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ABSTRACT With the convergence of fixed and mobile networks, heterogeneous networks are becoming
ubiquitous. Internet giants are seeing the plight of identity authentication. To address this issue, unified
access management (UAM) was conceived. This paper provides a novel unified access management scheme,
named SGX-UAM, with one-time passwords (OTPs) based on Intel software guard extensions (SGX). SGX-
UAM outperforms generic UAM for providing resistance to most client attacks, man-in-the-middle (MITM)
attacks, phishing attacks, most replay attacks and most denial of service (DoS) attacks to which generic
UAM implementaions are vulnerable. Specifically, client attacks are prevented by ensuring input security and
memory security, where the former is achieved through shuffle mapping and “‘periodic hooking™ strategy,
the latter is mainly guaranteed by Intel SGX; MITM attacks are prevented by transferring ciphertext rather
than plaintext; phishing attacks are avoided by authorization control; replay attacks cannot succeed because
we adopts OTPs, which contain time-related dynamic factors that expire in a few seconds; as for DoS
attack, we blunted its edge by blocking-invocation for identical user connection. SGX-UAM also differs
from generic UAM in that it relieves the security concerns of sevice providers (SPs) and protects users’
privacy at little cost of performance. An exceptional value of SGX-UAM is that it brings a lightweight OTP
solution that eliminates the need of additional hardware devices, thus reducing the costs. The experimental
results show that SGX-UAM consumes almost the same time with OpenID and OAuth2.0 for one login
request and performs steadily when handling sequential login requests. Furthermore, the resource usage for

SGX-UAM is acceptable.

INDEX TERMS One-time password, Intel SGX, unified access management, security.

I. INTRODUCTION

Traditional identity and access management tools work well
for addressing specific portions of an enterprise (specific app
environments, as in on-premises or in the cloud; or specific
users, as in employees vs. external partners) on their own.
However, with the convergence of fixed and mobile networks,
the coexistence of heterogeneous networks and the diversi-
fication of services have become prominent features of the
Internet. At the beginning stage of convergence, networks and
services exhibit strong independence and autonomy. When
users access different networks and services, they need to
be authenticated and authorized repeatedly, and this not only
requires users to maintain multiple identity information sets
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but also adds some difficulty for operators in terms of man-
aging system and charging users.

Unified access management (UAM) is an evolution of
identity and access management (IAM) systems that provides
unified login and identity information sharing services for
different networks and business systems [1], and the idea
originates from single sign-on (SSO) [2]. In 2010, the OAuth
protocol was proposed, and this is a concrete implementation
of UAM. The OAuth2.0 protocol was quickly adopted by
many Internet platforms due to its security, convenience and
other hallmarks [3]. However, UAM is deemed no longer
secure now. In recent years, several security incidents have
hitted UAM, for example, in March 2012, it is reported
that 8 serious logic loopholes were found in high-profile
identitiy providers (IDPs) and relying party websites, such
as OpenlD (including Google ID and PayPal Access), Face-
book, Janrain, Freelancer, FarmVille, and Sears.com [4];
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in May 2014, a vulnerability named ‘“Covert Redirect”
related to OAuth2.0 and OpenID was disclosed. And beyond
inherent flaws, client attacks, man-in-the-middle (hereinafter
called “MITM”) attacks, phishing attacks, replay attacks,
denial of service (hereinafter, “DoS’’) attacks, and so forth
are undermining the usability of UAM.

Out of an fear of privacy breaches stemming from the inse-
curity of UAM, some influential service providers (SPs), who
have already owned robust identity databases, are reluctant to
entrust all authentication businesses to third-party operators.
How to relieve this concern of SPs is a question that remains
unanswered. As far as the users are concerned, privacy issues
worry them more, because most UAM frameworks even do
not give users any choices about releasing their personal
information. To summarize, security and privacy concerns are
putting SPs and users off UAM and changes must be made
soon.

As an important component of single-factor, two-factor
and three-factor authentication, one-time password (OTP)
is considered an indispensable technology of UAM. Many
UAM implementations, such as OAuth2.0, have already
offered interfaces to enable OTP verification. Using OTPs,
users do not need to remember passwords in a tedious man-
ner; all they need to do is to hold a small device of uniform
size and shape with a USB flash disk to be able to iden-
tify themselves for the service provider. The timeliness that
an OTP need is serviceable in resisting the replay attacks
suffered by UAM. Nevertheless, OTP technology is flawed,
it requires the user to maintain a synchronizer or event
counter, often via special hardware, which greatly increases
the user’s cost. Trusted Execution Environment (TEE) tech-
nologies, such as Intel SGX, might bring about a change for
OTPs. SGX helps eliminating the need for additional hard-
ware devices if we generate the OTP key with CPU-bound
instruction (viz. EGETKEY), thus strictly guaranteeing the
uniqueness of the device.

This paper strives to design a unified access manage-
ment system based on Intel SGX, named “SGX-UAM”,
combining the merits of OTPs and UAM. Generally, UAM
requires an SP and an IDP to establish authorization agree-
ments. SGX-UAM suggests a novel paradigm for UAM
bacause it assigns the burden of identity authentication to the
users rather than the SPs. The decision is based upon two
considerations:

1) Influential SPs, who own large identity databases, are
not inclined to trust an IDP because it incurs dispro-
portionate share of the risks relative to the limited
convenience it brings; what’s more, their authentica-
tion mechanisms are mature enough to be fully self-
sufficient.

2) The users, though limited by resources, can act as the
main undertakers of authentication tasks if the perfor-
mance of SGX-UAM is acceptable. Moreover, the login
credentials can be stored in ciphertext form in IDP that
user privacy can be protected.
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It can be said that the decision is a trade-off between
commercial concerns, privacy-preservation and performance,
and we suggest it is appropriate.

