficult to learn useful knowledge. MFE features
have such a transfer capability, as shown in Figure 1. First,
the MFE feature of a sample with scale τ is an τ -dimensional
vector. Then, the angle of vectors representing the MFE fea-
tures of source domain samples collected from different fault
types in space is represented by α, as shown in Figure 1(a).
Similarly, the sample Angle of the target domain is denoted
by β. In the experiment, although the target domain and the
source domain are collected from different data sets, the two
angles α and β are almost equal. Figure 1(b) shows the MFE
feature visualization of CWRU data and MFPT data, includ-
ing three types of samples: normal (N), outer ring failure (OR)

FIGURE 1. (a)Schematic diagram of similarity of spatial structure (b)
Structural similarity of real data.

and inner ring failure (IR). Obviously, the spatial structure of
the features of the two data sets is very similar. This means
that it is feasible to design a dimensionality reduction method
that can maintain the spatial structure of the source domain
and then apply it to the dimensionality reduction of the target
domain.

The main purpose of discussing feature similarity of MFE
is to accomplish cross-domain subspace learning under the
absence of labels in the target domain. In the actual diagnostic
scenario, only normal sample of the target domain can be
used to train the model, as described in section II.A. There-
fore, there are not different types of fault samples to limit
the learning process and reduce the distribution differences
between domains. Based on this feature correlation, we can
retain the possible distribution structure of fault data across
domains in training MTFE model process. This allows us to
apply the projection model derived from the training data to
the test data. Finally, the test samples that do not appear in the
training data can be mapped to the correct categories in the
MTFE subspace.

III. PROPOSED MTFE METHOD
The detailed process and steps of the MTFE method are
illustrated in this chapter.

A. EXTRACT MULTI-SCALE FUZZY ENTROPY
The essential process of fault diagnosis is to extract the
features of vibration signals. For normal entropy method,
the complexity is only described on a single scale, and a
lot of important information is lost. Therefore, it is nec-
essary to extract hidden feature information from different
scales. Using the idea of multi-scale entropy for reference,
Zheng et al. proposed the MFE based on the fuzzy entropy.
The calculation steps are described as follows:

(1) Given a time series {xi} = {x1, x2, · · · , xN } and three
parameters, embedding dimension m, similar tolerance r and
scale factor τ . First, the original sequence is segmented to
obtain the coarse-grained time series

{
yτj
}
as in (1).

yτj =
1
τ

j+τ−1∑
i=j

xj1 ≤ j ≤ n− τ + 1 (1)

(2) According to the [8], the fuzzy entropy of each
{
yτj
}

is calculated as in (2). Then FE of all the scale factors are
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FIGURE 2. Schematic diagram of coarse granulation time series.

combined into MFE.

FE(yτj ,m, r,N ) = − ln
8m+1(r)
8m(r)

(2)

MFE(x,m, r, τ ) = FE(yτj ,m, r,N ) (3)

B. CONSTRUCT TRANSFER LEARNING MODEL
Suppose the MFE features of given source domain and target
domain are {xi}n+mi=1 . Note that n and m represent the number
of samples from the source domain and target domain, respec-
tively. A transfer learning model should be construct, which
use training data to find a nonlinear mapping matrix, and then
project the MFE features of source domain and target domain
into the new MTFE subspace. In this paper, the objective
function of transfer learning can be described as in (4):

L = LLPP + λLMMD + µLR (4)

where λ > 0 is MMD tradeoff parameter, µ > 0 is reg-
ularization parameter. LLPP is used to remain the adjacent
structure of projected data. The function ofLMMD is to reduce
the distance of normal sample from the target domain and
the source domain (This is because the limited training data
contains only all the samples of source domain and the normal
sample of target domain. If more target domain sample is
available, it can also restrict the distance between them, and
samples have same labels in the source domain). LR is the
regularization item, which can prevent model overfitting.

