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ABSTRACT As an eco-friendly travel mode, bike-sharing has prevailed around the world. However,
the systems are imbalanced due to the asymmetric spatial and temporal distribution of user demand. Station
prioritization strategies are needed to rebalance more shared bikes for more important stations. This paper
proposes an evaluation method of station importance in dynamic bike-sharing rebalancing. Firstly, a short-
term demand prediction model is applied to capture the temporal and spatial characteristics of bike-sharing
trip data and predict bike-sharing demand at the station level. Based on the prediction results, the method of
determining rebalancing quantity is proposed with consideration of bike-sharing usage throughout the rebal-
ancing period. Then, three criteria are employed to evaluate the importance of bike-sharing stations, including
rebalancing quantity, closeness to inventory threshold, and distance from the key station. An entropy-based
Technique for Order of Preference by Similarity to the Ideal Solution (TOPSIS) approach is proposed to
weigh different criteria and evaluate station importance. Furthermore, the experiments on bike-sharing data
from Nanjing City demonstrate the effectiveness of the proposed methods. This research is helpful for
operators and managers to dynamically rebalance shared bikes with high efficiency and improve the service
quality of bike-sharing systems.

INDEX TERMS Bike-sharing, short-term demand prediction, rebalancing demand, station importance,
TOPSIS.

I. INTRODUCTION
Bike-sharing systems bring new opportunities for urban
development. They are able to help reduce motorized traf-
fic, curtail pollutant emissions, and promote socially equi-
table transportation systems [1], [2]. Bike-sharing services
also significantly improve the flexibility and accessibility of
transportation resources for travelers and offer an attractive
solution to the ‘‘one/last mile problem’’ in multimodal trans-
portation. More than 2000 bike-sharing systems are oper-
ated globally, and more than 300 systems are in planning
or under construction [3]. Bike-sharing systems can be cat-
egorized into docked bike-sharing and dockless bike-sharing
systems [2], [4]. The docked bike-sharing systems have ded-
icated docking stations where bike rental and return occur.
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In contrast, the dockless bike-sharing systems allow users to
rent and park shared bikes in the physical or geo-fencing des-
ignated parking areas via mobile phone applications [2]. Both
types of bike-sharing systems have improved urban mobility.
However, these systems are imbalanced due to the asym-
metric spatial and temporal distribution of user demand [5].
During specific periods of a day, some stations might run out
of bikes (deficit stations) while some have no space available
to store the returned bikes (surplus stations) [6]. In light of this
situation, effective measures are needed to rebalance bikes
and optimize bike distribution.

The approaches to bike rebalancing can be divided into
user-based rebalancing and operator-based rebalancing [7].
The user-based rebalancing approaches incentivize users to
rent or return bikes in specific stations by offering monetary
incentives [7]. However, the effectiveness of station rebalanc-
ing is affected by the willingness of user participation, and
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sometimes incentives do not bring desired economic ben-
efits. Therefore, the operator-based rebalancing approaches
are more widely adopted to rebalance shared bikes [8].
Performed by systems’ service staff, the operator-based
bike-sharing rebalancing is modeled as a many-to-many
pickup-and-delivery vehicle routing problem (M-M PVRP),
as introduced by Berbeglia et al. [9]. In the process of
operator-based bike-sharing rebalancing, vehicles start from
the depot with initial loads of bikes to pick up or drop off
a certain number of bikes at surplus or deficit stations and
finally return to their original depots [6].

In general, bike rebalancing optimization can be classified
into static optimization and dynamic optimization [10]. For
static optimization, the rebalancing operation is performed
during the night, assuming that the demand for bikes is negli-
gible. This optimizationmethod is used to arrange bikes in the
system for the next working day. The dynamic optimization
method is used during the day, and the routes need to be
updated regularly to handle varying demand. Effective rebal-
ancing management is quite difficult due to the limitation of
the operators’ ability to redistribute bikes. Especially, in the
dynamic rebalancing process, the demand varies in the day-
time, and intervention resources such as operation time are
limited. Therefore, station prioritization strategies are needed
to service certain stations that are more important in the
rebalancing process. Important stations are defined as stations
that play a more important role than other stations in the
network and affect the network structure and function [11].
Evaluating station importance can help the operators decide
which station should be prioritized and implement effective
rebalancing [12]. In order to improve the decision-making
process in bike-sharing rebalancing, this research proposed
a station importance evaluation method based on a multi-
criteria decision-making (MCDM) approach. The contribu-
tions of this research are summarized as follows:

• A short-term demand prediction model is applied to
capture the temporal and spatial characteristics of
bike-sharing trip data and predict bike-sharing demand
at the station level. Exogenous factors such as land use
information, weather, and users’ personal information,
are included in the prediction model.

• Based on the bike-sharing demand prediction results,
the method of determining rebalancing quantity is pro-
posed. This method also considers bike-sharing usage
throughout the rebalancing period.

• Three criteria are employed to evaluate the importance
of bike-sharing stations, including rebalancing quantity,
closeness to inventory threshold, and distance from the
key station. The key station is defined as the station that
is being served or to be served by rebalancing vehicles.
The entropy-based technique for order of preference by
similarity to the ideal solution (TOPSIS) approach is
proposed to evaluate station importance.

