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ABSTRACT In recent years, several robots have been developed and deployed to perform casualty extraction
tasks. However, the majority of these robots are overly complex, and require teleoperation via either a skilled
operator or a specialised device, and often the operator must be present at the scene to navigate safely around
the casualty. Instead, improving the autonomy of such robots can reduce the reliance on expert operators and
potentially unstable communication systems, while still extracting the casualty in a safe manner. There are
several stages in the casualty extraction procedure, from navigating to the location of the emergency, safely
approaching and loading the casualty, to finally navigating back to the medical assistance location. In this
paper, we propose a Hierarchical Decomposed-Objective based Model Predictive Control (HiDO-MPC)
method for safely approaching and manoeuvring around the casualty. We implement this controller on
ResQbot— a proof-of-concept mobile rescue robot we previously developed—capable of safely rescuing an
injured person lying on the ground, i.e. performing the casualty extraction procedure. HiDO-MPC achieves
the desired casualty extraction behaviour by decomposing the main objective into multiple sub-objectives
with a hierarchical structure. At every time step, the controller evaluates this hierarchical decomposed
objective and generates the optimal control decision. We have conducted a number of experiments both
in simulation and using the real robot to evaluate the proposed method’s performance, and compare it with
baseline approaches. The results demonstrate that the proposed control strategy gives significantly better
results than baseline approaches in terms of accuracy, robustness, and execution time, when applied to
casualty extraction scenarios.

INDEX TERMS Autonomous casualty extraction, mobile rescue robot, mobile robot control, model
predictive control, search and rescue.

I. INTRODUCTION
A number of research studies have been conducted to develop
mobile rescue robots that can perform rescue interventions,
and more specifically casualty extraction tasks [1]–[8]. Some
of these robots have been also deployed to assist the first
responders in practice rescue mission scenarios. The existing
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robots that are currently in use require a high degree of
human intervention, in terms of teleoperation or presence at
the scene, to help the robot in performing the mission [1].
In many scenarios, teleoperation can be difficult to execute
properly, for reasons such as: (i) limitations on the teleoper-
ator’s perception, e.g. a limited field of view; (ii) significant
delays in signal transmission which render the teleoperation
difficult; (iii) teleoperating the robot with first-person per-
spective requires a highly experienced operator, which limits
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FIGURE 1. The phases that occur during casualty extraction in a search and rescue (SAR) scenario. The figure illustrates robot modules implemented
on ResQbot corresponding to each of the phases. The phase highlighted in light blue is the focus of the work presented in this paper.

the scalability of the number of robots deployed. Therefore,
adding a certain degree of autonomy to mobile rescue robots
is a crucial milestone on the road to developing a reliable
rescue platform for disaster response.

In the following subsections we formalise the casualty
extraction procedure and additional requirements which
present the basis for search and rescue (SAR) robots and
control algorithm development.

A. THE CASUALTY EXTRACTION PROCEDURE
In order to formalise the casualty extraction procedure, we
identify several key phases. Described in Fig. 1, each phase
has distinct requirements that must be met by the corre-
sponding robot modules, in order to execute the extraction
safely and successfully. We define the five main phases of
the casualty extraction procedure as follows:

Phase 1: Search and navigate. At the very beginning,
the mobile rescue robot is given initial information about the
task. This includes a rough estimate of all possible casualty
positions, the state of their vital signs, environment map, and
the feasible scenarios for extracting each of the casualties.
If all the required data is well received, the robot can then
navigate to the location of the casualty to start the extraction
process.

Phase 2: Detect the casualty. Once the target casualty
is within the range of the robot’s field of view (i.e. within
the perception range of the robot), the robot determines the
casualty’s position and orientation with respect to its own ref-
erence frame. This phase requires a robust perception module
in order to provide an accurate casualty pose estimate.

Phase 3: Safely approach the casualty.After determining
the casualty’s pose with respects to its own frame, the robot

proceeds to approaching the casualty. The robot approaches
the casualty safely until reaching a desired target pose from
which the casualty can be loaded. The ability of the robot to
safely manoeuvre around the casualty is critical in this phase,
as a misaligned approach could lead to a collision with the
casualty. Similarly, the robot must be able to accurately per-
form the approach while avoiding obstacles and withstanding
external disturbances, as these can affect the approach and
compromise the safety of the loading procedure.

Phase 4: Load the casualty. When the approach phase
has been safely and accurately completed, the robot can then
start to load the casualty. This must be performed gently and
smoothly to minimise risk of further injury to the casualty.

Phase 5: Transporting the casualty. The robot begins
to transport the casualty, after ensuring that the casualty is
loaded safely onto the stretcher. In this phase, the mobile
robot is required to safely navigate its way from the disaster
scene towards a safe place where the casualty can receive
further medical assistance.

B. AUTONOMOUS CASUALTY EXTRACTION ROBOT
Our long term research goal is to develop an autonomous
mobile robot that can help in emergency situations, with
the ability to autonomously rescue an injured person lying
on the ground — i.e. casualty extraction. The fundamental
characteristics that an autonomous rescue robot performing
casualty extraction should possess are (summarised in Fig. 2):
• Safe: It is critical that the safety of the casualty is
ensured at all times. In particular, approaching, loading
and transporting the casualty should be performed in a
way that minimises the risk of additional injury to the
casualty.
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FIGURE 2. ResQbot — a previously developed robot (in the middle) for autonomous casualty extraction — and several fundamental aspects
used behind the design of good casualty extraction robots.

• Hazard-aware: The casualty extraction process can
be hazardous as the environment could be dynami-
cally changing during the process. To adapt to this,
the rescue robot should be able to update its extraction
strategy in real-time according to current hazards and
obstacles.

• Time-efficient: In order to preserve the casualty’s
health, extraction to medical professionals should be
performed as fast and as safely as possible.

• Robust: Casualty extraction environments can be
challenging for robot’s sensors and actuators, so it is
important that control algorithms are robust to noise,
disturbances, and other external factors.

• Sensor-equipped: The robot should be able to sense
hazards, obstacles, casualties, and reliably provide this
information to the control algorithms governing the
casualty extraction procedure.

• Autonomous: Operator communication is a common
problem in challenging extraction environments, so
casualty extraction should be performed autonomously
after initial information is provided.

C. MAIN RESEARCH FOCUS AND MOTIVATION
In our previous works, we focused on developing methods
for casualty detection (see Phase 2 in Fig. 1) [9], [10] and
the procedure of safely loading the casualty (see Phase 4 in
Fig. 1) [11], [12], as part of a complete casualty extraction
scenario. In this study, we investigate and develop a novel
control strategy in order to safely and autonomously approach
the casualty prior to the casualty loading process (see Fig. 1
in Phase 3). This phase is one of the most delicate phases
(along with loading the casualty), in which the robot will
operate in close proximity to the casualty and the controller
has to prioritise the casualty’s safety as part of the controller
constraints.

In our work presented in [12], we conducted a number of
experiments to investigate ResQbot,1 the proposed search and
rescue robot, in performing the casualty extraction procedure
safely by controlling it via teleoperation. By observing how
the casualty extraction procedure is safely executed via tele-
operation by an experienced operator, we can derive a heuris-
tic procedure of how the mobile robot should safely approach
the target casualty. Based on our observation, the casualty-
approaching procedure can be decomposed into three sub-
sequent tasks: (i) aligning the robot position to the casualty
orientation, (ii) adjusting the robot orientation with respect
to the casualty orientation and (iii) gently approaching the
casualty prior to the casualty loading process.

While achieving each task objective is critical for executing
the proceeding task, keeping the prior task objectives in mind
during every subtask execution is also essential in order to
achieve the overall task goals. Therefore, the three subtasks
are executed sequentially while tracking the states of the prior
subtasks.We call this process ‘task execution as a hierarchical
decomposed-objective approach’.

In order to control ResQbot in autonomously execut-
ing the casualty-approaching task using the hierarchical
decomposed-objective approach, we investigate a number of
studies in the mobile robot control domain, mainly using
optimal control methods. We focus on investigating optimal
control methods since a large number of studies using these
methods have been reported to be successful in various appli-
cations relating to autonomous mobile robots. Optimal con-
trol methods could address the limitation of reported classical
methods, while offering broader applications in which either
of the following challenges occurs:

• The dynamics of the controlled systems are too difficult
to handle.

1https://www.imperial.ac.uk/robot-intelligence/robots/resqbot/
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• The applications require many operating constraints that
must be satisfied.

Model predictive control (MPC) – that can be derived as a
finite horizon optimal control problem (OCP) – is one of the
most widely used advanced control technique, and is imple-
mented in various applications, including those of mobile
robot control [13]–[22]. The ability of an MPC controller to
handle a wide variety of constraints and its feasibility to be
implemented in real-time applications are the reasons why
this method is so popular. Nevertheless, to the best of our
knowledge, most of the MPC formulations presented in these
studies are designed to achieve optimal controls that produce
a single control behaviour over the whole trajectory.

