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ABSTRACT The utilization of energy storage system (ESS) is an effective method for dealing with
the randomness and variability of wind power. Therefore, improving the coordination between ESS and
wind power is a direction worthy of research. This study develops a two-layer stochastic model predictive
control (SMPC) method for wind power smoothing on different time-scales. The proposed optimization
framework smooths wind energy by adjusting the charge and discharge power of hybrid ESSs; moreover,
it combines the SMPC approach and the chance constraints to address the uncertainties of wind energy.
Furthermore, the previous states are taken into account, in addition to states within the rolling time
horizon, to obtain optimal control of the hybrid ESSs, and capacity planning for hybrid ESSs is conducted
simultaneously. The numerical results obtained through amplitude-frequency simulation comparison prove
that the proposed method is superior to the conventional method in terms of minimizing the frequency
fluctuation of wind power and the size of the ESS.

INDEX TERMS Energy storage system (ESS), microgrid, stochastic model predictive control (SMPC),
uncertainty, wind power.

NOMENCLATURE
ACRONYMS
ESS Energy storage system
RES Renewable energy source
MPC Model predictive control
SMPC Stochastic model predictive control
SOC State of charge

CONSTANTS
ESSup Upper layer ESS
ESSdown Lower layer ESS
ESShyb Hybrid ESS
Tup Rolling time horizon of the upper layer
Tdown Rolling time horizon of the lower layer
1tup Time slot of the upper layer
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1tdown Time slot of the lower layer
H State horizon
Hup State horizon of the upper layer
Hdown State horizon of the lower layer
M Total number of particles
a1, a2, a3, a4 Penalty parameters of the upper layer
b1, b2, b3, b4 Penalty parameters of the lower layer
N1 Number of time slots in the rolling time

horizon of the upper layer
N2 Number of time slots in the rolling time

horizon of the lower layer
L Optimal SOC of the ESS
Detup Maximum difference coefficient between

the adjacent time slots of the upper layer
Detdown Maximum difference coefficient between

the adjacent time slots of the lower layer
Pwn Rated power of wind energy
α Confidence parameter of the upper layer
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β Confidence parameter of the lower layer
Prat_up Rated power of ESSup per kWh
Prat_down Rated power of ESSdown per kWh
SOCmin Minimum SOC of the ESS
SOCmax Maximum SOC of the ESS
ηc Charging efficiency of the ESS
ηd Discharging efficiency of the ESS
h Length of time slot

CONTINUOUS VARIABLES
PW Output of wind energy
Pup Power of ESSup
Pdown Power of ESSdown
Pgrid Combined power of wind and ESShyb
t0 Current time
Pmax,i Maximum of Psum_up within Hup of the

ith particle
Pmin,i Minimum of Psum_up within Hup of the

ith particle
ri Mean of Psum_up within 1tup of the

ith particle
ui Mean of Psum_up within Hup of the

ith particle
xup SOC of ESSup at the end of time slot
xdown SOC of ESSdown at the end of time slot
Cup Capacity of ESSup
Cdown Capacity of ESSdown
1Pwind_up Difference of PW between adjacent 1tup
1Pwind_down Difference of PW between adjacent 1tdown
1PESS_up Difference of Pup between adjacent 1tup
1PESS Difference of combined Pup and Pdown

between adjacent 1tdown
Pmax_up Rated power of ESSup
Pmax_down Rated power of ESSdown
Psum_up Combined power of wind and ESSup
CESS_up(j) Capacity of ESSup at jth 1tup
1CESS_up Increased capacity of ESSup
Pi Value of Pgrid of the ith particle

INTEGER VARIABLES
Mup Number of particles satisfying upper layer

chance constraints
Mdown Number of particles satisfying lower layer

chance constraints

I. INTRODUCTION
Microgrids are expected to play a significant role in the future
because they meet network demands locally, which reduces
the purchased power from the main grid, in addition to reduc-
ing power losses, and increases the reliability indices [1].
Wind energy has attracted considerable attention over the
past few decades owing to its modularity and environment-
friendliness. The utilization of wind energy is an effective
way to promote energy transformation in microgrids [2].
However, a significant increase in wind energy usage raises

some issues with respect to the stability of the microgrid,
considering its variability and stochastic nature.