The key contents of this paper are structured as follows.
Section 2 reviews the literature on bike-sharing demand

prediction and bike-sharing station prioritization. The meth-
ods to evaluate station importance are presented in detail in
Section 3. Experiments and discussion results are conducted
in Section 4. Finally, conclusions and future research direc-
tions are summarized in Section 5.

II. LITERATURE REVIEW
A. SHORT-TERM BIKE-SHARING DEMAND PREDICTION
Short-term demand prediction is important for managing
transportation infrastructure and enhancing the reliability and
accessibility of transportation systems. Accurate station-level
bike-sharing demand prediction is necessary for the dynamic
rebalancing process [2], [13], [14]. Generally, data-driven
bike-sharing prediction can be categorized into parametric
approaches and nonparametric approaches [15].When apply-
ing statistical parametric techniques, bike-sharing demand
prediction is usually defined as a time series predic-
tion problem. The auto-regressive moving average model
(ARMA) [16] and the auto-regressive integrated moving
average (ARIMA) model [17] are well-known statistical
parametric methods, as well as its diverse variants. For
instance, using Dublin’s bike-sharing data, Yoon et al. [18]
put forward an improved ARIMAmodel, considering signals
from neighboring stations and seasonal trends to estimate
available bicycles at each station. Other statistic models have
been widely used, such as the Bayesian network [19] and the
Markov Chain model [20]–[22]. Although statistical models
are easier to interpret, they may have limitations in predic-
tion accuracy, data accessibility, and computing power [23],
compared to nonparametric machine learning models. Unlike
the statistical methods, machine learning automatically learns
the relationship between the inputs and outputs [24] without
making strong assumptions about the data structure. Various
machine learning models have been applied for bike-sharing
prediction, such as artificial neural networks (ANN) [25],
support vector regression (SVR) [26] and regression trees
(RT) [27]. Using a bike-sharing dataset from Washington
D.C., Yin et al. [28] applied SVR, random forests (RF), and
gradient boosted tree (GBT) to predict usage of bike-sharing
system in an hour. They suggested that the RF method per-
forms the best in terms of both prediction accuracy and
training time.

Recently, deep learning has attracted significant research
interest due to its ability to extract latent features and model
nonlinear relationships in the raw data. Deep learning has
achieved great success in many areas, such as language pro-
cessing and image recognition [29], [30]. In the bike-sharing
research area, some researchers have applied deep learning
to forecast short-term travel demand. Lu and Lin [31] input
the rental records of the past time into Recurrent Neural Net-
work (RNN) to predict the bicycle rental in the coming day.
Pan et al. [32] used the deep long short-termmemory (LSTM)
sequence learning model to predict the rentals and returns at
a single station based on historical trip data, weather data,
and time data. Xu et al. [33] developed an LSTM model
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to predict the dockless bike-sharing demand at the traffic
analysis zone (TAZ) level in different prediction horizons.
Additionally, Ke et al. [34] employed convolutional neural
networks (CNN) to predict bike-sharing inflows and outflows
in each region based on historical trajectory data, weather
and events of each area in a city. After splitting the whole
city into grids with a predefined grid size and calculating
the bike-sharing demand for each grid, Zhang et al. [35]
applied CNN for large-scale spatio-temporal bike-sharing
prediction. To capture spatial and temporal dependencies,
researchers began to combine both networks and proposed
a convolutional LSTM network (Conv-LSTM). Specifically,
Du et al. [36] integrated irregular CNN and LSTM units to
capture the features of spatial-temporal traffic flow and pre-
dict passenger traffic flows in different hours of a day based
on the historical passenger flows and external factors such
as weather, traffic control, sports events, and vocal concert.
Ai et al. [37] proposed a Conv-LSTM model to predict the
short-term distribution of the dockless bike-sharing systems
by considering spatial-temporal variables and time-series
variables. Ljubenkov [38] applied a convolutional neural net-
work (CNN) to identify the spatial structures of bike flows
and RNN-LSTM to find and predict its dynamic patterns.

However, when used to predict bike-sharing at the sta-
tion level, CNN can only reflect inter-station relationship
by geographical distance [39]. Some researchers attempted
to apply deep learning architecture to graph data struc-
ture [39]–[42]. Taking bike stations as nodes, the bike-
sharing network can be represented in a graph. Some
researchers describe bike riding relationships in the complex
heterogeneous spatial-temporal graph and used graph con-
volutional neural network (GCN) to capture non-Euclidean
structures. Kim et al. [39] constructed a GCN prediction
model to predict hourly bike-sharing demand at the station
level by incorporating spatial characteristics, temporal pat-
terns, and global variables (weather and weekday/weekend).
Yoshida et al. [40] proposed a relational graph convolutional
network-based method to predict the demand at the station
level. Guo et al. [41] built a spatial-temporal graph neural
network (ST-GNN) to model and predicted citywide bike-
sharing demand. They used GCN to capture the spatial corre-
lation and gated recurrent units (GRU) to capture the temporal
dependency. Xiao et al. [42] developed the ST-GCNmodel to
predict the picking up and returning demand of 186 stations
for the Wenling public bike-sharing program. In their study,
the ST-GCN model outperformed the RNN-based models in
prediction accuracy and computation efficiency.