The main contributions of this paper include the following:

1) It proposes a highly secure unified access manage-
ment scheme that resists most client attacks, MITM
attacks, phishing attacks, most replay attacks and most
DoS attacks to which generic UAM implementations
are vulnerable. We have proven this theoretically and
experimentally.

2) It assigns the burden of identity authentication to the
users rather than the SPs, which not only relieves the
security concerns of SPs but also protects users’ privacy
at little expense of performance.

3) It proposes a lightweight OTP scheme with no addi-
tional hardware required by resorting to Intel SGX
technology, which reduces the cost of OTP.

The rest of the paper proceeds as follows: Section II out-
lines the requisite background knowledge; Section Il reviews
the related work; Section IV highlights the threat model and
security claims; Section V presents our scheme; Section VI
demonstrates theoretical security analysis; Section VII shows
the experimental results. Finally, Section VIII draws the con-
clusion.

II. PRELIMINAY KNOWLEDGE
A. OTP
An OTP (one-time password) is a very convenient technical
means for enhancing static password authentication, and it
is an important part of two-factor authentication technol-
ogy. Common OTP implementation schemes include HOTP
(HMAC-based one-time password) and TOTP (time-based
one-time password), which correspond to two RFC protocols,
viz. RFC4266 [5] and RFC6238 [6], respectively.

Generally, the OTP calculation formula is

o =t(] ]t o, ()

where ¢ represents key, ¢ is a parameter; [ [ denotes using
SHA-1 for HMAC, and 7 is a function that intercepts the
encrypted string.

HOTP sets ¢ as an 8-byte common counter that requires
synchronization between the authenticator and the authen-
ticatee, and this is called a moving factor in RFC4266. In
addition, the hash function of HOTP is expected to be SHA2,
i.e., SHA-256 or SHA-512.

For TOTP, ¢ = (T — Ty)/X, where T denotes the current
Unix timestamp, T is usually 0, and X represents how long it
takes to generate an OTP, that is, the time interval (X is almost
always set to 60 seconds).

B. UAM

UAM refers to an identity management solution. It is used
by enterprises to manage digital identities and provide secure
access to users across multiple devices and applications, both
in the cloud and on the premises. UAM originates from
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SSO (single sign-on) technology [2]. With SSO technology,
employees only need to log in once to access all the mutually
trusted services and resources within the enterprise. UAM
extends SSO technology from within the enterprise to the
entire Internet and provides a single platform from which
IT personnel can manage access across a diverse set of
users, devices, and applications, whether on the premises
or in the cloud. Some organizations, including ITU-T, the
Liberty Alliance, and MWS, are studying UAM standards
and forming frameworks such as OMA and OpenlD. For sites
that support OpenID, you do not need to remember common
authentication markers like a username and password; just
enter your registered OpenlD identifier and password and it
will redirect you to the OpenlD service site. Once you pass
the authentication, you return to the original site and will
have successfully logged in. The workflow of OAuth2.0 is
similar to that of OpenlD; the difference is that in OAuth2.0,
the IDP is responsible for issuing four tokens, the autho-
rization code, as well as the implicit password and client
credentials, to third-party applications rather than the method
of URL redirection. At present, OAuth2.0 is a popular third-
party authorization and authentication framework that can be
applied for UAM purposes [3], and it has been introduced into
MSN, LinkedIn, Facebook, Twitter, WeChat, QQ, Alipay, etc.

In general, an UAM system consists of at least three parties:
users, SPs (service providers), and IDPs (identity providers).
An IDP accepts the user’s identity registration request and
verifies its validity; in addition, the IDP accepts authentica-
tion requests from SPs, which provide application services
for users.

An identity authentication process in UAM is performed as
follows:

1) The user requests services or resources from an SP.

2) The SP asks the user to provide identity information
and the corresponding IDP address.

3) The user submits identity information and the IDP
address to the SP.

4) The SP asks the IDP to authenticate the identity of the
user.

5) After receiving the IDP’s response, the SP decides to
provide corresponding services or resources to the user
as per the authentication results.

C. INTEL SGX

Intel SGX is a set of processor extensions for establishing
a protected execution environment inside an application [7].
The following SGX technologies are used in this paper.

1) MEMORY ISOLATION

SGX allows user-level as well as operating system code
to define private regions of memory, called enclaves,
whose contents are protected within the boundary that can-
not be either read or saved by any process outside the
enclave itself, even the processes running at higher privilege
levels.
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2) SEALING

When the enclave process exits, the enclave is destroyed and
any data that are secured within the enclave are lost. If the
data are meant to be reused later, the enclave must make
special arrangements to store the data outside the enclave.
SGX provides the sgx_seal_data function, which retrieves a
key unique to the enclave or the developer and uses that key to
encrypt the input data buffer to preserve secret data. If needed,
the sealed data blob can be unsealed by future instantiations
of the enclave through the sgx_unseal_data function [8].

3) ECALL/OCALL

The programming model of an Intel SGX application differs
from that of a typical application in that it requires the devel-
oper to repartition the program as per the official develop-
ment manual, with each application divided into trusted and
untrusted parts. Cross-domain function interfaces are defined
and declared in the EDL (enclave define language) file, where
the functions called by untrusted part and used to access
data inside enclaves are declared as ECALL (enclave call);
otherwise, to access an external resources, such as file system,
network, or clock, the enclave must exit to the untrusted zone
and performs a reverse context switch, those functions are
declared as OCALL (outside call).

4) REMOTE ATTESTATION

Remote attestation convinces a remote party to have confi-
dence that the intended software is securely running within an
enclave on an SGX-enabled platform by producing an asser-
tion. Remote attestation must rely on the Intel Attestation
Service (IAS) to provide support for linkable signatures and
attestation verification [9].