To execute a hierarchical decomposed-objective
task — such as the autonomous casualty-approaching prob-
lem explained in the earlier paragraphs — a single control
behaviour could be non-optimal for achieving the overall
objectives. Therefore, the focus of our study is investigat-
ing the MPC formulation that can handle the hierarchical
decomposed-objective execution approach while satisfying
the operational constraints, such as the non-holonomic con-
straint of ResQbot and the safety constraint requirements.

D. CONTRIBUTIONS
The main contributions of this work can be summarised as
follows:

1) The novel hierarchical decomposed-objective model
predictive control (HiDO-MPC) approach— described
in algorithm 1 — to solve tasks with decomposed
objectives, such as the casualty-approaching task
described in the subsection IV-A.

2) The formulation of the proposed HiDO-MPC for the
casualty-approaching task, including the hierarchical
objective function formulation and the required con-
straints formulation.

3) The performance evaluation of the proposed method in
the autonomous casualty-approaching scenario, includ-
ing task accomplishment and safety performance.

4) The source code implementation of the proposed
method used in the experiments that will be publicly
available on the project website2 upon publication.

This paper is further organised as follows. In Section II
we review the literature related to autonomous mobile
rescue robots, including casualty-extraction mobile robots
and autonomous control for mobile robots. In Section III
we define the casualty approach problem. We present our
proposed approach and the algorithm of HiDO-MPC in
Section IV, including the detail-controller design formulation
of the proposedmethod, the computational implementation of
the control problem, and the introduction of the other three
methods — adapted from the state of the art — to compare
them to our proposed method. The experimental set-up is
explained in Section V, and the discussion of the results is

2https://sites.google.com/view/hido-mpc-resqbot/source-code

provided in Section VI. Finally, we conclude our findings in
Section VII.

II. RELATED WORK
In this section we present an overview of the existing mobile
rescue robots designed for casualty extraction and existing
control methods that can be implemented for autonomous
mobile robot control.

A. RESCUE ROBOT DESIGN AND CONTROL
One of the design streams for casualty extraction robots
is a robot with a humanoid upper body form design, with
a heavy-duty dual-arm manipulator. Battlefield Extraction
Assist Robot (BEAR) developed by Vecna Technologies [1],
[2] and HERCULES robot developed by the Agency for
Defense Development, Republic of Korea [3] are examples of
a semi-humanoid form mobile robot platforms, designed and
developed specifically for casualty-extraction procedures.
These robots are designed to be able to perform casualty
extraction using their arms by scooping, lifting up and carry-
ing the casualty (see presented work in [3]). While this casu-
alty extraction procedure seems to be flexible, feasible and
mimics how a normal person handles a casualty, controlling
such a complex robot performing an intricate and sensitive
task is a significant challenge. Teleoperating such a complex
system most likely requires more than one highly skilled
and experienced operator. Developing a fully autonomous
controller for such a system is a non-trivial task.

On the other hand, another design stream has been pro-
posed in several research studies [4]–[8]. In these studies, a
stretcher-type construction or litter is implemented to achieve
a more compact and simpler mechanism, compared to the
semi-humanoid-type design. In the stretcher-type design, the
casualty extraction procedure is achieved by using a conveyor
belt mechanism that loads a casualty from the ground onto
the mobile platform without any direct lifting process. The
conveyor belt module properly supports the casualty’s body
during the process so it can additionally serve as a stretcher
bed for transport.

Introduced in our previous works, ResQbot (see Fig. 2) is a
stretcher-type mobile rescue robot designed to load the casu-
alty using a loco-manipulation approach, i.e. using the robot’s
locomotion system — wheeled locomotion — to perform a
manipulation task [11]. It was found that teleoperating the
loco-manipulation process allows the robot to load the casu-
alty while ensuring key safety thresholds are adhered to [12];
avoiding possible causes of head or neck injury [23], [24].

Compared to the semi-humanoid-type design, the
stretcher-type mechanism is significantly simpler. There-
fore, adding certain degree of autonomy to the stretcher-
type robots is more feasible than to the semi-humanoid-type
robots.

B. MOBILE ROBOT CONTROL
A multitude of research studies have been conducted in the
field of autonomous mobile robot control, especially for
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non-holonomic mobile robot systems [25]–[30]. In general,
these studies address proposed solutions for three main con-
trol problems, including point stabilisation, trajectory track-
ing and path following. A wide range of techniques have been
proposed, including back-stepping [26], dynamic feedback
linearisation [27], sliding mode control [28] and Lyapunov
control [29]. However, according to recent studies [30], it
is observed that most of these techniques are not designed
to be able to cope with a variety of constraints. These con-
straints include both physical and behavioural constraints of
the robot, such as a complex state space and the requirements
for safe and efficient executions [31].

C. MODEL PREDICTIVE CONTROL
A large number of studies have been reported in the domain
of optimal control methods as they prove to be successful in
a range of applications. The methods are widely used, espe-
cially in applications in which the dynamics of the controlled
systems are too difficult to handle or the applications require
many operating constraints to be satisfied [31]–[36].

Meanwhile, MPC — a feedback control technique
that solves optimal control problems over a finite time
horizon — has recently gained popularity. Due to its flex-
ibility to handle constraints and the capacity for real-time
computation, MPC has been implemented in various applica-
tions, including autonomous mobile robot control [13]–[22].
A large number of studies have been conducted using
variations of MPC approaches and formulations for solv-
ing non-holonomic mobile robot controls that cover three
general applications: point stabilisation, trajectory tracking,
and collision avoidance [15]–[22]. The work presented by
Neunert et al. in [20], for instance, proposes a framework for
real-time non-linear MPC that solves mobile robot trajectory
optimisation and tracking problems simultaneously in a sin-
gle approach. The framework introduces an iterative optimal
control algorithm, a.k.a. sequential linear quadratic, to solve
the non-linear MPC problem. Li et al., in [17], propose using
a primal-dual neural network to solve the quadratic program-
ming (QP) problem in a finite receding horizon to achieve
trajectory control of mobile robot systems. The proposed
approach is designed to make the formulated constrained QP
cost function converge to the exact optimal values and achieve
real-time performance on a real mobile robot system. Another
work that incorporates neural networks into the MPC scheme
is presented by Hirose et al. in [19]. In contrast to the work
in [17], the authors in [19] use a deep neural network to learn
the MPC policy.

Despite a wide range of problems presented in the
MPC studies associated with mobile robot controls, the
presented MPC formulations are designed to achieve opti-
mal controls using a single objective function and pro-
duce a single control behaviour over the whole trajectory.
It is possible that single control objectives could be non-
optimal for achieving more complex tasks, such as those
that require multiple control behaviours along a single tra-
jectory. This means that the task could require a different

control behaviour (i.e. control strategy) in different state-
space regions to achieve the desired overall performance.

D. MULTI-OBJECTIVE AND HIERARCHICAL CONTROL
In order to solve high-dimensional problems such as complex
multi-behaviour tasks and multi-constrained systems, several
studies have been proposed using hierarchical and multi-
objective controller approaches. These approaches have
been implemented successfully in a wide range of applica-
tions [37]–[42].

Multi-objective model predictive controls have been pro-
posed in a number of studies in order to achieve desired
performances [37]–[40]. In [38], for example, a weighted sum
of multiple objective functions was proposed, and in [39]
the authors compute a Pareto optimal solution to solve the
multi-objective MPC as a multi-parametric multi-objective
linear or quadratic program. A study on MPC using a
more complex objective function has been also presented
by Zhanget et al. in [40]. In this study, a complex objec-
tive problem is decomposed into a sequential-multi-objective
MPC formulation. This multi-objective approach is evaluated
sequentially based on priority, in contrast to the classical
multi-objective MPC strategies with weighting factors.

On the other hand, various hierarchical approaches have
been proposed based on several interests, including the
resolution relevance of information, task decomposition,
behaviours and hierarchical multi-objectives. The study pre-
sented in [43], for instance, proposes a hierarchical structure
of mobile robot controllers based on information surrounding
the resolution relevance of the environment. The highest level
of path-planning is generated based on a coarse and incom-
plete world description, while the lowest level controller will
refine the robot motion based on the more-detailed obtained
information, during the course. Similarly, the work proposed
by Moore and Flann in [44] is characterised by a hierarchical
task-decomposition approach. The hierarchical structure of
the decomposed tasks in this work is similar to the structure
in [43], including the high-level planner, trajectory generator
and low-level actuator controller.