Previous studies have provided valuable insights for bike-
sharing demand prediction. The combination of GCN and
LSTM enables to capture the temporal characteristics and
the bike-sharing network structure characteristics simultane-
ously. However, related researches have been insufficient.
Few pieces of research make full use of multi-source het-
erogeneous data such as weather conditions, point of inter-
est (POI) distribution and users’ personal attributes [39].

B. STATION PRIORITIZATION IN BIKE-SHARING
REBALANCING
Many studies have explored bike-sharing rebalancing prob-
lems and proposed solutions. However, very few studies
dealt with station prioritization during the rebalancing pro-
cess. As shown in Table 1, rebalancing quantity, closeness
to inventory threshold, and distance from the key station
are the features commonly used to evaluate stations. Some
studies made priority choices according to a single feature
of stations. Xu et al. [43] proposed a dynamic scheduling
model based on the multi-similarity inference model and
adopted an enhanced genetic algorithm. In this algorithm,
the hybrid crossover strategy is improved to give priority
to stations that have larger user demand. To produce rebal-
ancing plans for large-scale real-world bike-sharing systems,
Mellou and Jaillet [44] gave priority to stations that need
rebalancing to become leader stations. After all the leader
stations were selected, mini-groups of stations were created
by assigning each station to its closest leader, each of which
is represented by its leader. Federico et al. [45] defined
survival time as the shortest period of time after which the
inventory state of a station exceeds a predefined threshold.
They calculated survival time using historical usage data and
assigned priority to the stations with the shortest survival time
in the dynamic short-term relocation strategy. As indicated by
Kadri et al. [46], only considering one feature of sta-
tions might mislead vehicle sequences’ computation in some
instances. Kadri et al. [46] compared two rebalancing pri-
oritization strategies for the greedy search algorithm. The
first strategy considered the state of unbalance and required
travel time while the second considered just the required
travel time. The results showed that the algorithm using the
strategy that considers both aspects outperformed the one
using the second strategy. Based on the previous research,
Brinkmann et al. [47] used a safety buffer to decide whether
a station is imbalanced. After serving an imbalanced sta-
tion, its nearest imbalanced station would be served first.
Benjamin [12] used a one-step policy improvement method
to decide whether a specific station should be reset. The
numerical experiments showed that their policy outperformed
those built on simple prioritization rules. It indicated that a
proper policy of station prioritization should be conducted
based on multi-criteria.

As shown in Table 1, few researches provided insight
into station importance evaluation. When more than one fea-
tures are adopted, it is common to see that station impor-
tance is decided simply or considered separately. Moreover,
the weights for each feature have not been explored.
Shen et al. [16] illustrated that farther rebalancing distance
brings higher rebalancing costs. As the basis for route
optimization, the weighted path between two stations was
calculated by dividing the station’s imbalance by rebalanc-
ing distance. Jan et al. [48] proposed lookahead policies and
defined three different target fill levels for stations according
to inventory. A station is assumed to be imbalanced if its
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TABLE 1. Summary of the characteristics of station prioritization for bike-sharing rebalancing in the existing studies.

fill level violates safety buffers. Considering the distance,
the vehicle will serve the nearest imbalanced station in every
decision state. Zu [49] proposed two priority selection meth-
ods to generate candidate initial solutions. The first one pri-
oritized the station with the most considerable penalty cost
reduction and the second one chose the station with the lowest
traveling cost.

However, none of the aforementioned research combined
all three features and made a comprehensive evaluation of
station importance. Moreover, multi-criteria methods have
not been used to evaluate bike-sharing station importance.
To fill these research gaps, this paper employs rebalancing
quantity, closeness to inventory threshold, and the distance
from the key station as three criteria to evaluate bike-sharing
stations. The entropy-based TOPSIS approach is applied.
TOPSIS is among the most popular MCDM methods, where
alternatives are evaluated based on Euclidean distances from
an ideal and a nonideal solution [50]. This approach is helpful
for operators to weigh various criteria and rank different
alternatives [51].

III. METHODOLOGY
A. STUDY AREA AND DATA SOURCES
As the capital of Jiangsu province, Nanjing has long
been ranked as the second-largest commercial center in
the East China region. In order to ease traffic pressure
and bring citizens great convenience, Nanjing launched
docked bike-sharing programs in 2013. As of 2017, Nan-
jing had approximately 60,000 docked shared bikes and

450,000 dockless shared bikes [52]. In Fig. 1, the area cir-
cled by the Inner-ring Road in Nanjing is the main urban
area, taking Xinjiekou Metro Station as the center. Previous
research on docked bike-sharing in Nanjing has indicated
a significant imbalance of temporal and spatial demand for
bike-sharing trips in the main urban area [53]. Therefore,
considerable efforts are needed to redistribute bike-sharing
to keep a high level of service quality in this area. In this
research, 49 stations within 13 TAZs around the city center
(Xinjiekou Metro Station) are selected. Fig. 1 shows the
bike-sharing station distribution in the study area.