(1) Description of LLPP term
LLPP is constructed based on locality preserving projec-

tions (LPP) [17] algorithm. The purpose of LPP is to reduce
the dimension of the data while retaining the local structure of
the data after dimension reduction. In short, adjacent samples
in the original sample space still maintain this adjacency
relationship after the projection. By learning a transforma-
tion matrix A = [a1, a2, · · · , al]d×l , the sample is mapped
to a new l-dimensional space z (represented by z (xi) =
AT xi ∈ Rl). The objective of LPP method is to minimize
the distance of the nearest neighbour samples after projection.

The objective function is as in (5)

min
∑

i,j

∥∥zi − zj∥∥2Wij (5)

whereWij is the weight of the edge connecting xi and xj. The
weightWij is calculated by the heat kernel function as in (6):

Wij =

 exp

(
−
d2ij
2σ 2

)
xi ∈ Nk

(
xj
)
∨ xj ∈ Nk (xi)

0 otherwise

(6)

whereNk
(
xj
)
refers to the k-nearest neighbour with the same

label as xj. σ is a parameter to a heat kernel function. dij is
the distance between xi and xj.

It is worth noting that, if the range of the required transfor-
mation matrix A is not limited, then there is no solution to the
minimization problem. Therefore, constraint ATXDXTA = I
is added. The final optimization problem of LPP method is as
in (7):

argmin
A

tr
(
ATXLXTA

)
s.t. ATXDXTA = I (7)

When extended to the nonlinear case, the map φ (x) :
Rd
→ H extends the data in Euclidean space Rd to Hilbert

space H. Then, the optimization problem becomes the form
of (8), and v is the required transformation matrix:

argmin
v
tr
(
vTφ (X)Lφ (X)T v

)
s.t. vTφ (X)Dφ (X)T v = I (8)

where, φ (X) = [φ (x1) , . . . , φ (xn+m)] represents the data in
Hilbert space, and the Lagrange multiplier method is used to
solve the above optimization problem, which can be trans-
formed into solving the generalized eigenvalues, as shown
in (9): [

φ (X)Lφ (X)T
]
v = λ

[
φ (X)Dφ (X)T

]
v (9)

λ is Lagrange multiplier. According to [17], the eigenvec-
tor v is a linear combination of data φ (x1) , . . . , φ (xn+m).
Then, there is coefficient matrix α = [α1, α2, . . . , αn+m]T ∈
R(n+m)×l , which make vT = [φ (x1) , . . . , φ (xn+m)]α.
Equation (8) can be rewritten to (10):

argmin
α
tr
(
αTKLKα

)
s.t. αTKDKα = I (10)

where K ∈ R(n+m)×(n+m) is kernel matrix Kij = K (xi, xj) =〈
φ (xi) , φ

(
xj
)〉
= φ (xi)T φ

(
xj
)
.

Since the maximum mean difference (MMD) technique
used in the model measures the distance in Hilbert space,
LLPP is constructed based on the kernel LPP technique
instead of the base LPP. LLPP can be expressed directly as
in (10). It is worth mentioning that the weight index is cosine
distance rather than Euclidean distance due to that cosine
distance can better describe the adjacent relation of vectors.
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The definition of cosine similarity is expressed in (11).

dij = 1−
φ (Xi) , φ

(
Xj
)

‖Xi‖2
∥∥Xj∥∥2 (11)

Finally, LLPP minimizes the angle of samples with the
same label in the training data to achieve clustering.

(2) Description of LMMD term
In order to increase the cluster ability, LMMD is utilized

to reduce the distance between data of source domain and
target domain in training set. MMD estimates the difference
between two distributions in a regenerated kernel Hilbert
space (RKHS) [18]. Xs = {xsi}ni=1 and Xt = {xti}

n
i=1 are data

sets of source domain and target domain respectively, and the
distance between them is expressed as in (12):

MMD2 (Xs,Xt) =

∥∥∥∥1n∑n

i=1
φ (xsi)−

1
m

∑m

i=1
φ (xti)

∥∥∥∥2
H
(12)

Let
{
C1,C2, · · · ,Cg

}
∈ {1, · · · ,C} be the same fault label

in both the source and target domains. LMMD is constructed
as in (13) and in (14).