In contrast, hierarchical controllers based on behaviour
approaches are proposed in [45]–[50]. In general, the pur-
pose of these studies is to generate a complex behaviour by
decomposing the whole complex behaviour into several sim-
pler behaviours in a hierarchical structure. Each behaviour
is controlled independently in combination with the others.
In the case of mobile robot controls, these behaviours could
be path-following, obstacle-avoidance, wall-following, goal-
reaching or emergency-related.

The problem becomes how to combine or formu-
late these behaviours, which might conflict with each
other, and produce the desired whole complex behaviour.
Hasegawa and Fukuda in [45] propose a learning method
(i.e. multiple regression analysis) to determine the deficient
sub-controller (i.e. sub-behaviour) in the system. Meanwhile,
Abdessemed et al., in [49], combine behaviour controllers by
formulating them into a set of fuzzy-rule statements, so that
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FIGURE 3. Problem formulation. This study is focused on the proposed
method for controlling ResQbot to safely approach the casualty, with
constrained manoeuvrability.

the problem become a fuzzy decision-making one. Similarly,
in [48], Meléndez and Castillo also convert the problem into a
fuzzy decision-making one, in which they propose to use the
weighted fuzzy inference system as it is presented in [47].

Multi-objective MPC strategies employing hierarchical
controllers for high-level planning and low-level control have
been introduced in several works on autonomous mobile
robot controls [51]–[53]. Similar to the structure presented
in [44], the high-level planner generates a collision-free tra-
jectory computed online to reach a desired target. The low-
level controller is then responsible for the robot’s trajectory
tracking by controlling the actuators, such as the robot’s
steering angle. Another study introduces a hierarchical struc-
ture to multi-robot controllers in order to solve a complex
MPC problem [54]. It is applied to control multiple mobile
robots wherein the high-level component optimises collective
robot configurations while the low-level component performs
obstacle avoidance.

In this study we derive a heuristic procedure for the
casualty-approaching task as a hierarchical decomposed-
objective approach in order to achieve a specific behaviour
(see IV-A). We formulate the problem as a hierarchical
control task based on a multiple-behaviour approach and
propose HiDO-MPC to solve the problem. Even though
in this study we focus on the implementation for solv-
ing the autonomous casualty-approaching task, the proposed
HiDO-MPC approach could also have wider practical appli-
cations. In particular this approachwould be suitable for com-
plex tasks that can be decomposed into several subsequent
tasks, executed using the hierarchical decomposed-objective
approach. For instance, solving complex manipulation tasks
as presented in [55], which is using a similar high-level
concept (i.e. hierarchical task decomposition).

III. PROBLEM FORMULATION
A. CASUALTY APPROACH PROBLEM
The casualty approach problem— illustrated in Fig. 3 — can
be formulated as an optimal control problem, where the

high-level objective is to minimise the state deviation from
the robot’s current pose, xr , to the robot’s target pose, xt

corresponding to the casualty’s pose, xc:

J = ||xr − xt ||2. (1)

The casualty extraction robot, ResQbot, is a non-
holonomic robot with position and orientation
xr = [xr , yr , φr ]ᵀ. Similarly, the casualty has 2D pose
xc = [xc, yc, φc]ᵀ. ResQbot is controlled with input
u = [v, ω]ᵀ where v and ω are forward velocity and angular
velocity, respectively. The robot dynamics are therefore:

ẋr (t) = f
(
xr (t), u(t)

)
=

v(t) cosφ(t)v(t) sinφ(t)
ω(t)

 , (2)

or, in discrete time:

xr
|k+1 = f(xr

|k ,u|k )

= xr
|k︸︷︷︸

current state

+1t

v|k cosφr|kv|k sinφr|k
ω|k


︸ ︷︷ ︸
state transition

. (3)

To ensure safety during the casualty approach, the
robot needs to avoid colliding with all possible obstacles
(i.e. prohibited area in Fig. 3) in all directions, so that:

xr
|k ∈ X

free (4)

where X free is the set by all possible robot states in which
the robot is free from collision, including collision with the
casualty.

The casualty approach problem can therefore be written as
a model predictive control problem as follows:

min
u

JN (x0,u) =
N−1∑
k=0

∥∥∥xr|k − xt
∥∥∥2
Q
+
∥∥u|k − ut

∥∥2
R

s.t. xr
|k+1 = f(xr

|k ,u|k ), ∀k ∈ [0,N − 1]

xr
|0 = x0
u|k ∈ U , ∀k ∈ [0,N − 1]

xr
|k ∈ X

free, ∀k ∈ [0,N ] (5)

where
∥∥∥xr|k − xt

∥∥∥2
Q

and
∥∥u|k − ut

∥∥2
R are the functions of

the state deviation and the control effort, respectively. The
expression ‖A‖2B ≡ ATBA. The matrices Q, R, and P are
positive definite symmetric weighting-matrices of the appro-
priate dimensions.

B. CONTROLLER DESIGN REQUIREMENTS
There are two main design requirements that the designed
controller needs to achieve:
• Task accomplishment: the controller generates deci-
sion control that enables the ResQbot to execute the
casualty approaching task and to achieve the desired
behaviour described in subsection IV-A. We formulate a
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specific hierarchical cost function — derived in subsec-
tion IV-C — for the proposed HiDO-MPC, to achieve
this task accomplishment requirement.

• Collision free operation: During the task execution, the
robot needs to avoid colliding with all possible obsta-
cles (i.e. prohibited area in Fig. 3) in all directions,
including walls and the casualty. To achieve this require-
ment, we formulate the collision avoidance constraint
function — derived in subsection IV-D — and include
it as one of the HiDO-MPC constraints.

C. SCOPE AND ASSUMPTIONS
In this paper, we focus on the development of an MPC-based
controller to generate control commands for the ResQbot to
safely approach the target casualty as a part of a complete
casualty extraction scenario. The controller takes the state of
the current robot xr , casualty xc, and the desired robot state
xt as input for controlling the robot motion, as well as the
environmental information, such as the map and the list of
obstacles.

Conceptually, all the information is given in real-time by
a state observer module. This state observer module is not
within the scope of the current study. In simulation experi-
ments all the information is available to the controller. In real
robot experiments, the real-time robot states are provided by
the implementation of simultaneous localisation andmapping
(SLAM), presented in [56], [57], which is also out of scope
of this paper.

Another assumption in this study is that the controller
developed in this work would generate control commands for
ResQbot, including linear velocity command v and angular
velocity ω. The low-level controller — actuating the robot
actuators based on the control commands v and ω — is also
beyond the scope of this work.

IV. PROPOSED METHOD
In this study, we propose a hierarchical decomposed-
objective model predictive control approach (HiDO-MPC) to
achieve the overall objective of the casualty approach task
(see III-A). The proposed approach is derived based on our
observation of how the casualty extraction procedure is safely
executed via teleoperation by an experienced operator in [12].

A. CASUALTY APPROACHING HIERARCHICAL TASK
DECOMPOSITION
To achieve the overall objective of the casualty approach task,
we decompose the task of approaching the casualty into three
subtasks (illustrated in Fig. 4):

1) aligning the robot position to the casualty heading line
(H ) until the desired threshold;

2) adjusting the robot orientation φr with respect to the
casualty orientation φr up to the desired threshold1φ,
while keeping the robot alignment; and

3) approaching the casualty, while keeping the robot
alignment and the robot orientation.

FIGURE 4. Casualty approaching task decomposition inspired by the
loco-manipulation approach presented in [11].

These three subtasks are executed sequentially while tracking
the states of the prior subtasks to achieve the overall task
goals. In contrast to a pure sequential execution, we called
this execution as a hierarchical execution.

We introduce three specific cost functions to the desired
behaviours that correspond to the three subtasks during the
task execution:
• Distance-to-line objective: Given the robot position
pr = [xr , yr ]ᵀ as a spatial component of the robot
states xr and the finite heading line segment H as a
function of the casualty pose xc, minimising the distance
from pr to the line segmentH ensures the robot-casualty
alignment:

F1(xr , xc) = d(pr ,H ). (6)

Detailed derivation of this objective function can be
found in Appendix A.

• Heading objective: Given the robot orientation φr and
the casualty orientation φc, minimising the difference
between these orientations 1 ensures that the robot
could approach the casualty in the correct heading:

F2(xr , xc) = 1(φr , φt ) = π −
∣∣∣∣φr − φt ∣∣− π ∣∣ , (7)

where:

φ ∈ [−π, π].

so that it takes into account the periodicity of angles
(i.e. angle wrapping).