The information of bike-sharing trip records, users’ per-
sonal attributes, POI distribution and weather conditions are
used for bike-sharing demand prediction. The bike-sharing
dataset is provided by Nanjing Public Bicycle Company,
involving bike-sharing trip records, bike-sharing station
information and users’ personal attributes. There are 350,701
bike-sharing trips from 1st Sep. 2017 to 30th Sep. 2017.
As shown in Table 2, each bike-sharing trip records user ID,
bike ID, rental time, rental station, return time and return
station. When pre-processing data, trips with the following
properties have been removed: (1) travel distance shorter than
100 m or longer than 5 km [54]; (2) travel duration less
than 30 seconds or longer than 2 hours [55]; (3) incomplete
information. Table 3 shows the information of docked bike-
sharing stations, including station ID, longitude and latitude.
Bike-sharing users’ personal attributes, include age, gender,
residency status. In addition, land use data contains POI
and road density of each bike-sharing station with a radius
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FIGURE 1. The selected bike-sharing station distribution map.

TABLE 2. A sequence of docked bike-sharing transaction records.

TABLE 3. The information of docked bike-sharing stations.

of 300 m [56]. POIs are classified into working POIs, resi-
dential POIs, transport POIs, and other POIs [52] collected
by using the Amap API. The road shapefile is downloaded
from OpenStreetMap and the road density is calculated by
using ArcGIS. Information of historical weather is obtained
from Weather Underground [57].

To evaluate station importance, three criteria, including
distance from the key station, rebalancing quantity and close-
ness to inventory threshold, need to be determined. Specif-
ically, the longitude and latitude of the key station and
bike-sharing station are used to calculate the distance from
the key station. Bike-sharing demand prediction results, sta-
tion capacity, and station inventory will be used to calculate
rebalancing quantity. Station capacity and station inventory
will be used to calculate closeness to inventory threshold.
The information of station capacity and station inventory is
extracted from historical trip records.

B. THE FRAMEWORK OF STATION IMPORTANCE
EVALUATION
The process of the dynamic rebalancing operation resolves
variations of bike-sharing usage demand from time to time.
Previous research has applied a rolling horizon to deal with
changing demand [10]. As shown in Fig. 2, through a rolling
horizon, the rebalancing operation is divided into several
periods, transforming the dynamic rebalancing problem into
several stages of static rebalancing problems [10]. Firstly,
the initial conditions of the bike-sharing system are estab-
lished, and the durations of the prediction and control peri-
ods are defined. Then, the first prediction period is solved
and rebalancing plans are operated during the first control
period. At this time, user demand and the state of stations
are updated. The end of the control period is the start of
next prediction period. Using information from the previous
period, the rebalancing problem is solved again. Notably, the
station that is being served or to be served by rebalancing
vehicle at the end of the last operation period, is the key
station of the next operation period. At the first stage of
rebalancing, the depot is the key station, which is the starting
point of rebalancing vehicles. It is assumed that the depot
is the city center (Xinjiekou Metro Station). When the new
rebalancing comes to the final period, the whole rebalancing
procedure is completed.

FIGURE 2. The dynamic rebalancing process based on the rolling horizon.

In the rolling horizon, the bike-sharing demand is pre-
dicted, then the station importance is evaluated at every rebal-
ancing stage. The updates of station inventory and key station
provide accurate information for the rebalancing operation,
as shown in Fig. 3.

1) BIKE-SHARING DEMAND PREDICTION
Long short-term memory (LSTM) has been widely used in
bike-sharing demand prediction to capture the temporal char-
acteristics of time series data [58], [33]. However, the bike-
sharing network structure characteristics and the impact of
the states of station neighbors were not considered in these
researches. In the previous research, the graph convolution
network (GCN) was proposed to handle data with graph
structures, such as social network data and meteorological
station network measurements [59]. In this paper, the GCN
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FIGURE 3. Bike-sharing demand prediction and station importance
evaluation based on the rolling horizon.

model is embedded in the LSTM model to predict bike-
sharing demand. In this GC-LSTM model, LSTM is applied
to capture the temporal characteristics of bike-sharing trip
data at the station level. GCN is used to extract the structural
characteristics of the bike-sharing network by performing
convolution operations on the hidden layer state and consider-
ing the influence of the neighbors’ hidden state on the hidden
state of the node. Fig. 4 shows the structure of GC-LSTM.
The following equations explain the meaning of notations
in Fig. 4.

FIGURE 4. The network structure of GC-LSTM model.

This model has three gates: the forget gate ft , the update
gate ut , and the output gate ot . The forget gate ft is to decide
what information will be dropped from the previous cell state.
The value 0 indicates that the information will be dropped,
and 1 means the information will be reserved. In equation (3),
c̃t is generated by a tanh layer and contains the new candidate
vector. As depicted in equation (4), the cell state can be
updated using the update and the forget gates to calculate a
weighted average of the candidate c̃t and ct−1 from the last
timestep. Then, the hidden layer vector ht is decided by the
output gate ot and the updated cell ct in equation (6) [60]. The

last hidden cell state will be passed to an activation function
to get the final prediction normally.

ft = σ (Wf At +
K∑
k=0

θhkf Tk L̃t−1ht−1 + bf ) (1)

ut = σ (WuAt +
K∑
k=0

θhkuTk L̃t−1ht−1 + bu) (2)

c̃t = tanh(WcAt +
K∑
k=0

θhkcTk L̃t−1ht−1 + bc) (3)

ct = ft � ct−1 + ut � c̃t (4)

ot = σ (WoAt +
K∑
k=0

θhkoTk L̃t−1ht−1 + bo) (5)

ht = ot � tanh(ct ) (6)

where At represents the adjacency matrix as the input
data at the time t . ht−1 represents the hidden state at
the time t − 1. Wf , Wu, Wc, Wo and bf , bu, bc, bo
are the weight and bias matrix of three gates in GC-
LSTM.