LMMD =
∑Cg

c=C1
LcMMD (Qs,Qt) (13)

LcMMD (Qs,Qt)=

∥∥∥∥ 1
nc
∑

xi∈Dc
s
z (xi)−

1
mc

∑
xj∈Dc

t
z
(
xj
)∥∥∥∥2

H
(14)

where Dc
s is the data of source domain that belongs to the

label c. Dc
t is the data of target domain that belongs to

label c.
As same as constructing LLPP, then substitute z =

vTφ (x) , vT = [φ (x1) , . . . , φ (xn+m)]. LMMD can be rewrit-
ten as follows:

LMMD =
∑Cg

c=C1
tr
(
αTKMcKα

)
= tr

(
αTKMKα

)
(15)

whereM =
∑Cg

c−C1
Mc, and Mc can be calculated as in (16):

(Mc)ij =



1
ncnc

xi, xj ∈ Dc
s

1
mcmc

xi, xj ∈ Dc
t

−1
ncmc

xi ∈ Dc
t , xj ∈ Dc

s or xi ∈ Dc
s , xj ∈ Dc

t

(16)

(3) Description ofLR term
The regularization term LR can avoids the overfitting of

this model. LR can be described as in (17).

LR = tr
(
αTα

)
(17)

Substitute (10), (15), (17) into (4). The optimization prob-
lem of the final model can be written as (18):

argmin tr
(
αTKLKα

)
+ λtr

(
αTKMKα

)
+ µtr

(
αTα

)
s.t. αTKDKα = I (18)

Solving (18) by Lagrange multiplier method, then this
problem can be transformed into solving (19).

max
α

tr
[(
αT (KLK+λKMK+µI ) α

)−1
αTKDKα

]
(19)

The solution of the above problem is similar to the TCA
method [19] and Fisher discriminant analysis [20]. The final
solution α∗ is a matrix of the eigenvectors corresponding to
the largest l eigenvalues of (KLK + λKMK + µI )−1 KDK .
Project the MFE features of the source and target domains

into the l-dimensional subspace as in (20) and in (21), then
the MTFE feature can be obtained:

z (Xt) = vTφ (Xt) = αT∗ K (Xs,Xt) (20)

z (Xs) = vTφ (Xs) = αT∗ K (Xs,Xs) (21)

Six parameters appeared the transfer learning model.
(1) σ : Scale parameter of heat kernel σ ∈ R influences the

value of the similarity matrixW .
(2) k: The number of nearest neighbors’ nodes k ∈ N

controls the construction of the adjacency graph.
(3) λ: MMD trade-off parameter λ > 0 affects the degree

of penalty in reducing the distribution discrepancy between
normal samples of different domains.

(4) µ: Regularization parameter µ > 0 controls model
complexity.

(5) l: Dimensionality of subspace l > 0 affect the
dimension of MTFE features.

(6) τ : The scale factor τ of the original feature determines
the dimension of the input feature.

As for how to select these parameters for our model, there
are two parts need to be considered. First, the parameters
are adjusted iteratively through the data of the training set.
In transfer learning scenario, the data distribution of the
source domain and the target domain is different, so the
cross-validation strategy of traditional classification algo-
rithms cannot be used. When using the MTFE algorithm,
the model is trained using source domain data, but the accu-
racy of diagnosis under different parameter combinations is
tested using target domain data instead of source domain data.
Then the parameter combination is constantly adjusted until
the highest accuracy is reached. It can reduce the risk of
overfitting the model to the source domain data and improves
the generalization of this model.