• Distance-to-point objective: Given the current robot
position pr = [xr , yr ]ᵀ and the target robot position
pt = [x t , yt ]ᵀ, which is a function of the casualty
pose xc, minimising the distance from the current robot
position to the target position will drive the robot to
achieve the final goal of the casualty approaching task.
The distance between these two points in 2D space can
be defined as the Euclidean norm:

F3(xr , xc) =
∥∥pr − pt

∥∥2 (8)

B. HIERARCHICAL DECOMPOSED-OBJECTIVE MPC
Fig. 5 illustrates a high-level overview of the proposed
approach. We formulate HiDO-MPC to achieve the casu-
alty approaching hierarchical task decomposition. In con-
trast to the generic MPC formulation, which uses a single
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FIGURE 5. Illustration of a three-level hierarchical decomposed-objective
model predictive control (HiDO-MPC) applied to the ResQbot control for
autonomous casualty approach.

overall objective function JN (Eq. 5), in HiDO-MPC, we
formulate decomposed objective functions corresponding to
the subtasks derived in IV-A. These objective functions
are then executed hierarchically to ensure that each sub-
objective is achieved while maintaining the states of the prior
sub-objective.

Let us denote the stage s as a subtask of a complete
overall task, s ∈ S = {1, 2, 3}, of the hierarchical task
decomposition. Each stage s(·) is evaluated based on the
current state xr with respect to the overall goal state xt

and the objective of each subtask. The discrete HiDO-MPC
controller here is defined as an OCPwith a finite control hori-
zon N , which evaluates the robot stage s at every sampling
instant k .

The stage evaluation process determines the objective
function corresponding to that stage, J sN . Then, the optimal
control, u∗, for the robot is produced at every time step by
solving the OCP with respect to the decomposed-objective
function at this respective stage, J sN , which satisfies the
optimal value, V s

N (x̂) (i.e. minimising the output of the
cost function, J sN , s.t. constraints). The first element of
the produced optimal control trajectory, u∗0, is then applied
to the system. Algorithm 1 summarises the proposed
approach.

C. OBJECTIVE FUNCTION DESIGN AND IMPLEMENTATION
TO HiDO-MPC
We implement the three objective functions formulated in
Eq. 6, 7, and 8 into the proposed HiDO-MPC algorithm (see
Algorithm 1) as a three-stage hierarchical objective, s ∈ S =
{1, 2, 3}. Each stage corresponds to the task decomposition
described in subsection IV-A. We formulate the objective
function at each stage, J sN , as a weighted combination of
the three proposed objective functions with different weights
(WH

1 −W
H
9 ), written as:

• Objective Stage 1

J1N =
N−1∑
k=0

WH
1 F1(x

r
|k , x

c)+WH
2

∥∥u|k − ut
∥∥2
R (9)

Algorithm 1HiDO-MPC Control Approach for Casualty
Approach Task

Initialisation: StageNumber := n
s := 1 ∈ S = {1, 2, 3}

MPCInit:
ControlHorizon := N
Define the initial robot state: xr

|0 := x0 ∈ Xnx

Get the target state:
x̂t ← StateObserver

Define the initial control: u|0
Apply u|0 to the system.

for every sampling instant k = 1, 2, . . . do Estimate
the states xr

|k and x
t :

[x̂r
|k , x̂

t ]← StateObserver
Evaluate s = S(xr

|k , x
t )

∀ s ∈ {0, 1, 3} Evaluate the sub-objective
switching

w.r.t. current stage s:
JN = J sN Solve OCP w.r.t. current stage s:

Find the optimal control horizon
u∗ = {u∗

|0, · · · ,u
∗

|N−1} ∈ U
N ,

which satisfies
J sN (x̂,u

∗) = V s
N (x̂).

s.t. constraints
Apply u∗

|0 to the system.

• Objective Stage 2

J2N =
N−1∑
k=0

WH
3 F1(x

r
|k , x

c)+WH
4 F2(x

r
|k , x

c)

+WH
5

∥∥u|k − ut
∥∥2
R (10)

• Objective Stage 3

J3N =
N−1∑
k=0

WH
6 F1(x

r
|k , x

c)+WH
7 F2(x

r
|k , x

c)

+WH
8 F3(x

r
|k , x

c))+WH
9

∥∥u|k − ut
∥∥2
R (11)

D. COLLISION AVOIDANCE AS EQUALITY CONSTRAINTS
Another design requirement of the proposed controller is to
accomplish the casualty approaching task safely.

To achieve this design requirement, we formulate the col-
lision avoidance as one of the constraints included in the
MPC formulation (Eq. 5). Inspired by the work presented
in [58]–[60], we introduce collision function between two
objects, written as:

[col]+ = max {0, col} . (12)

We formulate the collision function, col as an expression so
that the value is positive when the objects are in collision and
negative when they are collision free. We model the collision
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geometry of each object — including robot, casualty, and
obstacles—as a set of circles, so that the optimisation process
still feasible in real-time. Full derivation of the collision
function used in this work can be found in Appendix B.

E. SOLVING THE OPTIMAL CONTROL PROBLEM (OCP) VIA
NON-LINEAR PROGRAMMING USING CasADi
To solve the finite OCP problem in the proposed HiDO-MPC,
in this study, we use CasADi API [61] computing the real-
time optimisation problem. The OCP is computed via the
API’s Non-Linear Programming (NLP) using ipopt solver.
The standard NLP formulation for the numerical parametric
optimisation problem is as follows:

min :
w

8(w,p)

subject to: g1(w,p) ≤ 0,

g2(w,p) = 0. (13)

in which w ∈ Rnw is the decision variable and p ∈ Rnp is
a known parameter vector. 8(w,p) is the objective function
of the optimisation problem, while terms g1(w,p) ≤ 0 and
g2(w,p) = 0 are inequality and equality constraint functions,
respectively.

The detailed derivation of transforming the proposed
HiDO-MPC OCP into NLP problem can be found in
Appendix C.

F. COMPARISON TO THE STATE OF THE ART
To evaluate the proposed HiDO-MPC approach, this study
compared the proposed approach to several other meth-
ods, adapted from the related work. These methods include:
i) sequential MPC (SMPC) adapted from [40], ii) bundled
objectives MPC (BMPC) adapted from [38], and iii) vanilla
MPC (VMPC) which is a generic MPC method implemented
on mobile robot control as presented in [17]–[19].

The derivation of the objective function implementation of
these three methods, in contrast to the HiDO-MPC can be
found in Appendix D.

V. EXPERIMENTAL SETUP
To evaluate the proposed HiDO-MPC, we design sev-
eral experimental scenarios, both in simulation and on the
ResQbot physical robot platform. Twomain controller design
requirements are evaluated, the task accomplishment and
collision-free operation (see III-B). Our main hypothesis is
that the proposed HiDO-MPC controller could generate the
desired behaviour of ResQbot (see IV-A) to safely accom-
plish the casualty approaching task as part of the casualty
extraction procedure described in Section 1.

A. EXPERIMENTAL SCENARIOS
We have designed several experiments to emphasise each of
the design requirement points. The following experiments are
conducted in simulation and on the real robot:

1) Different obstacle densities (simulation): This
experiment is designed to show hazard-awareness

FIGURE 6. Illustration of pre-loading misalignment and heading error
which lead to failure during loading and could cause additional injury to
the casualty.

capabilities by avoiding obstacles and achieving the
target pose safely. This evaluates the collision-free
requirement formulated as a collision avoidance con-
straint in the controller design.

2) State estimation error and control perturbation
(simulation): This experiment is intended to demon-
strate the robustness of the proposed controller in
the presence of different types of sensor measure-
ment errors and control disturbances. This evaluates
the advantage of the implementation of the hierar-
chical decomposed-objective approach in HiDO-MPC
(hierarchical structure) in comparison to the sequential
approach methods in SMPC (sequential structure), as
illustrated in Fig. 14 Appendix D.

3) Execution time (simulation): This experiment is
designed to evaluate the time-efficiency of the con-
trollers during task execution. This assesses the objec-
tive function formulation. Shorter execution time
means that the controller could generate optimal deci-
sion control for the ResQbot to accomplish the desired
task.

4) Narrow corridor case (simulation and real): This
experiment is a case study of ResQbot performing the
casualty extraction task in an environment with limited
space for manoeuvring. This appraises the formulation
of the ResQbot model (see III-A) implemented in real
robot experiments and the robustness of the proposed
controller in the presence of the actual model and mea-
surement error.

We describe in more detail the setup of the proposed exper-
iments in Appendix E.

B. PERFORMANCE METRICS
To quantitatively assess the task accomplishment of the pro-
posed method, the experimental results are evaluated based
on two metrics:
• Distance to heading line (i.e. misalignment) [m]
• Heading error [◦]

If the errors exceed 0.1m or 10◦, respectively, the experiment
is considered to have failed. The reason is that if the robot
were to start loading the casualty from such a pose, with
large errors, it could cause significant injuries to the casu-
alty. Fig. 6 illustrates the misalignment and heading errors
between ResQbot and the casualty, before the casualty load-
ing stage.
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We also calculate failure ratio to assess the HiDO-MPC
performance compared to the other methods. For each set of
experiments, the failure ratio is calculated as the number of
failure cases (i.e. misalignment or heading error exceeds the
thresholds) divided by the total number of experiments in the
corresponding set.