A. RELATED WORK
In the literature, several studies have focused on the effective
utilization of wind energy in microgrids. As a high-density
and easy-to-control unit, an energy storage system (ESS) is
an interesting option to reduce the risk of instability in a
microgrid with wind power [3]. Shi et al. [4] established a
wind energy storage hybrid system to analyze the fluctuation
feature of wind power output in both time and frequency
domains. Sattar et al. [5] examined the dynamic and transient
performance of an ESS connected to the output of a wind
energy conversion system to smooth the short-term fluctua-
tions in the output power. Caralis et al. [6] investigated the
role that energy storage can play in the further development
of wind energy in microgrids and examined the solution of
ESSs in curtailment exploitation. However, the aforemen-
tioned studies have ignored the fact that the peak-valley
characteristic and the fluctuation characteristic of wind power
need to be dealt with on different time-scales.

To solve this problem, a hybrid ESS can be utilized to deal
with the peak-to-valley characteristic of wind power on the
long time-scale and the fluctuation characteristic on the short
time-scale. Wang et al. [7] utilized a large slower moving unit
for energy shifting and arbitrage and a small rapid charging
unit for smoothing. Ding andWu [8] used a hybrid ESS based
on a self-adaptive wavelet packet decomposition technique
to reduce the amplitude of wind power in both high- and
low-frequency domains. Abbassi et al. [9] utilized a hybrid
ESS integrated with wind power to improve the reliability of
storage units and the life cycle assessment through accommo-
dation of fast power fluctuations. Similar studies have been
conducted on the coordination of hybrid ESSs with wind
energy.

It should be noted that, in real scenarios, wind power is
difficult to forecast accurately over a long period of time [10].
The forecasting error increases with time and eventually leads
to a large deviation between the optimal control result of
the hybrid ESS and the actual demand [11]. Model predic-
tive control (MPC) constantly incorporates newly obtained
information to update the forecasting information for wind
energy and, hence, can reduce the impact of the forecasting
error [12]. Garcia-Torres and Bordons [13] carried out an
optimal control for wind energy microgrids with hybrid ESSs
using MPC, which maximized the economic benefits of the
microgrid. Zhang et al. [14] proposed an MPC-based coor-
dinated operation framework for a grid-connected residential
microgrid considering the short-term forecast errors of wind
energy.

In addition, stochastic MPC (SMPC) is applied to deal
with the inherent uncertainty of wind power forecasting over
a finite planning horizon [15]. SMPC uses ‘‘particles’’ to
represent the possible cases of wind power in the future,
and it is typically not possible to prevent failures in all
these possible cases [16]. Chance constraints specify that the
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probability of failure must be below a given threshold [17].
This chance-constrained formulation is a powerful approach
as it enables the user to specify a desired level of conser-
vatism, which can be traded against performance [18]. This
study focuses on the problem of chance-constrained predic-
tive control under the stochastic uncertainty of wind power.

Although some previous studies have combined ESSs
with MPC/SMPC to promote the efficient development of
wind energy in different contexts, there is room for further
improvement. According to the definition, MPC/SMPC uses
the state variables in the rolling time horizon to calculate
the control command of the rolling time horizon [19]. Many
studies conducted based on this definition are valid, such
as [13], [14], and [20]. In these studies, the effect of the
states in a rolling time horizon on the overall evaluation index
is only related to the states within the rolling time horizon,
and the overall evaluation index is considered irrelevant to
the states outside the rolling time horizon. For instance,
through the effective coordination of ESSs and renewable
energy sources (RESs), the overall cost of load supply can
be minimized [21].