After that, a more efficient search algorithm is needed to
choose different combinations of parameters. In the MTSDE
algorithm, bayesian optimization algorithm is used instead
of the traditional grid search or random search algorithm.
There are three main reasons about why bayesian optimiza-
tion is chosen instead of traditional grid and random search
methods:

(1) Bayesian optimization algorithm utilizes the gauss pro-
cess to constantly update the a priori parameter information,
while other search methods cannot take into account the
previous parameter information.

(2) Bayesian optimization requires fewer iterations when
searching for the optimal parameter combinations so that it is
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FIGURE 3. Flowchart of MTFE-SVM cross-domain intelligent fault
diagnosis method.

in high calculation efficiency. By contrast, the grid search is
not effective in optimizing many parameters.

(3) Bayesian optimization performs better than the grid
search method for the non-convex problems because the grid
search method is easy to get local optimal value.

C. STEPS OF PROPOSED MTFE METHOD
The last part of this chapter summarizes the steps of MTFE
method.

Step 1: Extract the MFE features of vibration signals in
both the target domain and source domain, expressed as the
matrix

[
xds1, x

d
s2, . . . , x

d
sn
]
and

[
xdt1, x

d
t2, . . . , x

d
tm
]
.

Step 2: Input the features of training set (In this paper,
it consists of the source domain and a part of the normal
sample of the target domain) into the transfer model to obtain
the projection matrix α = [α1, α2, . . . , αn+m]T ∈ R(n+m)×l ,
where l is the dimension of MTFE features.
Step 3: Bayesian optimizer is used to further optimize

the model hyper parameters in order to obtain the optimal
MTFE features, including the number of nearest neighbour
node k , MMD trade off parameter λ, regularization param-
eter µ, the dimensions of the subspace l and scale factor τ .
In addition, penalty coefficient c and kernel radius g of SVM
are optimized at the same time. Output projection matrix α.

Step 4: Project the MFE features of training set and
test set into the l-dimensional subspace using α. The low
dimensional data after projection is the MTFE feature.

Step5: Input the MTFE features into SVM classifier for
training and testing.

The flowchart of MTFE-SVM cross-domain intelligent
fault diagnosis method is given in Figure. 3.

IV. EXPERIMENT
In this section, fault diagnosis experiments on rolling bear-
ings and gearboxes are designed to verify the validity of the
MTFE algorithm.

FIGURE 4. (a) Outer race fault of bearing, (b) Inner race fault of bearing.

A. DESCRIPTION OF DATASETS
1) CWRU (BEARING)
This dataset is collected from bearing data centre of
Case Western Reserve University (CWRU) [27]. The plat-
form consists of four parts, a 1.5kW (2hp) electric motor,
a torque sensor/decoder, a power meter and electronic con-
troller. The dataset contains acceleration signals collected
from two bearings (drive end SKF 6205rs with sampling
frequency 12kHz, fan end SKF 6203rs with sampling fre-
quency 12kHz and 48kHz) with four health states (normal,
outer race fault, inner race fault and ball fault, each fault type
contains three types of fault severity) under four motor loads
(0,1,2 and 3hp).

2) MFPT (BEARING)
This dataset is provided by Society for Machinery Fail-
ure Prevention Technology (MFPT) [28]. The test rig was
equippedwith a rolling bearingmanufactured byNICE (roller
diameter: 0.235, pitch diameter: 1.245, number of elements:
8, contact angle 0◦). This data set consists of three normal
conditions (collected under 270lbs of load, input shaft rate
of 1500rpm and sampling rate of 97,656sps), three outer
ring fault data collected under 270lbs of load, input shaft
rate of 1500rpm and sampling rate of 97,656sps), another
seven outer ring fault data (collected under 25, 50, 100, 150,
200, 250, 300lbs of load, input shaft rate of 1500rpm and
sampling rate of 48828sps) and seven inner ring fault data
(collected under 0, 50, 100, 150, 200, 250, 300lbs of load,
input shaft rate of 1500rpm and sampling rate of 48828sps).
The bearings of the two fault types are shown in Figure. 4. The
test rig was equipped with a NICE bearing with the following
parameters: roller diameter: rd = 0.235, pitch diameter: pd
= 1.245, number of elements: ne = 8 and contact angle: ca
= 0◦. For details on experiment design and the experiments
conducted, readers are referred to the Ref. [28].