∑K
k=0 θhkf ,

∑K
k=0 θhku,

∑K
k=0 θhkc,

∑K
k=0 θhkodenote

the parameter vector of the graph convolution.
In this paper, we build a three-layer neural network with

GC-LSTM layers to predict the rental and return demand
of bike-sharing at the station level. This proposed model
can automatically learn the temporal and spatial information
among stations based on the combined structures of LSTM
and GCN. To evaluate the performance of the proposed
model, mean absolute error (MAE) and root mean square
error (RMSE) are used as Lin et al. [61] did:

MAE =
1
n

n∑
i=1

|xi − x̂i| (7)

RMSE =

√√√√1
n

n∑
i=1

(xi − x̂i)2 (8)

where xi is the observed value, x̂i is the predicted value, and
n is the number of testing samples.

2) STATION IMPORTANCE EVALUATION
a: CRITERIA DETERMINATION
In this paper, station importance is evaluated based on
multi-criteria, which are rebalancing quantity, closeness to
inventory threshold, and distance from the key station. This
section shows the definitions and calculation methods of
these criteria.
Rebalancing quantity: In previous research, rebalancing

quantity is entirely decided by the prediction result without
consideration of inventory [43], or it should serve stations to
a fixed fill level (50% in O’Mahony’s research [62]) at the
moment of rebalancing. However, in dynamic rebalancing,
some stations that have been served may still have bike sur-
pluses or bike deficits during the peak hour. This is because
bike-sharing demand changes quickly and varies from time
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to time, especially during peak periods. To tackle with this
problem and improve rebalancing efficiency, this research
considers the demand variation between rebalancing stages.
It aims to reduce unmet demand throughout the rebalancing
process. Based on demand prediction, station inventory and
station capacity, the calculationmethod of bike-sharing rebal-
ancing quantity is introduced.

The rebalancing quantities are calculated in each stage
of the rolling-horizon rebalancing operation. Let t0 represent
the starting time of rebalancing operation, τ represent the
duration of rebalancing operation. The horizon divides the
operation into n stages, with each stage having a duration of l.
Different stages are described as and the time intervals are
[t0, t0 + l], [t0 + l, t0 + 2l], . . . , [t0 + (n− 1)l, t0 + nl]. Let
initk,i represent the initial number of bikes available at the
station i at the stage ek . The number of bikes available at the
station i at the stage ek can be described as:

availi,k (t) = max{0, initi,k − vi,k · (t − t0 − kl)}

(t0 + kl < t < t0 + τ, k = 0, 1, . . . , n− 1) (9)

where vi,k represents the difference between the rental
rate and return rate at the stage ek . The equation is as
follows:

vi,k =
N pred,rent
i,k − N pred,return

i,k

τ
(10)

where N pred,rent
i,k and N pred,return

i,k respectively represent pre-
dicted rental quantities and return quantities at the station i
during the period [t0 + kl, t0 + τ ].

Considering the uncertainties in users’ bike renting and
returning, the upper and lower limits of the rebalancing
threshold should be set for each station. Let Ci represents the
maximum station capacity. Generally, the upper and lower
limits of the rebalancing threshold of station i are set to
0.2Ci and 0.8Ci respectively, according to previous research
and the operational experience [63], [64]. Let twi,k represent
the station warning time in the current rolling period. This
parameter means that at the moment twi,k , the number of
bikes available at the station i reaches the upper/lower limit
of the rebalancing threshold. twi,k can be calculated as:

twi,k

=


t0 + kl +

initi,k−0.2Ci
vi,k

, vi,k > 0, 0.2Ci < initi<0.8Ci
t0 + kl +

initi,k−0.8Ci
vi,k

, vi,k < 0, 0.2Ci < initi<0.8Ci
t0, otherwise

(11)

For stations that need to be reset in the rolling horizon, the
rebalancing quantity of bikes at stations can be depicted
in Fig. 5. The red line represents the number of bikes available
at the station in each period without rebalancing operation.
The green line represents the number of bikes available
at the station in each period with rebalancing operation.
Specifically, this research aims to keep station inventory not

FIGURE 5. Rebalancing quantity of bikes at stations. (a) Rebalancing
quantity for deficit stations. (b) Rebalancing quantity for surplus stations.

exceeding the upper or lower limit of the rebalancing thresh-
old throughout rebalancing stages.

To ensure that the inventory of a deficit station would not
fall below the lower limit of the rebalancing threshold (0.2Ci)
before the end of the rolling horizon, and ensure that the
inventory of a surplus station would not exceed the upper
limit of the rebalancing threshold (0.8Ci). The rebalancing
quantity at deficit station (γ = 0.2) and surplus station
(γ = 0.8) can be calculated by:

Qi,k = vi,k (τ − kl)− initi,k + γCi (12)

Closeness to inventory threshold: A higher level of the close-
ness to inventory threshold means that it is easier to reach the
inventory threshold for these stations and the lack of bikes
or docks is more likely to occur. Therefore, more impor-
tance would be attached to stations with higher closeness to
inventory threshold. Closeness to inventory threshold can be
calculated in equation (13).

ci,k = |
|availi,k,t − 0.2Ci| − |availi,k,t − 0.8Ci|

Ci
|

(k = 0, 1, . . . , n− 1) (13)

where availi,k,t represents the number of bikes available at
station i and at the stage of ek .
Distance from the key station: The distances from the key

station represents the distances between the unserved stations
and the key station. It is notable that the key station is updated
in the process of rebalancing operation. In this research,
it is assumed that the depot is the city center at the first
rebalancing stage. Haversine formulation is used to calculate

VOLUME 9, 2021 38125



M. He et al.: Station Importance Evaluation in Dynamic Bike-Sharing Rebalancing Optimization

distances from the unserved stations to the key station [65].