However, in terms of minimizing RES amplitude variation
and achieving RES fluctuation suppression, the overall eval-
uation index is relevant to the states outside the rolling time
horizon [22]. For example, when an ESS is used to improve
the peak-valley characteristics of an RES, if only the states
within the rolling time horizon are considered, the overall
improvement effect of the peak-valley characteristic evalu-
ation index is limited [7]. In this study, during the rolling
optimization process, the states before the currentmoment are
already known, which can be utilized effectively to achieve a
better optimization effect.

Theoretically, the combined power of an ESS and wind
energy can be adjusted to any value if the capacity of the ESS
is sufficiently large [23]. However, considering the cost of
ESSs, the capacity of an ESS should be as small as possible
while meeting constraints. In this study, the capacity planning
of hybrid ESSs is continuously executed through the entire
optimization process.

B. CONTRIBUTIONS
A two-layer optimization framework is proposed in this study
to smooth wind energy by adjusting the charge and dis-
charge power of a hybrid ESS, which has two significant
features:
1) The SMPC technology and chance constraints are com-

bined to deal with the uncertainties of wind energy.
2) The previous states are considered in addition to states

within the rolling time horizon to obtain the optimal
control of the hybrid ESS.

II. SYSTEM STRUCTURE
A schematic representation of the microgrid containing a
wind power harnessing system, a hybrid ESS, base loads,
and a two-layer SMPC controller is presented in Fig. 1. The
hybrid ESS consists of two separate units. The upper and

FIGURE 1. Wind power and hybrid ESS system in a microgrid.

lower layer ESSs are used for shifting and smoothing wind
energy, respectively. The microgrid is connected to the power
grid through a transmission line [24]. The two-layer SMPC
controller is used to optimize the charge and discharge power
of the hybrid ESS to obtain a suitable power that meets the
requirement of the microgrid [25].

In this study, the grid-connected power, Pgrid , satisfies the
following relationship.

Pgrid = PW + Pup + Pdown (1)

III. METHODOLOGY
A. CONVENTIONAL TWO-LAYER SMPC METHOD
A schematic of the conventional two-layer SMPC method
is presented in Fig. 2 [25]. First, the upper layer SMPC
optimization is performed to obtain a set of charge/discharge
power ofESSup within Tup, the first value of which is executed
within the first1tup. Second, considering the actual execution
power of ESSup, the lower layer SMPC optimization is per-
formed within Tdown, and the first charge/discharge power of
ESSdown is executed within the first1tdown. Third, the rolling
optimization of the lower layer SMPC continues until Tdown
involves the second time slot of Tup, as shown in the red
part of Fig. 2. Then, the next Tup is optimized. This cycle
continues until the optimization of the entire time horizon is
completed.

B. PROPOSED TWO-LAYER SMPC METHOD
The state horizon, H , is defined as the horizon composed of
state variables that affect the control commands in the rolling
time horizon [25]. In the conventional two-layer SMPC
method, the length of Hup is the same as that of Tup. In this
study, to effectively utilize the previous states, the length of
Hup is considered twice the length of Tup, andHup is centered
about the current time, t0. Fig. 3 shows the structure of the
proposed upper layer SMPC. The structure of the modified
lower layer SMPC is similar to that of upper layer SMPC and
is not shown here.
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FIGURE 2. Schematic of conventional two-layer SMPC method.

Considering the previous states, the steps involved in
the proposed two-layer SMPC method are presented in
Algorithm 1, which can be understood in conjunction with
Fig. 2.

Algorithm 1 Proposed Two-Layer SMPC Method
1. Initial values.
2. While t0 is not at the end of entire time horizon do
3. Optimization of upper layer.
4. Obtain the charging/discharging power of upper layer

ESS.
5. Set n = 0.
6. While t0 + n1tdown + Tdown ≤ t0 +1tup do
7. Optimization of lower layer.
8. Obtain the charging/discharging power of lower

layer ESS.
9. n = n+ 1.