C. HYPER-PARAMETER TUNING
Prior to the main experiments, we perform hyper-parameter
tuning, including finding the optimal weights for cost func-
tions in all MPC methods (see IV-C and Appendix D). We
also observe the computation times of all controllers with
respect to the prediction horizon lengths N , in order to
assure that the controllers can be implemented in real-time.
The results of these parameter tuning can be found in the
Appendix G.

D. PHYSICAL ROBOT EXPERIMENTS
The physical robot experiments are conducted using the
ResQbot platform [12] in an indoor laboratory environment.
We run a set of experiments having the robot and casualty
placed at pre-defined poses within the environment map, as
indicated in Table 3 Appendix E-D.

To update the robot states in real-time, we use the
implementation of simultaneous localisation and mapping
(SLAM), presented in [56], [57]. To execute the control com-
mand from the MPC controllers, ResQbot uses its on-board
low-level controller to manage the linear speed and angular
rate of the differential drive wheels.

In the experiments, there are at least two sources of
stochasticity contributing to the controller. First, the state
estimation error produced by the SLAM implementation
using 2D light detection and ranging (LIDAR) sensor. The
second sources of stochasticity, is the model discrepancy
of the robot dynamics model. The error from the low-level
controller execution and the actual non-uniform distribution
of friction (e.g. between the robot’s wheels and the sur-
face, wheel) are such instances of the source of the model
discrepancy.

VI. RESULTS AND DISCUSSION
In this section, we present the results of the experimental
setups described in the previous section. We further discuss
how these findings relate to the controller design require-
ments presented in III-B.

A. THE EFFECT OF OBSTACLE DENSITY
In Fig. 7 we present the averaged failure ratio for each
obstacle density (low, medium and high) and controller
method, calculated over 600 trials. The overall results illus-
trate that while all controllers can achieve 100% successful
performance in no-obstacle experiments, when obstacles are
present HiDO-MPC and SMPC demonstrate significantly
better performance in comparison to VMPC and BMPC,
with lower average failure ratios and smaller variances. This
similarity between HiDO-MPC and SMPC can be explained

FIGURE 7. Performance comparison of the evaluated controllers in
different obstacle density experiments. The failure ratio is calculated over
600 trials, and the variance is obtained based on binomial distribution.

by the fact that both HiDO-MPC and SMPC use multiple
decomposed-objective functions, although implemented dif-
ferently (see Section IV-F and Fig. 14 in Appendix D).
In contrast to HiDO-MPC and SMPC, BMPC and VMPC
use a single fixed-objective function to complete the task.
As expected, the failure ratio increases with the increasing
obstacle density.

This finding demonstrates that usingmultiple decomposed-
objective functions (implemented in HiDO-MPC and SMPC)
results significantly better performance than using single
objective function (implemented in BMPC and VMPC), in
achieving desired casualty approaching task with collision
free constraint.

B. THE EFFECT OF STATE ESTIMATION ERROR AND
CONTROL PERTURBATION
In this experiment, we analyse the effect of different mod-
elling errors (sensor measurement errors and control pertur-
bations), on the final controller performances. The detailed
detailed noise setup is described in Table 2 Appendix E.

The results of these experiments are presented in Fig. 8.
The overall results shows that the presence of measurement
errors and control perturbation has a significant impact on
the controller performances. This especially holds for SMPC,
which is in contrast to our previous findings in experiments
without noise effects. We can see that even in the low obstacle
density experiments, SMPC exhibits in poor performance.
Based on these findings, we can conclude that in some
instances the presence of modelling errors (i.e. measure-
ment and control) has a significant effect on the SMPC
performance.

Conversely, HiDO-MPC demonstrates a consistently
higher performance compared to other controllers, in both
the experiments with and without modelling errors. The
discrepancy between HiDO-MPC and SMPC performances
could be explained by the difference in implementation of
the decomposed-objective functions (see IV-F and Fig. 14 in
Appendix D). In SMPC the multiple decomposed-objective
functions are implemented as an open-loop sequential struc-
ture. Once a subtask objective is achieved, this objective will
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FIGURE 8. Controller performance comparison under 15 different experimental setups involving noise effects, including state estimation errors and
control perturbation (see the detailed noise setup in Table 2 Appendix E). Each graph shows the performance with: [a − c]: position (x, y ) estimation
errors; [d − f ]: orientation φ estimation error; [g − i ]: linear velocity v control signal perturbation; [j − l ]: angular velocity ω control signal perturbation;
[m]: both position and orientation estimation errors; [n]: both linear and angular velocity control signal perturbations; [o]: combination of all noise effects.
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FIGURE 9. Execution time of SMPC, BMPC, and VMPC controllers
represented as a ratio with respect to the HIDO-MPC execution time.

not be maintained once the next sequence objective is initi-
ated. In contrast, HiDO-MPC uses closed-loop hierarchical
structure, in which each decomposed-objective function is
evaluated hierarchically at every iteration, and the current
stage objective is executed while maintaining the former
subsequent objectives. This specific implementation differ-
ence between HiDO-MPC and SMPC methods makes the
former method results much more robust performance in the
presence of model error.

The graphs presented in Fig. 8-a, 8-b, and 8-c show the
controller failure ratios in the experiments with robot position
estimation error and the effect of robot orientation estima-
tion errors to the controller failure ratios are illustrated in
Fig. 8-d, 8-e, and 8-f. We can observe from the graphs that
the position estimation errors have a significant effect on
the SMPC failure ratio, as a higher position estimation error
results in a higher SMPC failure ratio. In contrast to the robot
position estimation errors, the results show that robot orien-
tation errors have a less significant effect on the controller
performances (i.e. failure ratio). This finding is explained by
the fact that ResQbot model has non-holonomic constraints.
As a consequence of these constraints, it is easier to adjust
the robot’s heading only, as opposed to adjusting the position
errors.

Fig. (8-g – 8-l) show the experiment results in which
control perturbations — in linear velocity (g-i) and angular
velocity (j-l) — are introduced to the system. The figures
show that control perturbations have a small effect on the
controller performances, and the effect is not as significant
as the effect of the robot position estimation errors.

The failure ratio results from the experiments combining
all the noise factors, including state estimation errors and
control perturbations, is presented in Fig. 8-m, 8-n, 8-o.
These finding highlight the fact that the proposedHiDO-MPC
approach is more robust to the presence of noise and distur-
bance while achieving desired casualty approaching task.

C. EXECUTION TIME COMPARISON
Fig. 9 shows the ratio of the SMPC, BMPC, and VMPC
execution times with respect to the HiDO-MPC execution

times. These results are obtained from the successful subset of
all the conducted experiments (i.e. all the trials in which the
target was reached without failure) considering all obstacle
densities both with and without noise effects. The figures
show that in general HiDO-MPC requires less time to execute
the task compared to the other controllers. In contrast, VMPC
requires a significant amount of time to reach the steady-state
error, because this controller is sub-optimal and produces
more oscillations.

These findings demonstrate that the proposed HiDO-MPC
outperform the other controllers in generating optimal trajec-
tory for the desired casualty approaching task.

D. NARROW CORRIDOR EXPERIMENT
In this experiment, the task is to approach the casualty safely
in the environment where the robot’s manoeuvrability is lim-
ited. We evaluate the implementation in both simulation and
real robot experiments, assess the performance both qualita-
tively based on the trajectories generated by the controllers,
and quantitatively based on the robot alignment and heading
errors as described in V-A.

1) QUALITATIVE COMPARISONS OF GENERATED
TRAJECTORIES
Fig. 10 shows the trajectories generated by each MPC-based
approach, in two selected scenarios (S5 and S6) from nine
different experiment scenarios (see Table. 3 in Appendix E).
We can see that in general, VMPC and BMPC approaches
generate fairly similar trajectory characteristics, while the
trajectories generated by SMPC have similar characteristics
with the trajectories generated by HiDO-MPC method. This
phenomenon can be explained based on the different objec-
tive functions implementation in these four MPC methods
(see IV-C and Appendix D). VMPC and BMPC use a single
objective function, in which the task (i.e. casualty approach
procedure) is interpreted as a single objective task. On the
other hand, in the SMPC and HiDO-MPC methods the casu-
alty approach task is decomposed into several sub-objectives,
so that these methods use multiple-objective functions corre-
sponding to sequences, in SMPC, or stages, in HiDO-MPC.