Ill. RELATED WORK

A. UAM IMPLEMENTATION AND APPLICATIONS

Many authentication standards and protocols have been spec-
ified in the last few years implementing UAM, such as
OpenlD (OIDF), which provides a way to prove that an user
controls a specific identifier, OAuth (IETF), which focuses on
managing access delegation, and OpenID Connect (OIDC),
which extends OpenlID to solve authentication besides autho-
rization [10]. UAM idea can be connected with specific sce-
narios, such as power enterprises [11], campuses [12], hotels
[13]. In general, the data integrity and privacy preservation of
UAM are guaranteed through SSL/TLS [14], and the design
of the identity database follows the LDAP protocol [15].
It is with regret that these applications are trapped in the
existing UAM framework, namely, the SPs are asked to sign
an agreement with an IDP, which fails to address mutual trust
concerns between the SPs and IDP.

B. SECURITY ISSUES IN UAM AND OTPs

There are some works focused on presenting security issues
of UAM and OTPs. The works can be divided into two groups.
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The first group emphasizes the vulnerabilities and possible
attack patterns, including (1) a client attack that the malicious
adversary tries to violate the confidentiality and integrity of
applications by memory dumping or DMA operation [16],
(2) a phishing attack that redirects users to a malicious
replica of an IDP or SP website [17]; For example, Cross-
Site Request Forgery (CSRF) tricks a user into loading a page
that contains a malicious request, which embeds the attack
URL in an HTML construct, that could disrupt the integrity
of the victim’s session with a website [18], (3) an MITM
attack that a middleman, who could perform two distinct
Diffie-Hellman key exchanges with each party, masquerades
as the IDP to sign authentication assertions or impersonates
the users on the SP [19], (4) a replay attack that exploits the
lack of assertion nonce checking by SPs [20], and (5) a DoS
attack that attempts to exhaust the computational resources of
SPs and IDPs [21].

For OTPs, they are not immune to agent attacks in addition
to the foregoing attacks. Often, this happens when the OTP
device’s battery is low that the clock is unsynchronized.
Worse, the device may be lost or stolen. Usually, there are
methods to bypass the protection, for instance, via SMS
or email, thereby providing an opportunity for attackers to
exploit the loopholes [22].

The second group endeavored to perform formal security
analysis and threat modelling, and utilized these models to
find new weaknesses [23]-[25]. The formal analysis methods
for security protocols used in UAM can be divided into
two categories: One is the symbolic analysis [26], which
regards the cryptographic system used in the protocol as a
perfect loophole-free black box, and analyzes and proves
the security protocols on this basis [27]; The other is the
computational method, which assumes that the cryptographic
system used by the protocol is not perfect. Crypto Verif is
the first automated verification tool based on computational
method [28]. The IETF even published a thorough threat
model of OAuth2.0 in 2013.

C. EXISTING DEFENSE TECHNIQUES

(1) To resist client attacks, it is necessary to ensure that
the client computer environment is trusted and no hacker
programs whatsoever are running. This environment does
not always withstand attacks even with firewall and antivirus
programs installed; for example, malware such as keyboard
hooks can embezzle secret information such as passwords
entered by the keyboard [16]. The following two methods
are considered helpful for preventing keyboard hooking: first,
secure password box technology can be used. The secure
password box works at both the kernel layer and application
layer. Disabling scanning of port 0 x 60 or adding distractions
at port 0 x 60 are some countermeasures at the kernel layer.
In addition, modifying the address of the IDT interruption
program can also bypass the keylogger at the kernel layer, and
instead, bypassing is realized through encryption at the appli-
cation layer [29]. Second, virtual keyboard technology can
be used. Applications adopting virtual keyboard technology
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simulate real keyboard inputs by software and counterfeit
a set of mapping keys at the application layer rather than
the kernel layer. This method, however, is vulnerable to
attacks through screen captures, and the keyboard inputs can
be inferred based on the locations of the window and mouse
click actions [30]. (2) To resist phishing attacks (viz. SSO
CSRF), validating the HTTP Referer header to ensure the
request in question was issued by an authorized source is a
simple way, but this might be impractical since many web
proxy servers suppress the Referer headers due to privacy
concerns [31]. Another way is using machine learning models
to detect and defend against phishing attacks [32]. There
are also proposals to install phishing detection software in
web browsers [33]-[35]. (3) As for the MITM attacks, the
SSL/TLS protocol is considered as the first choice for most
authentication schemes [36]. (4) D. Kreutz et al. built resilient
and secure authentication and authorization infrastructures,
called R-OpenlD prototypes, by providing an architectural
model and system design artifacts to defend against large-
scale DDoS [37]. S. Qiu et al. even presented an improved
authentication scheme claiming that ““it can resist all known
attacks” [38].

To deal with the agent attacks on OTPs, extending two-
factor authentication to three-factor authentication is an easy
way. The three-factor AKA protocol for mobile lightweight
devices is just one of the examples offered by [39].

It must be said that some techniques are deemed too com-
plex and expensive for practical use. While the one-fit-all
scheme that resists every possible attack has not been put
forward yet, an UAM scheme that is omnipotent in terms of
security, if possible, would thus be favored.

IV. THREAT MODEL AND SECRUITY CLAIMS

Recently, many investigations have been conducted on the
security of well-established protocols and standards, and it
turns out that classical cryptography just owns robustness in
the quondam but not any longer [17], and it is believed that
ambiguous security properties and the lack of clear threat
models are blamed. In other words, it is of prime importance
to clearly define the threat model and security claims. In this
regard, this section presents the threat model and security
claims.