10. End while
11. t0 = t0 +1tup.
12. End while

C. AMPLITUDE-FREQUENCY CHARACTERISTIC
ANALYSIS
Large-scale wind power connections will result in prob-
lems with respect to frequency adjustment and wind power
accommodation [26]. Therefore, it is very important that
the scientific planning and economic operation of wind
power describe the characteristics of wind power out-
put with statistical methods. To evaluate the optimiza-
tion effect, the amplitude-frequency characteristics of wind
power and hybrid ESSs are analyzed using discrete Fourier
transforms [27].

FIGURE 3. Structure of the proposed upper layer SMPC.

IV. OPTIMIZATION FORMULATION
A. MODEL OF UPPER LAYER OPTIMIZATION
The upper layer optimization dispatches wind energy on a
long time-scale. The objective function of the K th Hup is
defined as follows.

min f1 =
1
Mup

Mup∑
i=1

a1 (Pmax,i − Pmin,i
)

+ a2

N1∑
j=−N1

(ri (j)− ui (K ))2


+ a3

N1∑
j=−N1

(
xup (j)− L

)2
+ a4Cup (2)

where a1 and a2 are the penalty parameters for tuning the
range and variance terms, respectively. L is the ideal energy
level for the ESS, which is generally considered to be 50% of
the total capacity. The upper layer optimization considers the
wind energy dispatch on a long time-scale while taking into
account the lifetime and cost of ESSup.

For the total number of M particles, the chance constraint
of the power difference between adjacent 1tup is presented
in (3). According to (3), theMup particles that are greater than
αM satisfy the chance constraint.

Pr
(
−Detup · Pwn ≤ 1Pwind_up +1PESS_up ≤ Detup · Pwn

)
≥ α (3)

If the chance constraints cannot be satisfied, Cup needs to
be increased to change the adjustment range of the upper layer
ESS power to meet the constraints.

For the particles within Mup, the constraints for the power
of the upper layer ESS are defined as follows.

−Pmax _up ≤ Pup ≤ Pmax _up (4)

Pmax _up = CupPrat_up (5)

The bounds of the remaining state of charge (SOC) within
the upper layer ESS are defined as follows.

SOCmin ≤ xup ≤ SOCmax (6)

The constraint for the bounds of the combined power of the
upper layer is

0 ≤ Psum_up ≤ Pwn (7)
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The dynamic formula for the SOC of ESSup between jth
1tup and (j+ 1)th 1tup is given below:

xup (j+ 1) =
xup (j)CESS_up (j)+ ηPup (j) h

CESS_up (j)+1CESS_up
(8)

where{
η = ηc, if Pup ≥ 0
η = ηd , if Pup < 0

and j = 1, 2, . . . ,Hup − 1.

B. MODEL OF LOWER LAYER OPTIMIZATION
The objective of the lower layer optimization is to smooth the
wind energy on a short time-scale. The objective function of
the kth Hdown is given by

min f2

=
1

Mdown

Mdown∑
i=1

b1 N2−2∑
j=−N2

(Pi (j+2)−2Pi (j+ 1)+ Pi (j))2


×

1
Mdown

Mdown∑
i=1

b2 N2−1∑
j=−N2

|Pi (j+ 1)− Pi (j)|


+ b3

N2∑
j=−N2

(xdown (j)− L)2 + b4Cdown (9)

where b1 and b2 are the penalty parameters for the curvature
and slope terms, respectively. The lower layer optimization
considers the wind power smoothing on a short time-scale
while taking into account the lifetime and cost of ESSdown.
For the total number of M particles, the chance constraint

of the power difference between adjacent 1tdown is given in
(10). According to (10), the Mdown particles that are greater
than βM satisfy the chance constraint.

Pr
(
−Detdown · Pwn ≤ 1Pwind_down +1PESS

≤ Detdown · Pwn) ≥ β (10)

If the chance constraints cannot be satisfied, Cdown needs
to be increased to change the adjustment range of the lower
layer ESS power to meet the constraints.

For the particles within Mdown, the constraints for the
power of the lower layer ESS are given as follows.