3) PHM09 (GEARBOX)
This dataset is provided from the Prediction and Health Man-
agement Society for the 2009 data challenge (PHM2009Data
Challenge) [29]. Schematic of the gearbox used for vibration
data acquisition is shown in Figure.4. The gearbox contains
three shafts, four gears (input pinion: 16T or 32T; idler gear I:
48T or 96T; idler gear II: 24T or 48T; output gear: 40T or 80T)
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FIGURE 5. (a) Inside view of gearbox used for data collection and testing
(PHM 2009 Data Challenge), (b) Schematic of gearbox test rig used in
PHM 2009 Challenge Data.

and six bearings (roller diameter: rd = 0.3125mm 4; pitch
diameter: pd = 1.319; number of elements: ne = 8; contact
angle: ca = 0). The vibration data collected from three sen-
sors, two accelerometers and one tachometer. The complete
dataset consisted of 560 samples, in which gearboxes were
tested under five different speeds (30, 35, 40, 45, 50Hz),
two different loads (heavy and light) and two different gear
types (spur and helical), including eight health condition
of spur gears and six of helical gears. The sampling fre-
quency is 66.67kHz. For details on experiment design and the
experiments conducted, readers are referred to the Ref. [29].

B. EXPERIMENTAL SETUP
Experiment I : A cross-domain rolling bearing diagnosis
experiment is designed. A/B/C is used to represent three
domains respectively. The composition of each domain is
shown in the Table 1. In order to verify the generalization
ability of the proposed method, six diagnosis tasks A-B, A-C,
B-A, B-C, C-A, C-B were designed, where Diagnosis tasks
A-B means that domain A is used as the source domain to
identify faults types in target domain B. Half of the normal
target domain samples and the source domain constitute the
training set, and the target domain data without labels consti-
tute the test set. Note that the ball fault samples were removed
from the A-C, B-C, C-A, C-B experiments, because domain
C does not have fault samples of this type.
Experiment II: In order to verify the performance ofMTFE

method in rotating machinery fault diagnosis, a diagnosis
experiment of gearbox under different working conditions

TABLE 1. The composition of the domain in Experiment I.

TABLE 2. The composition of the domain in Experiment II.

is designed. The experimental set consists of vibration data
of helical gear in three health states (normal, chipped tooth,
and missing tooth) in PHM09 data set and composition of
each domain is shown in the Table. Based on these domains,
six gearbox fault diagnosis tasks under different working
conditions are organized. Two tasks were performed under
different shaft speeds and loads (30L-40H, 45H-50L), two
tasks were performed under different shaft speeds (30H-50H,
40L-45L), and three tasks were performed under different
loading conditions (40L-40H, 45H-45L). 30H in the diagno-
sis task represents the data collected under heavy load with
the shaft speed of 30Hz [25]. The composition of the training
set is the same as that of Experiment I, and the remaining
target domain data without labels constitute the test set.

C. EXPERIMENTAL PROCESS
In order to show the superiority of MTFE-SVM intelligent
fault diagnosis method proposed in this paper, three tradi-
tional classifier models and three transfer learning methods
are set as control group.

When implementing the following five methods, the MFE
features of the training set and the test set are extracted first.
Embedding dimension m̃, similar tolerance r , scale factor τ
is set to 2, 0.15 and 25, respectively.

1) MFE-SVM
Support vector machine (SVM) classifier is trained using
the MFE of training set directly, namely MFE-SVM. Then,
the identification accuracy of the test set is output. The
LIBSVM toolbox is used to implement SVM. The RBF
kernel function is applied and trade off parameter c is set to 1.
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TABLE 3. Identification accuracy of Experiment I.