A. THREAT MODEL

This research assumes that all the softwares including priv-
ileged operation systems and hypervisors in the IDP, the SP
and the user client are untrusted. A malicious adversary tries
to violate the confidentiality and integrity of user applications
by memory dumping or DMA operation. The intruder can
also subvert the untrusted part of an authentication module
(the trusted part being protected by SGX). With these contexts
as premise, the desired approach requires that the following

threats be addressed:
1) Client attacks. If the user’s computer is hacked with

Trojan horses, spyware, and so forth, the hacker
program may intercept the dynamic password entered
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by the user through keyboard hooking; or steal appli-
cation data through memory dumping.

2) Man-in-the-middle (MITM) attacks. The session
hijacker can observe the conversation between an user
client and an IDP by using a sniffer; this person may,
on the one hand, block the user from being able to log
in by means of creating the illusion that the network
is disconnected or timed out, or, on the other hand,
impersonate the user to access the service.

3) Phishing attacks. Attackers set up phishing sites redi-
recting the user to an untrusted network [40].

4) Replay attacks. To launch such attack, the adversary
needs to sniff some of the involved communication
channels to obtain login credentials to form an access
token, then re-use legitimate token at the target SP
unable to detect the replay (because tokens have not
expired yet or because this expiration is not properly
checked) or at other SPs not validating the tokens’
audience.

5) Denial of service (DoS) Attacks. An DoS attack is an
attack meant to shut down IDP machine or network,
thwarting the authentication service or making it inac-
cessible to its intended users.

B. SECURITY CLAIMS

The following terms are used to describe the security prop-
erties of our approach. For each of them we provide the
respective countermeasures.

1) Integrity and authenticity protections. Integrity pro-
vides a means to detect unauthorized modification, and
authenticity allows the receiver to verify if the sender is
who it claims to be. We satisfy integrity by remote attes-
tation of Intel SGX letting the source codes of intended
software released to the public that any modifications
of such software could render an attestation failure; we
achieve authenticity by using secure channels such as
TLS handshake.

2) Confidentiality protections. This refers to the capabil-
ity of protecting the confidentiality of sensitive data
and operations. Intel SGX helps establishing private
regions of memory in which application data cannot
be read or saved by any process outside the enclaves,
thus serves for our confidentiality purpose; in addi-
tion, anti-hook mechanism designed in this paper can
protect client from keyboard hooks installed by local
malwares.

3) Robustness. Nowadays, availability is a first class
requirement for any IT infrastructure, it requires the
system being accessible in face of DoS attacks or
unforeseen damages. To that end, OTP and blocking-
invocation are used to avoid system crash due to inten-
tional attacks.

V. THE PROPOSED SCHEME
A. ROLE SETTING

An SGX-based unified access management system (we name
it as “SGX-UAM™) involves four types of roles: client
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FIGURE 1. Role setting of SGX-UAM.

(user), identity provider (IDP), service provider (SP) and IAS,
as shown in Figure 1. The “SP” herein refers to the third-
party website that the user want to access, viz. the “SP”’ role
in the UAM terminology, rather than the “SP” role in Intel
SGX remote attestation, who is generally the advocator of the
attestation.

B. SOFTWARE PROCESS
A complete SGX-UAM software process includes four
phases: registration, login credentials storage, OTP authen-
tication, and login credentials retrieval.

The notations and their meanings are enlisted in Table 1.

TABLE 1. Notations.

Notation Description

one-time password (OTP)
HMAC function

OTP key

interception function of OTP
user identifier

user masterkey

hash value of user identifier

hash value of user masterkey
MDS5 function

SGX seal key

exclusive-OR result of A1 and ho
secret key

dynamic factor

signature algorithm
authentication result

signature of authentication result of user /

ST M AR G E =~ 09

1) REGISTRATION PHASE

Before registration, the IDP and client are required to finish
bidirectional remote attestation with IAS participation (a pro-
cedure to promote mutual trust).

Then, the user manually enters the identifier, denoted as I,
and masterkey, denoted as M, as the registration information,
where [ is usually the frequently used email address of the
user, and M is created by the user. After that, the client
enclave computes the hash values of I and M, denoted as &
and hy respectively. The MDS5 function is determined as the
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hash function (marked as H). The client is asked to sends /;
and £y to the IDP for future uses. Followingly, the IDP will
check whether £ exists; if not, it saves them to the database;
otherwise, it returns an error message.

The IDP enclave is suggested to seal 4 and Ay to the
hard disk for retrieval in case a power outage or system
crash causing the enclave destroyed unpredictably could
happen.

The registration flow is shown in Figure 2.

Client

hi — MD5(I)
h: — MD5(M)

YES

<
- LN
_hi exists?
>~ & -

|

I

I

|

|
|

NO |

|
|

Store hi,hz2 |
= |

______ ) _ _ _ ) _ _severdatabase _ __ _

FIGURE 2. Registration flow.

2) LOGIN CREDENTIALS STORAGE PHASE
The user enters the login credentials that needs to be man-
aged, including an URL, an username and a password.

The client enclave performs the bitwise exclusive-OR
operation on hj and hy; it calls the sgx_ger key function,
which is a wrapper for the EGETKEY instruction, to generate
a 128-bit seal key s. The s and exclusive-OR result x are
concatenated, and the MDS5 function is carried out on the
concatenated string to obtain the final secret key «. The
pseudocode is presented in Algorithm 1.

Algorithm 1 Secret Key Generation Algorithm

Input: identifier /, masterkey M ;
Output: Secret key «;
1: function SecretKeyGeneration(Z, M)
2: hy < H(),
3 hy < HM);,
4: X < h| @ hy;
5: s < sgx_get_key();
6 Kk < H(sV x);
7: return «;
8: end function

The client enclave then encrypts the login credentials with
SM4 as the encryption algorithm and « as the key and uploads
the ciphertext to the IDP.