In particular, experimental scenarios S5 and S6 highlight a
key benefit of the decomposed-objective methods. As we can
see, single-objective-based controllers generate oscillatory
trajectories, because the controllers attempt to balance head-
ing error and position error at the same time. More specif-
ically, in the experimental scenarios S6, VMPC controller
fails to achieve the desired target pose. Multiple-objective
approaches, SMPC and HiDO-MPC, have minimal oscilla-
tions, as the controllers are able to first minimise positional
error then correct for heading error by making a single revers-
ing move.

2) QUANTITATIVE COMPARISONS USING PERFORMANCE
METRICS
In order to quantitatively compare the performance of each
controller, in the real robot experiments and simulation, we
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FIGURE 10. Comparison of the trajectories generated in simulation by four different MPC methods (HiDO-MPC, SMPC, BMPC, and VMPC), in two selected
experimental scenarios, S5 and S6 (see the scenario setup in Table 3 in Appendix E).

FIGURE 11. Experimental results using two main quantitative metrics, distance_to_heading_line error [cm] and heading error [◦] showing
both simulation and real robot experiments, in two selected experimental scenarios, S5 and S6 (see the scenario setup in Table 3 in
Appendix E).

use distance to heading line [cm] and heading error [◦] as
performance metrics.

Fig. 11 presents the values of these metrics for each of
the control method, in simulation and real robot, for selected
experimental scenarios S5 and S6 (see the scenario setup in
Table 3 in Appendix E. In general, the proposed HiDO-MPC
approach shows superior performance compared to the other
approaches based on the used metrics, in both simulation
and real robot experiments. Results show that approaches
with multiple decomposed objective functions, SMPC and
HiDO-MPC, outperform approaches with a single objective
function, VMPC and BMPC (especially with respect to the
alignment metric), which is in line with our findings from the
qualitative analysis. Scenarios S5 and S6, where the robot’s
initial pose is close to the wall highlight the robot manoeuvra-
bility limitation, thus reaching the desired heading requires
the robot to turn towards the wall. The approaches utilise sin-
gle objective function like BMPC and VMPC have difficul-
ties finding an optimal trajectory in such cases, because they
are incentivised to fulfil all sub-objectives simultaneously.
In contrast, SMPC and HiDO-MPC approaches manage to
produce more consistent performances across all different
scenarios.

In the simulation results SMPC and HiDO-MPC gener-
ally produce better performances compared to BMPC and

VMPC. However, this is not the case for real world scenarios.
While HiDO-MPC results significantly better performance
compared to the other methods, in real scenarios S5 and S6
SMPC results the worst performance. SMPC fails to maintain
the heading error within the safety limits in scenarios S5. This
is likely because its pure sequential execution (see Fig. 14
in Appendix D) ignores previous objectives. Minimising the
heading error is the second objective, and is free to vary as the
third objective, distance-to-point, is minimised. In simulation
this is not a problem, as the previous objectives mean that
the distance-to-point objective is achieved by driving forward
in the reference frame of the robot. In reality, measurement
error and control disturbances mean that driving forwards
does not necessarily maintain heading. This finding further
supports the conclusions reached from the obstacle density
experiments with presence of noise and disturbance discussed
in Section VI-B.

3) CONTROLLER OUTPUT COMPARISONS
Fig. 12 shows the control outputs (i.e. corresponding linear
velocity [v] and angular rate [ω] profiles) generated by all
the evaluated controllers, and the corresponding actual final
robot poses from the real-time physical robot experiment
scenario S5. The figure clearly emphasises the differences
between the generated linear and angular velocity profiles
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FIGURE 12. Comparison of the controller output profiles (top), and the final robot pose (bottom) in the real robot experiment scenario [S5] for each of
the methods considered.

in simulation and reality. The oscillations that occur are
a result of noise and control disturbances that are inher-
ent to physical systems. Nevertheless, we can see that
HiDO-MPC producesminimal oscillations compared to other
controllers.

Single objective controllers produce large oscillations in
both simulation and reality, as they attempt to balance all
objectives at any one time. Decomposed objective controllers,
SMPC and HiDO-MPC, are able to suppress oscillation sig-
nificantly. However, the real robot angular velocity control
output profile of SMPC exhibits an increase of the oscilla-
tion frequency. This occurs as the controller changes from

minimising the heading error objective, to minimising the
distance-to-point objective, and is unable to improve previous
stages. On the contrary, HiDO-MPC is able to maintain the
previous objective whileminimising the next one. This allows
HiDO-MPC to be more robust to the measurement noise and
control disturbances present in a real-world scenario, to the
point where it is able to achieve the desired pose within the
safety limits in only 30 seconds.

Complete corridor experiment results, including generated
trajectory from simulation and the quantitative metric results
from corridor experiment scenarios [S1− S9] can be found in
Appendix F.
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FIGURE 13. Sequential snapshots of the end-to-end casualty extraction experiment executing a complete casualty approach and loco-manipulation
procedure.

E. END-TO-END CASUALTY EXTRACTION SCENARIO
In addition to the experimental evaluations, we test our pro-
posedHiDO-MPC controller within a real-life full end-to-end
autonomous casualty extraction procedure using ResQbot.
Fig. 13 presents the snapshots of ResQbot performing casu-
alty extraction via the loco-manipulation procedure, by pick-
ing up the casualty—which is a real person— from the floor,
onto the mobile robot and then transporting it to safety.

This experiment demonstrates the feasibility of inte-
grating the HiDO-MPC controller within the full casualty
extraction procedure described in Fig. 1. We find that the
ResQbot is able to successfully perform a complete casu-
alty extraction procedure safely, without human intervention
(i.e. autonomously).

Additional experimental results, including videos, can be
found on the project website.3

VII. CONCLUSION
In this paper, we propose a hierarchical decomposed-
objective model predictive control (HiDO-MPC) method to
control a mobile rescue robot safely approaching a casualty,
as a part of a casualty extraction procedure. The HiDO-MPC
approach is inspired by the hierarchical-sequential nature
of the casualty extraction procedure was performed by
experienced teleoperators. Our hypothesis is that the pro-
posed approach fulfils the controller design requirements
for achieving the casualty approaching task, including task
accomplishment with safety metrics (as the main priority),
and collision free operation.

A series of experiments has been systematically conducted
to evaluate the hypothesis, and to compare the performance
of the proposed method to other methods (adapted from the
state of the art), both in simulation and on the real robot
experiments. Inspired by the current literature, we use SMPC,
BMPC, and VMPC as comparison methods. ResQbot, a

3https://sites.google.com/view/hido-mpc-resqbot/experiments

proof-of-concept mobile rescue robot that we have previously
developed, is used for the real-robot experiments.

The results of the experiments with several different obsta-
cle densities demonstrate that HiDO-MPC — which uses
multiple decomposed objective functions in a hierarchical
execution — significantly outperforms the methods, such
as BMPC and VMPC — which use a single objective
function — in controlling ResQbot to approach the target
casualty, while satisfying the collision free constraint. More-
over, the experimental results which incorporate state esti-
mation error and control perturbations highlight the fact that
HiDO-MPC is robust to the presence of such modelling
errors, while the SMPC performance is significantly affected
by these. This robustness of HiDO-MPC to modelling errors
is very important when implementing the controller on a
real physical system, in which disturbances and measure-
ment noise is inevitable. Additionally, regarding the time
effectiveness, the experimental results show that by using
HiDO-MPC, ResQbot reaches the desired target pose faster
than with using other methods.

A case study of controlling ResQbot approaching a casu-
alty in a narrow corridor, has been conducted to evaluate
the performance of the proposed HiDO-MPC in both sim-
ulation and real-system experiments. HiDO-MPC outper-
forms other methods in both simulation and real experiments.
More specifically, the real-time physical robot experiments
highlight the fact that the HiDO-MPC method demonstrates
robust performance while dealing with uncertainty occurring
in the real scenarios, and shows potential for a realistic rescue
scenario.

Further work on developing a realistic simulation with
physics engine environments could be leveraged to improve
and evaluate the robustness of the controller, in a wider-range
of real-world scenarios. A significant amount of environ-
ment scenarios could be developed in simulation — which
could considerably mimic the actual environment — and
further used to tune, evaluate and improve the proposed

39670 VOLUME 9, 2021



R. P. Saputra et al.: Hierarchical Decomposed-Objective Model Predictive Control for Autonomous Casualty Extraction

approach prior to deployment in real-world missions.
Another potential extension work from this study is to
explore the potential implementation of the proposed HiDO-
MPC (i.e. Algorithm 1) for a wider practical applica-
tions, especially for a high-dimensional task that can be
decomposed into subsequent tasks (e.g. locomotion and
manipulation tasks).
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APPENDIX A
DETAILED DERIVATION OF DISTANCE-TO-LINE OBJECTIVE
This objective function is formulated to achieve the robot
alignment subtask.