2) MFE-KNN
The experimental procedure is the same as MTFE-SVM,
except that k-nearest neighbour (KNN) classifier is used
instead of SVM. The optimal number of nearest neighbour
nodes is searched in {1, 5, 9, 13, 17, 21, 25, 29, 33, 63}, then
the result corresponding to the optimal parameter is output.

3) MFE-LR
Like (1) and (2), logistic regression (LR) classification
method is applied and the best trade off parameter is searched
in {0.001, 0.01, 0.1, 1, 10}. Then the best accuracy is output.

4) MFE-GFK-SVM
For MFE-GFK, first, the MFE feature is extracted, then the
feature is mapped by geodesic flow kernel (GFK) method
[30], and finally the SVM classifier is used to classify it. The
subspace embedding approach is the principal component
analysis.

5) MFE-SSTCA-SVM
Input the MFE features into the semi-supervised trans-
fer component analysis (SSTCA) [21] model. The opti-
mal hyper-parameters are searched by Bayesian optimization
method. Search MFE features scale factor τ , regularization
trade-off parameter µ1, subspace dimension l1, supervise
term trade-off parameters γ1 and geometry term trade-off
parameters λ1 in the range [1, 25] (in Experiment II, [1,
50]), [10−3,103], [1, 10], [10−3, 1] and [10−3,103] respec-
tively. Finally input the low-dimensional features into SVM
classifier and output the diagnosis accuracy.

6) MFE-DAFD-SVM
For this approach, take Deep neural network for domain in
fault diagnosis (DAFD) as the transfer strategy [31]. The
MFE feature is used as input to a neural network with three
layers, and then the output feature is classified using the SVM
classifier.

7) MTFE-SVM
MTFE-SVM intelligent fault diagnosis model is applied
according to steps from Chapter III.C. For this method,
the heat kernel parameter σ is set to constant as 1.
Then Bayesian optimization algorithm is applied to search
for the optimal parameters of MTFE-SVM method in
the hyper-parameter space. Search optimal parameters

τ, k, l, λ, µ in [1,25] (in Experiment II, [1,50]), [1,11], [1,10],
[10−3,103], and [10−3,103]. Moreover, the two parameters c
and g appeared in SVM are also optimized using Bayesian
method. Search them in (0, 8] and finally get the accuracy.

D. EXPERIMENT RESULT ANALYSIS
1) IDENTIFICATION ACCURACY
The fault diagnosis accuracy of Experiment I is shown in the
TABLE 3. It can be seen that in the three traditional machine
learning methods, the accuracy ofMFE-KNN reaches 81.9%,
which is much higher than the others. Especially, the accu-
racy rate is the highest in task A-B and B-A. This is
because domain A and domain B are so similar that diag-
nosis can be achieved using traditional classification algo-
rithms, while transfer learning algorithms may be negative.
All three transfer learning methods perform poorly. The algo-
rithms MFE-GFK-SVM and MFE-DAFD-SVM are difficult
to identify the category of fault. The transfer learning method
MFE-SSTCA-SVM performs better, but it is still worse than
traditional MFE-KNN and MFE-SVM algorithms. The pos-
sible reason is that the main strategy of SSTCA is to reduce
the maximum mean difference between target domain and
source domain data, while the training set lacks fault samples
of target domain, leading to its performance degradation.

Obviously, the MTFE-SVMmethod proposed in this paper
achieved the highest mean accuracy of 83.4%, which proved
that the MTFE features indeed preserved the similar spatial
structure of the two domains and reduced the distribution
distance.

As shown in TABLE 4, the above results are clearer
in the fault diagnosis experiment of more complicated
rotating mechanic, gearbox. In the fault diagnosis experi-
ments on gearboxes, the traditional classification algorithms
MFE-SVM, MFE-KNN, and MFE-LR all perform worse
because gearbox vibrations are more complex, resulting in
greater distribution differences between features. Transfer
learning algorithms show advantages in this experiment.
Especially, the results of MFE-SSTCA-SVM method con-
sidering data transfer are significantly better than the three
traditional machine learning methods without transfer, while
the other two transfer learning algorithms are also lower
than it.