The login credentials storage flow is shown in Figure 3.

3) OTP AUTHENTICATION PHASE

In the initial login stage, the client requests time synchroniza-
tion from the IDP and then takes the current timestamp as the
dynamic factor f, which explains the real-time performance
of the OTP.
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2)SM4k(url,userna

I
|
!
l
I
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I

server database )

FIGURE 3. Login credentials storage flow.

The IDP starts the timer, and the dynamic factor expires
after 60 seconds.

In the client enclave, the string obtained by stitching the
two together is input into the KGEN(-) function to obtain
the OTP key (denoted as ¢) required for this login. Then the
function takes the OTP key and the dynamic factor received
from the IDP as input and generates the OTP (denoted as
o). The pseudocode of OTP generation algorithm is shown
as Algorithm 2.

Algorithm 2 OTP Generation Algorithm
Input: identifier hash 4, masterkey A7, dynamic factor f’;
Qutput: one-time password o;

1: function OTPGeneration(hy, ho, f)

2: g < KGEN(h V hy);

3: o <OTPGEN(e, f);

4: return o ;

5: end function

A viable KGEN (-) can be the MDS5 function, viz.
&= H(h] Vv hz). (2)

and a feasible OTPGEN (-) function can be HMAC function,
Viz.

o =1(] [e.f). 3)

Then, we send the generated OTP along with A; to the IDP
for comparison. The IDP finds the corresponding 4, value by
indexing /7 in local database, then performs an exactly same
generation process as the client to obtain an OTP, and finally
compares it with that received from the client. If the OTPs are
consistent and the f* has not expired, the user is authenticated
successfully; otherwise, an error message is returned. The
IDP signs the authentication result with a private key.

= E.sig(lv J[) (4)

The OTP authentication process is shown in Figure 4.

4) LOGIN CREDENTIALS RETRIEVAL PHASE
login credentials retrieval proceeds as follows (see Figure 5):
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I

I

LEER\ ﬂ

Client

Request time synchrorl

et
. N
4 ZConsistent? ==
<onsistent

FIGURE 4. OTP authentication flow.

1) The client sends &1 and URL to the IDP.

2) The IDP looks up the encrypted login credentials in
local database as per #; and URL and sends them back
if found.

3) The client provides the login credentials to the user
after decrypting the ciphertext within the SGX enclave.

When beginning to log in, the client sends the OTP authen-
tication result signed by the IDP to the website, the website
then verifies the signature of the IDP; if verified, the identity
is authenticated, and the login attempt is allowed; otherwise,
the login attempt is in vain.

C. THE DIFFERENCE BETWEEN SGX-UAM AND UAM

Generally, UAM requires an SP and an IDP to establish
authorization agreements, such as OAuth2.0. As some SPs
are influential and own robust identity databases, they are
not inclined to entrust all authentication businesses to third-
party operators. SGX-UAM differs from UAM in that we
design the authentication process between the user and the
IDP instead of between the SP and the IDP, thus forcing the
user to shoulder the burden rather than the SP (see Figure 6).
Considering that the user is often the resource-constrained
entity out of the two, it is actually a tough decision that the
system has to sacrifice a little performance to accommodate
the commercial concerns of SPs. Fortunately, influential SPs
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FIGURE 5. Login credentials retrieval flow.
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FIGURE 6. The difference between UAM and SGX-UAM.

usually have established mature authentication mechanisms,
so there is no need to resort to third-party authentication
services; and SGX-UAM scheme can preserve users’ privacy
because all login credentials are stored in ciphertext form in
IDP. In Section VII, we will check whether the performance
loss is unacceptable compared with other UAM schemes to
assess our decision.

VI. SECURITY ANALYSIS
In what follows, we evaluate the proposed scheme in terms of
a security analysis.

A. RESISTANCE TO CLIENT ATTACKS
Resistance to client attacks is mainly realized by ensuring the
security of the input and memory.

1) INPUT SECURITY
It is possible for a client to leak confidential information
due to the existence of keyboard hooks. Hooks can intercept
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a user input and possibly tamper with it before it reaches
the destination window. According to reference [34], key-
board hooks were realized through two methods. The first
uses several Windows functions such as SetWindowsHookEx,
CallNextHookEx, and CopyMemory to obtain the actions per-
formed by the keyboard and determine the exact key inferred
from the virtual key table. The second adopts the GetAsyncK-
eyState function.

In this regard, we attempt to prevent such attacks through
“shuffle mapping” when keyboard events are triggered. Here
are the details of how “‘shuffle mapping” works.

Suppose there are N global hook processes. If our hook
process is Py and that of the attacker is Py_1, then unsur-
prisingly, Py would have the initial right to process messages
and pass them into the SGX enclave via ECALL. Assum-
ing that there are Q keys on the keyboard, correspondingly,
the enclave generates O random numbers, r1, 72, , 7,
as alternatives to the key values (see Table 2). The mapped
keys are then substituted for the real keys in the system
message queue via OCALL. Figure 7 shows the SGX-UAM
keyboard hooking mechanism.

ECALL Shuffle
1 Global Hook Process I Mapping
| ____ (Defender) _

OCALL T

| Global Hook Process

| =4
o o .

J i Global Hook Process

FIGURE 7. SGX-UAM keyboard hook mechanism.

Nevertheless, how on earth does SGX-UAM guarantee the
right to pre-emptively process a message?

One reason is that SGX-UAM contains two special Win-
dows message hooks: WH_DEBUG and WH_KEYBOARD_
LL, where WH_DEBUG covers most event functions, such as
WH_KEYBOARD and WH_MOUSE. The WH_DEBUG hook
always takes precedence over general keyboard hooks.

TABLE 2. Mapping table of key values.