Given a finite heading line segment H (an imaginary line
along the casualty orientation, see Fig. 3), where the line
segment is defined through two points, starting point ps =
(xs, ys) and ending point pe = (xe, ye), and the robot posi-
tion point pr = (xr , yr ), let d(pr ,H ) denote the minimum
distance from pr to the line segment H . This is the shortest
distance separating pr andH . SinceH is a finite line segment,
then d(pr ,H ) is the orthogonal distance between point pr and
the nearest point along line H .
Let p denote the point belonging to the line through the line

segment H defined as:

p = ps + u(pe − ps). (14)

The point p is the projection of the point pr onto the line
segment H if the dot product between vector (pr − p) and
vector (pe − ps) is equal to zero.

(pr − p)·(pe − ps) = 0. (15)

By substituting Eq. 14 to Eq. 15, the value u can be calculated
as:

u =
(xr − xs)(xe − ss)+ (yr − ys)(ye − ys)

‖pe − ps‖2
. (16)

Hence, the nearest point coordinate p(x, y) can be determined
as:

x = xs + u(xe − xs)

y = ys + u(ye − ys) (17)

Since the line segment H is constrained between point
ps and pe, the scaling parameter u is also constrained

between 0 and 1. The distance-to-line segment objective
function can then be formulated as:

F1(xr , xc) = d(pr ,H ) =
∥∥pr − p

∥∥2
s.t. p = ps + u(pe − ps)

u =


u, 0 ≤ u ≤ 1
0, u < 0
1, u > 1

(18)

APPENDIX B
COLLISION FUNCTIONS
We denote the state of each circle as c = [xcr , ycr , rcr ], where
(xcr , ycr ) is the position of the circle and rcr is the radius of
the circle. The collision function between two circles is then
defined as:

[col(c1, c2)]+ = [(racr + r
b
cr )

2
− (xacr − x

b
cr )

2

−(yacr − y
b
cr )

2]+ (19)

We then model the collision geometry of ResQbot as ncr
number of circles, so that:

cr (xr , rrcr , ncc ) = [xrcrh , y
r
crh , r

r
crh ], ∀ h ∈ [0, ncc ] (20)

Similarly, the collision geometry of the casualty can be
expressed as:

cc(xc, rccr , ncr ) = [xccri , y
c
cri , r

c
cri ], ∀ i ∈ [0, ncc ] (21)

Let pobs denote the vectors of size nobscr that describe the
obstacle position and robscr that describe the obstacle radius.
The collision geometry of the obstacles can then be written
as:

cobs(pobs, robscr , n
obs
cr ) = [xobscrj , y

obs
crj , r

obs
crj ],

∀ j ∈ [0, ncobs ] (22)

Thus, the vector of obstacle collision constraints and
the casualty collision constraints can be formulated
as:

[colobs(cr , cobs)]+ = 0̄

[colcas(cr , cc)]+ = 0̄ (23)

Then we can include this collision constraint formulation as
equality expressions such that [col]+ = 0 means that the
collision constraint is satisfied.

APPENDIX C
TRANSFORMING HiDO-MPC INTO A NLP PROBLEM
To transform our finite horizon OCP problem into a
NLP problem formulation, we implement the direct single-
shooting technique. We define the NLP decision variable u
along the finite horizon N as:

u = [u|0, · · · ,u|N−1] (24)

The robot state trajectory X r along the horizon N can
be explicitly expressed as a recursive function of the control
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TABLE 1. The optimal cost function weight values of each evaluated MPC controller obtained via Bayesian Optimisation.

trajectory using the robot’s dynamic function.

Xr
= [xr

|0, · · · , x
r
|N−1]

= F(u, x|0)

where:

x0 = xr
|0 (25)

The corresponding objective function w.r.t. current stage,
JsN is a combined function of the three objective function
components, F1,F2,F3, and the control decision variable u
can be expressed as:

JsN =
N−1∑
k=0

J s(F1(xR|k , x
c),F2(xr|k , x

c),F3(xr|k , x
c),u|k ),

(26)

where:

F1(xr|k , x
c) = d(pr (xr

|k ),H (xc))

F2(xr|k , x
c) = 1(φr (xr

|k ), φ
t (xc))

F3(xr|k , x
c) =

∥∥∥pr (xr|k )− pt (xc))
∥∥∥2

The parameters H , φt , and xt can be derived explicitly as a
function of the casualty states, xc. Thus, the function can be
simplified and written as:

JsN =
N−1∑
k=0

J s(u|k , xr|k , x
c). (27)

The equality constraints are formulated from the collision
avoidance constraints (see subsection IV-D), and can be re-
expressed as:

C(cr (xr , rrcr , ncc ), cc(xc, rccr , ncr ),
cobs(pobs, robscr , n

obs
cr )) = 0 (28)

For all the robot state trajectory prediction xr along the finite
horizon N , these constraints can be written as:

CN (u, xr0, r
r
cr , ncr , x

c, rccr , ncc ,

pobs, robscr , n
obs
cr , k) = 0,

∀ k ∈ [0,N − 1] (29)

Thus, from the objective function, Eq. 27, and the con-
straint equality function, Eq. 29, the parametric NLP optimi-
sation problem can be written as:

min :
u

JsN (u, ξ )

subject to: CN (u, ξ ) = 0, (30)

in which ξ is a known parameter vector:

ξ = [xr0, r
r
cr , ncr , x

c, rccr , ncc ,p
obs, robscr , n

obs
cr , k] (31)

APPENDIX D
IMPLEMENTATION COST FUNCTIONS IN COMPARED
METHODS (Adapted FROM STATE OF THE Art)
SMPC: This approach uses the same cost function compo-
nents, F1,F2,F3, as HiDO-MPC. However, in this method,
the three objective function components are independently
executed in a sequential order that corresponds to the
subsequent-tasks (see IV-A). These sequential objective func-
tions can be written as:
• Objective Sequence 1

JS1N =
N−1∑
k=0

W S
1 F1 +W

S
2

∥∥u(·)− ut (·)
∥∥2
R (32)

• Objective Sequence 2

JS2N =
N−1∑
k=0

W S
3 F2 +W

S
4

∥∥u(·)− ut (·)
∥∥2
R (33)

• Objective Sequence 3

JS3N =
N−1∑
k=0

W S
5 F3 +W

S
6

∥∥u(·)− ut (·)
∥∥2
R (34)

BMPC: In contrast to HiDO-MPC and SMPC, BMPC
approach uses a single weighted combination function of
all three cost function components, F1,F2,F3, to generate a
single robotmotion behaviour. This BMPCobjective function
can be written as:

JBN =
N−1∑
k=0

WB
1 F1 +W

B
2 F2 +W

B
3 F3

+WB
4

∥∥u(·)− ut (·)
∥∥2
R (35)

VMPC: This method is a baseline of generic MPC imple-
mentation for controlling a mobile robot. This approach uses
a simple objective function that can be written as:

JVN =
N−1∑
k=0

WV
1

∥∥x(·)− xt (·)
∥∥2
Q

+WV
2

∥∥u(·)− ut (·)
∥∥2
R (36)

The implementation of these three controllers in compari-
son to the proposedHiDO-MPC controller in the optimisation
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FIGURE 14. Flowcharts illustrate the implementation of different MPC controllers: (a) HiDO-MPC, (b) SMPC, (c) BMPC and VMPC.

framework is illustrated through the flowcharts in Fig. 14.
Flowchart (a) demonstrates the implementation of the hier-
archical decomposed-objective approach of the HiDO-MPC.
In contrast, flowchart (b) shows the implementation of the
sequential execution of the three subsequent tasks of the
SMPC. Lastly, flowchart (c) illustrates the generic MPC
implementation used for the BMPC and VMPC methods.

APPENDIX E
DETAILED EXPERIMENTAL SETUP
A. OBSTACLES DENSITY EXPERIMENTS
In this experimental setup, we investigate the performance of
each controller when executing the task in environments with
different obstacle density distributions.

Details of the experimental setup are described as follows:

• In total, we generate 3 [densities]× 600 [samples] envi-
ronment setups.

• Each environment consists of a casualty with fixed pose
in the centre of the map, a ResQbot with a random
initial pose, and a set of obstacles which are uniformly
distributed around the casualty in a circular pattern.

• We evaluate three different obstacle density levels:
low, medium and high, having 5, 10, and 15 objects,
respectively.

• The collision geometry of each obstacle is modelled as
a circle with a radius of 35 cm.

• Obstacles are fixed and the minimum distance between
the obstacles is 1m, to ensure execution feasibility.