−Pmax _down ≤ Pdown ≤ Pmax _down (11)

Pmax _down = CdownPrat_down (12)

The bounds of the remaining SOC within the lower layer
ESS are defined as follows.

SOCmin ≤ xdown ≤ SOCmax (13)

The constraint for the bounds of the combined power of the
two layers is as follows.

0 ≤ Psum ≤ Pwn (14)

The dynamic formula of the SOC of ESSdown is similar
to (8) and is not presented here.

In this study, the energy stored in the newly added
ESSup/ESSdown is set to be half of its rated capacity [25].

V. SIMULATION RESULTS
All the simulations are carried out in MatLab (MathWork,
USA) on a 64-bit Microsoft Windows with the MIQP solver
in the CPLEX software package.

A. BASIC INFORMATION
The upper layer optimization requires a large-capacity and
low-cost ESS to transfer the wind energy, whereas the lower
layer optimization requires a fast-response and long-lifetime
ESS to operate frequently to smooth the wind energy [9].
According to the characteristics of ESSs, the lead acid battery
unit is selected as theESSup to store and dispatchwind energy,
and the Ultra battery unit is selected as the ESSdown for rapid
short-term smoothing [7].

The wind data used in the simulation are obtained from
the Belgian electricity transmission system [27]. In this study,
the forecasting error of the first time slot in the rolling time
horizon is 0.5% of the actual output power. It should be noted
that the forecasting error of wind power during the day is
greater than that at night. Therefore, it is assumed that the
forecasting error increases by 0.078% for each additional
time slot between 06:00 and 18:00 and by 0.088% for each
additional time slot for the remaining time period [28]. Latin
hypercube sampling of the normal distribution is used to
obtain the particles representing the prediction error. For
the parameters of normal distribution, u is the actual output
power, and σ is the forecasting error [25].
The system parameters used in the simulations are summa-

rized in Table 1.

TABLE 1. System parameters.

B. RESULTS OF AMPLITUDE-FREQUENCY
CHARACTERISTICS
The optimization results for the combined power curves of
wind and hybrid ESS under the proposedmethod and conven-
tional method are presented in Fig. 4. As shown in Fig. 4(a),
if only the upper layer SMPC optimization is conducted,
the curves of Psum_up have better peak-valley characteristics
than the wind curve in both the proposed and the conventional
methods. The improvement degree of peak-valley character-
istics is related to the value of Detup in constraint (3). The
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FIGURE 4. (a) Combined power curve of wind and upper layer ESS.
(b) Combined power curve of wind and hybrid ESS.

larger the value ofDetup, the better the peak-valley character-
istics; however, at the same time, a larger capacity of ESSup is
required. As shown in Fig. 4(b), with the optimization of the
two-layer SMPC, the curves of Pgrid are smoother than those
of Psum_up for both proposed and conventional methods.
To compare the optimization effect between the proposed

method and the conventional method, Fig. 5 presents the
amplitude-frequency characteristics of the curves in Fig. 4,
which are obtained using discrete Fourier transforms. To eval-
uate the effect of the two-layer optimization method, the
frequency domain is divided into the high-frequency domain
and the low-frequency domain.

The statistical results of Fig. 5 are presented in Table 2.
When only upper layer optimization is carried out, the nor-
malized value of the mean of amplitude of the proposed
method is lower than that of the conventional method in
the low-frequency domain, indicating that the proposed
method has a better optimization effect than the conven-
tional method. In the high-frequency domain, the mean
of amplitude of the proposed method is similar to that
of conventional method, and results from these methods
are slightly better than those for direct wind power usage.
This is because the upper layer SMPC optimization mainly
adjusts the peak-valley characteristics on the long time-
scale, which is advantageous for improving wind charac-
teristics in the low-frequency domain. In addition, after the
two-layer SMPC optimization, the mean of amplitude of
the proposed method is superior to that of the conventional
method in both low-frequency and high-frequency domains,
and both of them are better than that of direct wind power
usage. This is because the lower layer SMPC optimization
mainly improves the volatility on the short time-scale; hence,
it is advantageous for improving wind characteristics in the
high-frequency domain, thereby improving wind characteris-
tics in the high-frequency domain.