Di = 2R · arcsin√
sin2(

latk , lati
2

)+ cos(latk ) · cos(lati) · sin2(
lonk − loni

2
)

(14)

where latk , lonk represent the latitude and longitude of the
key station and lati, loni represent the latitude and longitude
of the unserved station i; R represents the earth radius.

b: THE ENTROPY-BASED TOPSIS APPROACH
The TOPSIS method developed by Hwang and Yoon [66] is
an MCDM technique based upon the concept that the cho-
sen alternative should have the shortest distance to an ideal
solution and the farthest distance from a nonideal solution
simultaneously. In this research, an entropy-based TOPSIS
approach is applied to evaluate station importance based on
three criteria. The process to evaluate station importance can
be described in the following steps.
Step 1: is to construct the normalized decision matrix:

nij =
xij√
m∑
i=1

x2ij

, i = 1, 2, . . . ,m; j = 1, 2, . . . , n (15)

where xij is outcome of ith station with respect to the jth

criterion; m is the number of stations to be rebalanced, n is
the number of criteria (n = 3).
Step 2: is to calculate the weighted normalized decision

matrix. An entropy method is used to determine the weight
wj.

Ej = −
1

ln(m)

m∑
i=1

Pij ln(Pij), j = 1, 2, . . . , n (16)

wj =
|1− Ej|∑n
j=1 |1− Ej|

, j = 1, 2, . . . , n (17)

vi,j = wjni,j, i = 1, 2, . . . ,m; j = 1, 2, . . . , n (18)

Step 3: is to determine the ideal solution A+ and nonideal
solution A−:

A+ = {v+1 , v
+

2 , . . . , v
+
n }

= {(max vij|j ∈ J ), (min vij|j ∈ J ′)} (19)

A− = {v−1 , v
−

2 , . . . , v
−
n }

= {(min vij|j ∈ J ), (max vij|j ∈ J ′)} (20)

where J is related to benefit criteria, J = {j = 1, 2, . . . , n|j};
J ′ is related to cost criteria, J ′ = {j = 1, 2, . . . , n|j}.
Step 4: is to determine the Euclidean distance for the ideal

and nonideal solutions of each alternative:

d+i =

√√√√ n∑
j=1

(vij − v
+

j )
2, i = 1, 2, . . . ,m (21)

d−i =

√√√√ n∑
j=1

(vij − v
−

j )
2, i = 1, 2, . . . ,m (22)

Step 5: is to calculate the TOPSIS score:

Scorei =
d−i

d+i + d
−

i

, i = 1, 2, . . . ,m; 0 < Scorei < 1

(23)

where Scorei is the relative distance of the station i from
a nonideal solution, which implies the importance of the
station i. Stations with higher TOPSIS scores should be given
service priorities [11].

IV. RESULTS
In this paper, the rebalancing operation duration is 60 min-
utes, starting at 8 a.m. and ending at 9 a.m. Due to the
variance of real-time demand, the rebalancing operation
should be appropriately adjusted to provide better service
for users. Therefore, station importance needs to be frequent
updated [67], [68]. As suggested by Marte and Kristine [68],
Yu [69] and Feng [70], the horizon is divided into four stages
in this paper, with each stage having a duration of 15 minutes.
The duration of the prediction horizon is set to be 30 minutes.
The next prediction and operation period are activated by the
end of the last operation period, as shown in Fig. 2. Taking the
first stage of the rebalancing operation as an example, exper-
iments in this paper illustrate how to predict bike-sharing
demand based on GC-LSTM models and evaluate station
importance based on the entropy-based TOPSIS method.
With updates of the key station and the station inventory,
the process of applying prediction and evaluation at following
stage will be the same as the first stage.

A. BIKE-SHARING DEMAND PREDICTION
Experiments are implemented using bike-sharing trips on
weekdays, taking data generated in the first twelve days
as the training dataset, data in the following four days as
validation dataset, and data in the last five days as testing
dataset. In each model, two output layers are produced to pre-
dict rental demand and return demand, respectively. To deal
with dimensional problems, the min-and-max normalization
is applied. The hyper-parameters, learning rate, batch size,
and the number of hidden units are searched using a grid
search. Specifically, the learning rate starts from 0.001 and
ends at 0.01 with a step of 0.001; Both the batch size and
the number of hidden units start from 32 and end at 128 with
a step of 32. To prevent overfitting, the criteria are set for
the early stop process. If the MAE on validation does not
decrease by over 0.00001 for more than 10 training epochs,
the model will stop training. The prediction models are coded
by Python. All experiments are implemented on a Windows
10 computer with CPU (Intel(R) Core (TM) i7-8700 CPU @
3.20GHz), 16 GB random-access memory (RAM) and one
NVIDIA RTX 2060 GPU with 6 GB memory.