• The obstacles are uniformly distributed around the casu-
alty within a 4.5m radius from the centre (i.e. the casu-
alty position).

• The robot’s initial pose is randomly generated with the
following constraints:

– The robot’s initial position is randomly sampled on
a circle of fixed radius (r = 4.5m) centred on the
casualty (i.e. centre of the map).

– The robot’s initial orientation φinit is uniformly
sampled from [−π, π].

Figure 15 shows examples of generated environments with
three different obstacle density levels.

B. STATE ESTIMATION ERROR AND CONTROL
PERTURBATION EXPERIMENTS
MPC controllers generate optimal control signals based on
the current robot pose provided by the state estimation
module, and send these control signals to the robot via the
low-level controller module (i.e. linear and angular velocity
controllers). In reality, the state estimation and low-level
controller modules are imperfect. Inaccuracies present in the
state estimation are inevitable, and are mostly due to the sen-
sor measurement errors. Controller imperfections are usually
caused by inaccuracies in the control signal transmission or
environmental effects inherent to the real physical system.

We take into account these sources of uncertainties occur-
ring in the physical system, by modelling them within the
simulation experiments. We then evaluate the controller per-
formances in these situations based on the failure ratio metric.

State Estimation Error: We model the state estimation
error to simulate the uncertainty of the state estimation mod-
ule in the real robot perception system. This is achieved by
adding noise to the corresponding elements of the robot’s
state vector, x = [x, y, φ]ᵀ. We denote the state estima-
tion error vector as E , where each component Ei is mod-
elled as a stochastic variable with a normal distribution
Ei ∼ N (µi, σ 2

i ), where i is the index the vector elements.
We design several experiments by selectively applying Ei to
corresponding elements of the state vector xi, in order to
analyse the contribution of different noise types. The state
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FIGURE 15. Samples of generated environments with three different obstacle density levels: (a) low density, (b) medium density, and (c)
high density.

TABLE 2. Different combinations of the state estimation error and control perturbations applied in the simulation experiments. The values presented in
the table are chosen to represent the sensor measurement errors and the controller imperfections in real robot system.

FIGURE 16. The illustration of the narrow corridor experiments
conducted in this study. In these experiments, we implement the MPC
controllers for approaching casualties in an environment in which the
robot’s manoeuvrability is highly restricted.

estimation with uncertainty is calculated as:

x̂ ∼ x+ E (37)

where: x̂: state estimation vector with uncertainty,
x: actual value of the state estimation vector,
E : state estimation error.
Control Perturbation: In a differential drive mobile robot

system such as ResQbot, imperfections in the dynamics

TABLE 3. Different combinations of initial robot pose and the target
casualty pose used in the 1.8 m-wide corridor experiments (see Fig. 16).

model could occur due to non-uniform terrain friction, wheel
slippage or transmission imperfections. In this experiment,
we simulate the controller imperfections as a perturbation
of the control signal proportional to the calculated optimal
control output. This perturbation corresponds to each element
of the control decision vector u = [v, ω]ᵀ. We denote the
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FIGURE 17. A complete trajectory comparison generated in simulation by four different MPC methods (HiDO-MPC, SMPC, BMPC, and VMPC), in
all corridor experiment scenarios [S1 − S9].

perturbation gain asG, where each component of the vectorGi
is modelled as a stochastic variable with a normal distribution
Gi ∼ N (µi, σ 2

i ), and represents the gain applied to each
corresponding element of the control decision vector ui. The
perturbed control decision vector is calculated as:

uexe ∼ (1+ G)ucal (38)

where: uexe: perturbed control signal,
ucal : calculated optimal control signal,
G: control perturbation gain,
To examine the contributions of the above-mentioned

uncertainty factors, we perform the following steps:
• We use the same environment setups as for the exper-
iments described in the Appendix E-A, to conduct the
uncertainty evaluation scenarios.

• We evaluate 15 different experimental scenarios, each
using a different combinations of uncertainties applied

to different elements of the state vector or the control
signal, presented in Table 2.

• For each uncertainty combination, we conduct the same
number of experimental sets, as in the obstacle density
experiments (i.e. 600 experimental trials for each den-
sity, with random initial robot pose and random obstacle
distribution).

• We then evaluate the performance of the HiDO-MPC in
comparison to SMPC, BMPC, and VMPC, by calculat-
ing their failure ratios.

C. EXECUTION TIME COMPARISON
Execution time performance is calculated based on the
required time for each evaluated controllers to navigate
ResQbot from its starting pose to the target pose. This eval-
uation is subject to the main criteria, alignment and head-
ing error thresholds (see Section V-B), meaning that the
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FIGURE 18. Complete quantitative experimental results showing both simulation and real robot experiments from all corridor
experiment scenarios [S1 − S9].

execution time is only considered when the target pose has
been achieved successfully.

Since each initial configuration is random, the execu-
tion time for individual configurations cannot be compared
directly. Therefore, we perform the execution time compari-
son for other controllers, in each independent experiment, as
the ratio with respect to the HIDO-MPC execution time as a
baseline.

D. NARROW CORRIDOR EXPERIMENT
In this experimental scenario, we compare the performance
of the MPC-based controllers when approaching a casualty
in a narrow corridor environment. This experimental sce-
nario is conducted to evaluate the performance of each con-
troller when the robot’s manoeuvrability is highly restricted
(depicted in Fig. 16). To ensure the feasibility of the task,
we restrict the scenario in two ways: (i) the casualty pose is

39676 VOLUME 9, 2021



R. P. Saputra et al.: Hierarchical Decomposed-Objective Model Predictive Control for Autonomous Casualty Extraction

FIGURE 19. Normalised cost over Bayesian Optimisation iterations during
the weight optimisation process (W H , W V , W B and W S ) for HiDO-MPC,
SMPC, BMPC, and VMPC.

restricted such that there is sufficient space for the robot to
execute the approach safely, (ii) there are no other obstacles,
except the corridor wall, that could block the robot from
reaching the casualty.

In total, nine different narrow corridor scenarios are con-
sidered. Each scenario presents a combination of three ini-
tial robot poses and three casualty poses, within a narrow
1.8m-wide corridor. Table 3 summarises the narrow corridor
scenarios.

APPENDIX F
COMPLETE CORRIDOR EXPERIMENT RESULTS [S1 − S9]
Fig. 17 shows all the trajectories generated by each MPC
approach (i.e. HiDO-MPC, SMPC, BMPC, VMPC), in all
corridor experiment scenarios based on experimental setup
described in Appendix E-D.

Fig. 18 presents the complete results of the quantitative
evaluation of all corridor experiments scenarios, including
simulation and real robot experiments.

APPENDIX G
HYPER-PARAMETER TUNING RESULTS
A. TUNING MPC WEIGHTS VIA BAYESIAN OPTIMISATION
To find the optimal weighing coefficients for each MPC
method (WH , WV , WB and W S ), we use Bayesian Optimi-
sation (BO) as presented in [62], as it is a sample-efficient
global optimisation method.

We perform 100 iterations of BO in the corridor exper-
iment setups (see Appendix E-D), using the default BO
hyper-parameters presented in [63]. Each iteration consists
of evaluating the current weight coefficient values for each
MPC approach, on the training setup, in which we used the
perturbed versions of test experiment scenarios.We define the
cost for BO optimisation as the sum of the execution times
over all 9 narrow corridor experiment scenarios. We then
normalise the value over the maximum cost during the opti-
misation process. Fig. 19 shows the normalised cost function
for eachMPC approach over BO iterations, during the weight

FIGURE 20. Comparison of average computation times for all four
different MPC-based methods, using different prediction horizon lengths.

optimisation process; optimising WH , W S , WB, and WV for
HiDO-MPC, SMPC, BMPC, and VMPC, respectively.

The optimisation results show that the optimisation pro-
cesses converge for all evaluated MPC controllers. As we can
see in Fig. 19, the convergence times of the weight optimi-
sation process is closely correlated to the number of weight
components in each cost function. The weight optimisation
process for the VMPC cost function converges in less than 10
iterations, whereas HiDO-MPC cost function requires more
than 40 iterations before it converges, and it reaches a lower
overall value. Table 1 shows the optimal weight values for
each of the MPC type cost functions, obtained via Bayesian
Optimisation.

B. OPTIMAL MPC HORIZON
We compare the MPC computation times over five different
prediction horizon lengths N = {15, 20, 25, 30, 35}, in order
to confirm that the MPC frameworks can be implemented
in real-time. The observation results show an almost linear
correlation between the computation time and the number of
prediction horizon, N, where VMPC and SMPC are slightly
faster than HiDO-MPC due to their simpler cost function
evaluations (see Fig. 20). Any of the MPC approaches with
any of the prediction horizons have a computation time fast
enough to be implemented in real-time.
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