However, the accuracy of MTFE-SVM is up to 90.2%,
17.2% higher than MFE-SSTCA-SVM. This is because the
MTFE-SVM algorithm is more comprehensive in that it not
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TABLE 4. Identification accuracy of Experiment II.

FIGURE 6. Histograms of MMD (a) Experiment I, (b) Experiment II.

only reduces the maximum mean difference between the
source and target domains, but also considers the spatial
distribution structure of the data, which helps to achieve
classification.

2) MAXIMUM MEAN DIFFERENCE BETWEEN TARGET
DOMAIN AND SOURCE DOMAIN
According to [23], maximum mean difference (MMD) can
be used as an index to measures the distribution differ-
ence between source domain and target domain. Therefore,
the diagnostic accuracy is negatively correlated with MMD.
In order to illustrate the effectiveness of the method proposed
in this paper, the MMD values of the source and target
domains in each diagnostic task in the original eigenspace,
the SSTCA subspace, and the MTFE subspace are shown
in Figure.6.

In the experiment, parameters of SSTCA andMTFEmodel
are set as the optimal parameters obtained by Bayesian opti-
mization. Note that the features dimensions in subspace are
set to 2, which is no need for optimization. In addition,
since the MMD value is related to the feature dimension,
the scale parameter of the RBF kernel in the original MFE
space is set as 3.53 (5 in Experiment II) to eliminate this
effect.

It can be observed from the Figure.6 that in Experiment I,
the MMD value of the MTFE-SVM method is minimized in
the four diagnostic tasks (A-B, A-C, C-A and B-C). In Exper-
iment II, the MMD values of six diagnostic tasks are all
smaller than the other two methods. This result is basically
consistent with the diagnosis accuracy, and the task accuracy
with low MMD value is correspondingly higher. It is proved
that the MTFE-SVM algorithm proposed in this paper can
effectively reduce the difference of feature distribution in
different domains.

FIGURE 7. Feature visualization (a) Task A-B in PCA subspace, (b) Task
A-B in MTFE subspace, (c) Task 45H-50L in PCA subspace, (d) Task
45H-50L in MTFE subspace.

3) FEATURE VISUALIZATION
In order to demonstrate the superiority of MTFE features
intuitively, the original MFE features and MTFE features are
projected into a two-dimensional plane respectively, as shown
in Figure.7. The Figureure shows one diagnostic task in each
of the two experiments (A-B and 45H-50L). The principal
component analysis (PCA) method is used to reduce dimen-
sion of original MFE features to 2. For the MTFE method,
parameter l is set as constant 2 while other parameters need
to be optimized.
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TABLE 5. Identification accuracy of different entropy.

In the rolling bearing diagnosis task (shown in
Figure.7(a) and (b)), it is difficult to distinguish the inner ring
fault class from the outer ring fault class in PCA subspace of
MFE due to the overlap. However, there is almost no overlap
between the three classes in MTFE subspace. Similarly, nor-
mal samples and chipped tooth samples are indistinguishable
in the subspaces of MFE in gearbox diagnostic experiments,
but the two categories are more separable in MTFE subspace.
The phenomenon shown in Figure.8 effectively proves that
the MTFE feature is helpful to improve the classification
effect and can identify the fault type more accurately.

4) COMPARISON WITH OTHER ENTROPY-BASED METHOD
Taking Experiment I as an example, we added comparisons
with other entropy algorithms, including multi-scale sample
entropy and multi-scale permutation entropy. We supple-
mented the same transfer strategy, only the input features are
different, so called them MTSE-SVM and MTPE-SVM.