Key name Value Description Mapping value
vbKeyTab 9 Tab key r1
vbKeyShift 16 Shift key ro
vbKeyEscape 27 Esc key r3
vbKeyHome 36 Home key T4
vbKeyUp 38 UP Arrow key 5
vbKeyPrint 42 PrScrn key 6

vbKeyA 65 A key r7

Another secret lies in our periodic hooking mechanism.
In Windows, if the mechanism is loaded with more than
one hook of the same type, the hooks are executed in the
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order of ““first installed, last executed’’. If the cracker’s hook
is installed after our hook, it executes first, and we cannot
obtain messages ahead of the cracker. To avoid this, we set a
timer to unhook our keyboard hooks every few seconds and
then hook again immediately. According to the principle of
“last installed, first executed”, it is highly possible that our
keyboard hooks will execute ahead of those of the cracker.
Only once they hook successfully can they prevent the cracker
from stealing the correct password— for instance, if SGX-
UAM hooks every 2 seconds, and the cracker hooks every
0.5 seconds, then it may occur that just after the cracker
finishes hooking, SGX-UAM hooks immediately. In the next
0.49 seconds, as long as the user presses the keyboard, the
cracker’s task is considered to have failed (see Figure 8).

‘SGX -UAM Unhook/Hook 1 A=D

Ss
2s
“racker Unhook/Hook l*
e Cracker Unhook/Hook 2 " ook 2

SGX-UAM Unhook/ Hook 2 ok 2

(Y

FEEs

ok 1

FIGURE 8. SGX-UAM periodic hooking.

The pseudocode of SGX-UAM hooking is shown as
Algorithm 3.

Algorithm 3 SGX-UAM Keyboard Hook Algorithm
Input: Keyboard inputm = {¢;},i=1,2,--;
Output: Shuffled keyboard input m';
1: function OnTimer( )
2 UnhookWindowsHookEXx();
3 SetWindowsHookEx (),
4: end function
5: function OnGetChar(c;)
6
7
8
9

SGX :: ECALL(c));
{r1,m, - ,rx} < Enclave :: sgx_read_rand();
c; < Enclave :: GenerateMapping(c;);
: SGX :: OCALL(c));
10: end function
11: m'.Add(c));
12: return m’;

2) MEMORY SECURITY
The code and data in the SGX enclave utilize a threat model
in which the enclave is trusted but no process outside it
can be trusted (including the operating system itself and any
hypervisor software); therefore, all of these processes are
treated as potentially hostile.

SGX-UAM puts OTP generation and the encryption and
decryption of login credentials into enclave to prevent
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memory from being snooped on. The key for encrypt-
ing/decrypting login credentials are dynamically generated
within the enclave through EGETKEY instruction (essentially
CPU-bound), and any attempts to access the key are trapped
outside the enclave.

In addition, the OTP generation process depends on the
hash value of user’s masterkey h, which is suggested to
be sealed on the hard disk and can only be unsealed by the
enclave, thus guaranteeing that s, can never be stolen.

B. RESISTANCE TO MITM ATTACKS

The attackers often sniff or even tamper with the data by
intercepting network packets, without the two parties in the
communication being fully aware of it [49]. This kind of
attack cannot succeed since the generation of an OTP requires
hy, which cannot be obtained by the middleman. In addition,
even if the middleman intercepts the generated OTP, the
final login credentials are transmitted in ciphertext form and
cannot be decrypted outside the client enclave.

C. RESISTANCE TO PHISHing ATTACKS

If the SP URL is not recorded in the IDP’s database, the IDP
refuses to provide the authentication service. In other words,
phishing sites or unregistered sites are inaccessible. There-
fore, the efforts to launch a phishing attack are unavailing.

D. RESISTANCE TO REPLAY ATTACKS

A replay attack occurs when a cybercriminal eavesdrops
on a secure network communication, intercepts it, and then
fraudulently delays or resends it to misdirect the receiver into
doing what the hacker wants. Replay attacks happen, all too
often, in an UAM system that the eavesdroppers intercept
login credentials, user activity, computer and browser specs,
and passwords at will.

SGX-UAM adopts OTPs with time-related dynamic fac-
tors to resist replay attacks. Considering inevitable net-
work latency, the dynamic factors must remain valid for a
duration (e.g., 60 seconds) between the authenticator (IDP)
and the authenticatee (user). For subsequent authentications
to work, the clocks of the authenticatee and the authenti-
cator need to be roughly synchronized again. So even if
an attacker eavesdrops the communication and repeat to
send, she could hardly succeed in getting login credentials
from IDP.

E. RESISTANCE TO DOS ATTACKS

In SGX-UAM, authentication requests from a single suppli-
cant is handled in a blocking way, that means if an adver-
sary plans to launch DoS attacks, enormous amounts of user
accounts are needed. This sounds rather contrived since our
policy is that user account has to be linked with a valid email
address.

VII. EXPERIMENTS
In what follows, we evaluate the performance of SGX-UAM
from the aspects of OTP authentication time, response time,
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throughput, and resource depletion, and evaluate the security
of SGX-UAM by seeing system behaviour under client
attacks, MITM attacks, phishing attacks, replay attacks and
DoS attacks.

The experimental setup creates a primitive SGX-UAM
prototype that implements four main phases, viz. registration,
login credentials storage, OTP authentication, and login cre-
dentials retrieval. The software involves three roles including
an IDP, an SP and an user/client, where the IDP component is
mounted on a Sugon X745-G30 4U server with the hardware
configuration of SGX-enabled Intel® Core E3-1240L v5
processor, 128GB DDR RAM, 2TB SSD, 4TB SAS hard disk
and dual Gigabit Ethernet NICs; the SP offers web service
with Django (a python web framework) deployed, and the
SP component is mounted on a virtual machine (VM) in the
aforementioned server allocated 8 GB RAM and 100 GB
hard disk; the user component is mounted on a PC equipped
with SGX-enabled Intel® Core 15-2430m, 8 GB RAM
and 500 GB SAS hard disk. The simulation is conducted
in a LAN environment. The role setting and correspond-
ing hardware configuration in this experiment are shown in
Table 3.