The aforementioned results reveal that considering pre-
vious state variables in addition to present variables has a
significant impact on the control command within the rolling

FIGURE 5. (a) Amplitude-frequency curve for the upper layer combined
power. (b) Amplitude-frequency curve for the two-layer combined power.

TABLE 2. Statistical results of amplitude-frequency curves.

time horizon; further, the amplitude-frequency characteristics
of the proposed two-layer SMPCmethod are superior to those
of the conventional two-layer SMPC method, and both of
them are better than that of the direct wind power usage.

C. RESULTS OF CAPACITY PLANNING OF ESS
The changing processes of Cup and Cdown are shown
in Fig. 6. Cup and Cdown increase gradually in the early
stage of optimization. At the end of optimization, the values
of Cup and Cdown of the proposed method are obviously
smaller than those of the conventional method, which indi-
cates that the proposed method has strong economic com-
petitiveness. This is because the proposed method considers
the state variables before the present time, which makes the
charging/discharging power of the hybrid ESS more reason-
able to meet the constraints.

Fig. 7(a) and Fig. 7(b) present the changing process of
the SOC of ESSup and ESSdown. In the two-layer SMPC
optimization, the upper and lower layer SOCs are effectively
controlled in the appropriate range, to avoid the impact of
ESS saturation or depletion on its lifespan.

From these analyses, it is clear that, using the proposed
method, not only can the fluctuation characteristics of wind
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FIGURE 6. (a) Capacity of the upper layer ESS. (b) Capacity of the lower
layer ESS.

FIGURE 7. (a) SOC of the upper layer ESS. (b) SOC of the lower layer ESS.

energy be improved but the required capacity of ESS can also
be effectively reduced.

D. COMPARISON OF SIMULATION RESULTS
To further verify the effectiveness of the proposed two-layer
optimization method, Fig. 8 presents the ratios of the results
of the proposed method to those of the conventional method
after two-layer optimization for 30 days.

As shown in Fig. 8(a), after two-layer optimization, for the
mean of amplitude of frequency in both low-frequency and
high-frequency domains, the ratios of the results of the two
methods are all less than 1, which means that the proposed
method outputs better optimization results than the conven-
tional one in all 30 different wind power situations. In addi-
tion, as shown in Fig. 8(b), for the ESS capacities in both the
lower layer and the upper layer, the ratios of the results of the
two methods are also all less than 1, thereby further proving
the effectiveness of the proposed method. Furthermore, it is
found that when the peak-valley characteristics and volatility
of wind energy are not ideal, the advantage of the modified
method is more noticeable.

FIGURE 8. (a) Ratios of results of the proposed method to those of the
conventional method in 30 days (mean of amplitude of frequency).
(b) Ratios of results of the proposed method to those of the conventional
method in 30 days (ESS capacities).

VI. DISCUSSION
The length of the rolling time horizon of the upper and lower
layer has a significant influence on the optimization results.
If the length is too long, the local improvement effect is
not ideal; if the length is too short, the optimization mainly
focuses on the local effect but ignores the overall effect.
There are similar problems with the lengths of the time slot.
In different cases, the lengths of the rolling time horizon and
the time slot should be selected accordingly.

VII. CONCLUSION
Amodified two-layer control method based on SMPC is pro-
posed in this study with an aim to dispatch and smooth wind
energy. In the process of SMPC optimization, the influence
of the states before the current time on the control command
in the rolling time horizon is considered. The experimental
results demonstrate that, while considering states before the
current time, the mean of amplitude of frequency of the
proposed method is lower than that of conventional method,
be it in the lower frequency domain or the higher frequency
domain; moreover, smaller capacities for ESSs are ensured
regardless of upper layer or lower layer. Future work will
focus on adjusting the length of the rolling time horizon and
the time slot during the optimization process according to the
characteristics of wind power at different time periods.
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