The results show that the MTFE-SVM algorithm obtains
the highest accuracy in all tasks except diagnostic task A-B.
Because our transfer strategy is shallow, the accuracy of
feature extraction greatly affects the final diagnosis. TheMSE
feature uses only the Heaviside function to determine the
similarity of the two signals, which is less effective than the
fuzzy function used byMFE.MPE reflects system changes by
symbolizing time series, and although it achieves high com-
putational efficiency, it is less accurate than MFE. Therefore,
we believe that MTFE features that extend based on MFE are
more effective.

5) COMPARISON WITH DEEP DOMAIN ADAPTION
METHODS
Transfer learning algorithms based on artificial intelligence
have been widely used, therefore, the performance of sev-
eral deep domain adaptation methods on bearing diagnosis
tasks are shown here. Three deep domain adaptation meth-
ods are considered in this paper. They are the remarkable
representations of deep domain adaptation methods.

(1) DANN: domain adversarial neural network [32]
(2) CDAN: conditional domain adversarial network [33]
(3) MK-MMD: multi kernel maximum mean discrepancy

[34]
Please note that the detailed parameters setting of above

three methods are following [35]. For these methods, the
original vibration signals are fed into the networks directly.

The performance of these three deep domain adaptation
methods is considered, their diagnosis results are listed

TABLE 6. Identification accuracy of deep domain adaptions.

in Table 6. As can be seen, the obtained results of the
three deep learning methods are not satisfactory. This can be
explained in the following way. The experimental conditions
used for validation is exactly harshly. The source and target
domains are collected from completely different data sets,
operating conditions, bearing models, signal sample rates,
and data length, etc., which will cause a serious impact on the
classification performance of deep learning domain adaption
methods. Unlike these deep learning methods, MTFE algo-
rithm is firstly utilized to extract the fault features from the
vibration signal, thereby, the mentioned difference between
the source and target domains can be significantly reduced.
Above all, the generality of MTFE method is better than that
of deep domain adaption methods.

V. CONCLUSION
In this paper, the MTFE-SVM intelligent fault diagnosis
method is proposed for rotating machinery fault diagno-
sis. Firstly, MFE features are extracted from training sam-
ples. Secondly, the MTFE features are obtained by reducing
dimensions of MFE features, in which the MMD between
training data and test data is reduced. Finally, the MTFE fea-
tures are as input and the SVM classifier is used to identifiers
the fault type. The main contributions of this paper include:

(1) The MTFE is an effectively features extraction method
used for fault diagnosis. Compared with the MFE, MTFE can
not only effectively extract features that is easily to identify
faults, but also can significantly minimized the distribution
discrepancy between source domain and target domain data.
In the fault diagnosis experiments of bearings and gearboxes,
the accuracy of MTFE-SVM algorithm improved by 6.7%
and 46.5%, respectively, compared to traditional MFE-SVM.
It is suitable for fault diagnosis task under cross-domain.

(2) A novel cross-domain fault diagnosis method called
MTFE-SVM is proposed and the advantages of this method
are verified using two experiments. As shown in result,
MTFE-SVM has an accuracy rate of 83.4% and 90.2%,
higher than other classification algorithms. Compared with
other methods, this method has a good generalization ability
and higher accuracy under different domain data collected
both in same machine and in different machine.

The proposed method provides a new idea for RMFD
in the absence of target machine data. In fact, in industrial
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production, it is difficult to collect abundant amounts of
data on equipment that needs to be diagnosed. This is a
test for intelligent fault diagnosis methods. The MTFE-SVM
method proposed in this paper can realize the identification
of the fault location of the equipment by the model trained
by the data collected from other similar fault equipment or
simulation equipment in the laboratory.

In future work, we will test the effectiveness of MTFE in
feature extraction of other types of signals, such as acoustic
signal, electrocardiograph (ECG), and digital images. In addi-
tion, the effectiveness of multiple-fault diagnosis is unknown.
Further test using multiple fault of rotating machinery will be
considered in our future work.
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