TABLE 3. Role setting and corresponding hardware configuration in the
experiments.

Role Hardware attributes Machine type

User Intel ® Core 15-2430m, 8 GB RAM and PC
500 GB SAS hard disk

IDP Intel® Core E3-1240L v5, 4*32 GB
DDR RAM, 2 TB SSD and 4 TB SAS
hard disk

SP Intel® Core E3-1240L v5, 8GB RAM
and 100 GB hard disk

Server

VM hosted on
server

A. PERFORMANCE EVAUATION

1) OTP AUTHENTICATION TIME

Native OTPs (including HOTP and TOTP) are selected as
the benchmarks. The OTPs generated in SGX-UAM utilize
Intel SGX to ensure confidentiality with relevant SGX library
functions enlisted in Table 4.

TABLE 4. The SGX library functions used in OTP gengeration phase of
SGX-UAM.

Functionality SGX library function

Time Synchronization sgx_get_trusted_time

SgX_create_monotonic_counter
Sgx_increment_monotonic_counter
sgx_read_monotonic_counter

Event Counter

KGEN(-) sgx_sha256_msg

sgx_rijndaell28_cmac_msg

OTPGEN() sgx_hmac_sha256_msg

Figure 9 gives the average OTP generation time of
SGX-UAM compared with native OTPs. A total of 10 tests
were performed, with the mean generation time expressed by
bars and the vertical line above each bar denoting the standard
deviation. We see that
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FIGURE 9. Average OTP generation time of SGX-UAM compared with
native OTPs. A total of 10 tests were performed, with the mean value
expressed by bars and the vertical line above each bar denoting the
standard deviation.

1) The OTPs (TOTP and HOTP) generation in SGX-UAM
takes more time than native OTPs. This is because the
use of SGX does impose a penalty on performance.

2) In terms of the selection of OTPGEN(-) functions,
HMAC-SHA256 is considered better than AES-128
CMALC for its greater generation speed. We owe the
result to the fact that hash operation is generally faster
than block ciphering.

2) RESPONSE TIME

We implemented a complete authentication process embrac-
ing all four phases of SGX-UAM, and we also implemented
OpenlD and OAuth2.0 as the benchmarks. To prevent the
doubt about the quality of the implementation, we quote
two studies in which similar experiments were conducted.
Table 5 gives the summary of relevant studies and our imple-
mentations in terms of the response time for one authenti-
cation request. It can be seen that OpenID, OAuth2.0 and
SGX-UAM achieve almost the same performance despite the
differences in hardware configuration. Howbeit the response
time obtained in reference [41] is longer than the others, it is
not enough to overturn the aforesaid conclusion given that
they are still in the same order of magnitude.

3) THROUGHPUT
The throughput of SGX-UAM was measured using 2-20
simultaneous supplicants. Each supplicant was configured to
execute 10,000 sequential authentications using the same cre-
dentials. Furthermore, each authentication requires exactly
ten packets. A thread pool is designed for accommodat-
ing simultaneous supplicants, but no new threads would be
activated for sequential authentications requested from one
supplicant, that means every request launched from one sup-
plicant or user connection is handled in a blocking way.
Figure 10 shows the turnaround time for authentication
requests from 2-20 simultaneous supplicants/connections.
It can be seen that:

1) The turnaround time remains stable with the increase
of user connections for all three schemes we
implemented.
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TABLE 5. Summary of relevant studies and our implementations in terms
of the response time for one authentication request.

Ref. ! Spec. Time 3 Env.?
2
D. Kreutz et OpenlD 100 ms m3.]large (Amazon
al.(2016) [37] Web  Services, Inc.,
2014) computing

nodes (running Ubuntu

Server 14.04 LTS)
K. Chaturvedi Linux OS with 4 vir-
et al. (2019) tual CPUs, 8 GB RAM
[41] hosted on a VMware
ESXI 5.1.0 Server with
8 CPUs, 2 Processor
Sockets, 4 Cores per
Socket running with
2.27 GHz.
Sugon X745-G30 4U
server with Intel® Core
E3-1240L v5, 128 GB
RAM running CentOS

OAuth2.0 428 ms

OpenID 110 ms
OAuth2.0 108 ms
SGX-UAM 109 ms

This paper

7
! Ref.: references
2 Spec.: specified UAM implementations
Time: response time
4 Env.: emulation environment
200
e +— OpenID
150 ,./*_/ - OAUth2.0
I, s S S & 7Y

B Tt e R e ST

RET

wn
[=]

Turnaround Time (ms)
-
=)
[=]

(=]
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Number of User Connections

FIGURE 10. Turnaround time for authentications from 2-20 simultaneous
supplicants/connections.

2) SGX-UAM achieves a mid-level performance out of
the three.

Figure 11 shows the turnaround time for processing
1-10,000 sequential authentication requested from one sup-
plicant. Those requests are processed in blocking-invocation
style. We see that:

1) As the number of sequential authentication requests
increase, the turnaround time increases at a decreasing
rate.

2) OpenlD consumes the most time in handling the same
amount of sequential authentication requests, followed
by SGX-UAM, and then OAuth2.0.

4) RESOURCE DEPLETION

Further, we analyze the resource depletion of IDP, SP and
user client in the throughput experiment. The targets include
maximum memory footprint, CPU utilized percent, system
calls, page faults and interrupts.