To testify the performance of GC-LSTM model for bike-
sharing demand prediction in the dynamic rebalancing,
the proposed GC-LSTMmodel is compared with the baseline
models on the real bike-sharing datasets under the same
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parameter settings and coding environment, which are intro-
duced as follows.

• Historical average (HA): It uses the historical average
demand in the same prediction period for prediction.

• Support vector regression (SVR): It transforms the
feature vectors into a linear high-dimensional space
using kernel-based radial basis function. This method
is very effective to replace the complex calculation in
high-dimensional space.

• Extreme gradient boosting (XGBoost): It is an imple-
mentation of gradient boosting decision trees. All fea-
tures are placed into a one-dimensional vector and used
for prediction. It optimizes the loss function through
the second derivative and applies a regularized model to
prevent overfitting.

• Artificial neural network (ANN): It is originated from
the biological neural network (BNN). This method is
able to learn from a set of input-output parameter space
and to approximate functions with high-dimensional
data requiring no detailed information about the system.

• Graph convolutional network (GCN): It is a multi-layer
neural networks operating on graph-structured data. The
convolutional layer enables the network to construct
node embeddings by fusing both features of nodes and
relationships between nodes.

• Long-short termmemory (LSTM): It is a long short-term
memory neural network. As an improved version of
RNN, LSTM can deal with vanishing gradients and
handle complex temporal dependencies.

Table 4 shows the RMSE andMAE of eachmodel in differ-
ent prediction intervals based on 10 times of training results.
For rental demand and return demand, the RMSE and MAE
become smaller when the prediction interval becomes shorter.
The GC-LSTM model with the 15-min interval has the best
performance among the four prediction intervals. Moreover,
the results of model comparison show that the bike-sharing
demand prediction model based on GC-LSTM outperforms
its counterparts. Compared to the LSTM structure, the RMSE
and MAE drop 20.5%, 27.91%, respectively, with an interval
of 15min for rental demand prediction, and 24.69%, 31.82%
for return demand prediction. Notably, the performance of the
GC-LSTM model improves quickly than the LSTM model.
This may because, compared with the LSTMmodel, the GC-
LSTM model captures more fluctuation characteristics in the
bike-sharing graph structure. Similar results can be found
in the research of Zhang et al. [71], the performance of
GCN-based models improved more obvious than LSTM-
based models, as the time interval decreased.

B. STATION IMPORTANCE EVALUATION
The initial inventory and station capacity can be obtained
based on the historical bike-sharing data. Bike-sharing
demand in the next 30 minutes is predicted by the GC-LSTM
model. Rebalancing quantity is decided by bike-sharing
demand, initial inventory and station capacity. Closeness to

TABLE 4. Comparison among prediction models.

inventory threshold is determined by initial inventory and
station capacity. Besides, the distance from the key station
is calculated using haversine formulation. Table 5 shows the
results of three criteria for station importance evaluation.
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After obtaining the values of three criteria at the sta-
tion level, the entropy-based TOPSIS method is employed
to evaluate bike-sharing station importance. The entropy is
employed to weigh the rebalancing quantity, closeness to
inventory threshold, and distance from the key station that
influence station importance.

The decision matrix that combines rebalancing quantity,
closeness to inventory threshold, and distance from the key
station can be obtained from Table 5. The calculation results
are shown in Table 6. The first step in the TOPSIS approach
is to compute the normalized decision matrix using equa-
tion (15). Then, the weighted decision matrix is calculated
by equation (16-18). It is noteworthy that the weighted deci-
sion matrix is obtained by multiplying a normalized decision
matrix by the weight of the three criteria. The ideal and
nonideal solutions are computed by equation (19) and equa-
tion (20). And then, the distances from ideal and nonideal
solutions are calculated by equation (21) and equation (22).
Finally, the ranks of all alternatives (bike-sharing stations) are
computed according to the relative closeness to ideal solution
by equation (23). Table 7 shows the information of the top
10 stations of importance ranking, including Station ID, dis-
tance from ideal and nonideal solutions, TOPSIS score, and
importance ranking.

TABLE 5. The determination of criteria for station importance evaluation.

TABLE 6. The calculation process of the station importance evaluation.

As shown in Table 6, the weights of the three criteria are
computed using the entropy approach. Distance from the key
station has a weight of 52.22%. This consideration plays a

TABLE 7. The results of the top 10 stations of importance ranking.

FIGURE 6. The spatial distribution of station importance evaluation result.

central role in station importance evaluation. Rebalancing
quantity play an important role in the bike-sharing with
24.15% weight, while the lowest importance is associated
with closeness to inventory threshold (23.63%).

The results of the TOPSIS approach in Table 7 showed
that station No.19 is ranked first as it obtained the highest
amount of TOPSIS score (0.8721). This station also had the
shortest distance from an ideal solution (0.0167). The results
also showed that the TOPSIS score for station No. 4 is 0.4163
— the second-highest among all stations. Fig. 6 showed the
spatial distribution of station importance evaluation. Highly
ranked bike-sharing stations should be prioritized in vehicle
routing plan. As Fig. 6 showed, most stations with a high
level of importance aggregated around the key station. One
of the main reasons is that distance from the key station
is the most significant factor for station importance accord-
ing to the results of weighting aspects for each criterion
in Table 6. In Fig. 6, some stations obtained a relatively high
ranking although they are distributed a bit far from the key
station in the south. Rebalancing operation should also be
implemented for these stations to improve service quality
better.

V. CONCLUSION
This research proposed the method of station importance
evaluation for more effective dynamic bike-sharing rebalanc-
ing. The rebalancing quantity, closeness to inventory thresh-
old, and distance from the key station were three criteria
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for evaluating bike-sharing stations. The GC-LSTM model
was adopted for short-term bike-sharing demand prediction
to determine rebalancing quantity with higher precision, con-
sidering exogenous factors such as land use information,
weather, and users’ personal information. The combination of
LSTM and GCN enable to captured the temporal character-
istics and the bike-sharing network structure characteristics.
The experiments showed that GC-LSTM models outper-
formed baseline models using Nanjing docked bike-sharing
dataset. Then, determination of rebalancing quantity was
determined by considering bike-sharing usage throughout
the rebalancing period. The entropy method was used to
weigh the influences of different criteria. Then, the TOPSIS
approach was employed to evaluate station importance and
rank stations.

Numerical examples were set up to illustrate the proposed
methods. Smart card data of docked bike-sharing in Nanjing
City was obtained, and 49 stations within 13 TAZs around
the city center were extracted. GC-LSTM models with dif-
ferent prediction intervals were established, and the RMSE
and MAE were calculated to illustrate the performance of
models. The results showed that the GC-LSTM model with a
15-min interval has the best performance. After calculating
the rebalancing quantity, closeness to inventory threshold,
and distance from the key station, the entropy-based TOP-
SIS method was employed to evaluate bike-sharing station
importance. The entropy method results showed that distance
from the key station had the most significant influence on
station importance with a weight of 52.22%. Besides, based
on the TOPSIS approach, the importance of each station was
calculated, and the ranking results and spatial distribution
were analyzed. It was indicated that many stations close to
the key station gained a high level of importance. Meanwhile,
there were also stations distributed far from the key station
with higher rankings due to higher levels of other criteria.
The average computational time of the GC-LSTM model is
5.9 seconds. For the entropy-based TOPSIS method, it is
1.4 seconds. The running time is acceptable in real-world
bike-sharing rebalancing operations.

The findings of this study are helpful for operators to make
a better decision on which stations should be prioritized in
the rebalancing process. It also can be applied in user-based
operation. Ji et al. [72] have suggested that higher monetary
incentive will encourage users to participate into bike-sharing
rebalancing and significantly alleviate bike-sharing imbal-
ance issue. Station importance evaluation can be helpful
to find which stations should be rebalanced first by users.
By assigning higher monetary incentive to more important
stations, users’ engagement in rebalancing at those stations
can be encouraged. Moreover, this framework is designed
for docked bike-sharing, so it cannot be directly applied for
dockless bike-sharing due to lack of fixed stations. However,
similar to docked bike-sharing, the decision-making process
of dockless bike-sharing rebalancing still needs to consider
multi-criteria, such as travel distance of rebalancing vehicle,
rebalancing quantity.

For different bike-sharing datasets in different geographic
location, theoretically, GC-LSTM is able to capture temporal
and spatial features of bike-sharing data. The results of station
importance evaluation may not be the same as this case study,
and the weights of criteria may be different. This is because
the entropy-based TOPSIS can mine dataset characteristics,
considering different key stations, station distribution and
travel patterns in bike-sharing systems. This study has sev-
eral limitations that need to be addressed in future research.
Firstly, this research only took Nanjing docked bike-sharing
as a case study. If other bike-sharing datasets are available,
more experiments can be done using methods in this research
for further verification and validation. Secondly, this frame-
work can not directly be implemented on dockless bike-
sharing. There are no fixed stations for dockless bike-sharing.
Therefore, generating virtual stations and calculating loading
and unloading time for decentralized dockless shared bikes
are crucial questions in future research. Thirdly, this research
only depicted the first stage of rebalancing in a rolling hori-
zon to illustrate how to predict bike-sharing demand using
GC-LSTM models and evaluate station importance based on
multi-criteria. To complete the whole rebalancing process,
the pickup-and-delivery vehicle routing problem should be
solved to update the key station and bike-sharing station
inventory. And then, the following rebalancing stages can
be investigated and comparisons can be made to investigate
how station prioritization improves vehicle routing plans.
Fourthly, bike-sharing demand prediction is necessary for the
dynamic rebalancing process. In this paper, the GC-LSTM
models predict bike-sharing demand at the station level to
propose station importance evaluation strategies. Although
the performance of the GC-LSTM models on the Nanjing
bike-sharing dataset is better than baseline models, state-of-
art prediction models, such as temporal convolutional net-
work (TCN) based methods or dual-stage attention-based
recurrent neural network (DARNN) based methods, can be
further explored to improve the accuracy of bike-sharing
demand prediction. Finally, other MCDM methods could be
used and compare the obtained results with the current study
results. Future research can continue towards employing
fuzzy MCDM methods to deal with the uncertainty involved
in bike-sharing daily usage. It would assist operators and
managers to dynamically rebalance shared bikes with high
efficiency and improve the service quality of bike-sharing
systems.
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