For IDP, the maximum memory footprint and CPU uti-
lized percentage when handling 1, 100 and 10,000 sequential
requests for one user connection are shown in Figure 12. It
can be seen that:
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FIGURE 11. Average turnaround time for processing 1-10,000 sequential

authentication requests for one supplicant/connection, each point in the
plot is an average of 10 tests. The vertical line above each curve denoting
the standard deviation.

TABLE 6. System calls, page faults and interrupts of IDP when handling
sequential requests for one supplicant/connection.

Req.t Spec.? Sys.Call (k)3 PF (k)* Intrp.®
OpenID 247 60 654

1 OAuth2.0 120 2 77
SGX-UAM 473 28 473
OpenID 668 359 734

100 OAuth2.0 275 3 117
SGX-UAM 1443 65 564
OpenID 1844 423 956

10000 OAuth2.0 903 4 151
SGX-UAM 5493 162 1033

! Req.: number of sequential requests

2 Spec.: specified UAM implementation
3 Sys. Calls: system calls

4 PF: page faults

5 Intrp: interrupts

1) For up to 10,000 sequential requests, the maximum
memory footprint is only 153 MB, which is innocuous.

2) SGX-UAM has higher CPU usage than OpenID and
OAuth2.0.

Considering that privileged software can manipulate the
page tables of an enclave to observe a page-granularity trace
of its code and data, this leakage channel would disappear
if SGX enclaves serviced their own page faults. Therefore,
page faults are also measured, and obviously the fewer page
faults the better. Table 6 shows other metrics not shown in
Figure 12, including system calls, page faults and interrupts.
We see that:

1) SGX-UAM has fewer page faults and interrupts than
OpenlD though more system calls, means that it is more
secure.

2) All metrics fluctuates with the number of requests.

The maximum memory footprint and CPU utilized percent
of user client is shown in Figure 13. We see that:

1) SGX-UAM consumes the most memory and CPU com-
pared with OpenID and OAuth2.0.

2) The maximum memory footprint of SGX-UAM
is 37 MB when handling up to 10,000 requests, which
can be considered acceptable.

B. SECURITY EVAUATION

Five kinds of concrete attacks are conducted to assess the
security of SGX-UAM.
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FIGURE 12. The maximum memory footprint and CPU utilized percent of
IDP when handling 1, 100 and 10,000 sequential authentication requests
for one supplicant/connection.

The first is a client attack. A keyboard hook program
intending to get the keyboard action and determine the actual
key is installed to carry out such attack. The steps including
creating a dialog-based Qt application and implementing the
interface of KeyboardProc (a system API in Microsoft Win-
dows). SGX-UAM defends against it by “periodic hooking”
with an interval of 500 milliseconds.

MITM attacks, phishing attacks, replay attacks and DoS
attacks are conducted with Zarp. Zarp is a network attack
tool that offers the following types of tests: Poisoners, DoS,
Sniffers, Scanners, Services, Parameter, and Attacks. which
open up the possibility for very complex attack scenarios.
Concretely,

1) To launch MITM attacks, Zarp Sniffers, who act as
the middleman, intercepts the generated OTP and the
encrypted login credentials transmitted between the
IDP and the user. The success of such attacks is mea-
sured on whether the logging is allowed for the “imper-
sonator”” finally.

2) To carry out phishing attacks, Zarp Poisoners hide
malicious URL in HTML construct and poison the
DNS cache records. The attacks are considered suc-
cessful if the “phisher” tricks the users into pro-
viding login credentials by means of redirecting
the URL.

3) To carry out replay attacks, Zarp Sniffers is eavesdrop-
ping on the conversation between IDP and the user,
and keeps the OTP. After the interchange is over, Zarp
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FIGURE 13. The maximum memory footprint and CPU utilized percent of
user client (PC device) when launching 1, 100 and 10,000 sequential
authentication requests.

Sniffers connects to the IDP, when asked for proof of
identity, Zarp Sniffers sends user’s OTP read from the
last session which user accepts, thus granting “eaves-
dropper” access. This attack is deemed successful if
Zarp Sniffers pass the OTP authentication within the
expiry time.

4) To start the TCP SYN DoS attacks, we’ll flood
port 8080 at the IP address 192.168.0.101 of the IDP,
with 100,000 packets. If the delay to compete one
authentication is up to 10 seconds, such DoS attack is
considered successful.

The results of the foregoing attacks are enlisted in Table 7.

It can be seen that

1) SGX-UAM performed best in anti-attack tests that
keeping the odds of a successful attack stable at a lower
level, compared with OpenID and OAuth2.0.

2) 5% client attacks, 7% replay attacks, and 3% DoS
attacks reached their goals, which indicates that ““peri-
odic hooking”” would capture most but not all malicious
hooks; the 60-second expiry time of OTP gives eaves-
dropper a chance to deceive the IDP, but shortening
the expiry period would fix the problem; the success
rate of DoS attacks can drastically, though not always,
be reduced, because requests processed synchronously
are invoked in a blocking way.

Table 8 gives a summary of security properties of UAM

schemes among relevant references. SGX-UAM can outdo

38040

TABLE 7. Attacks results.

Type Attempts Success Rate

OpenlD OAuth2.0 SGX-UAM
Client attacks 100 88% 55% 5%
MITM attacks' 100 76% 83% 0%
Phishing attacks 100 73% 14% 0%
Relay attacks 100 10% 21% 7%
DoS attacks 200 35% 58% 3%

! Man-in-the-middle attacks.

TABLE 8. Security comparison of UAM schemes among relevant
references.

Attack Type!

2 3
Ref. Spec. Client MITM? Phishing Relay DoS
Sun et al. [42] OpenlD ® [ ] ® [ X
Hu et al. [43] OAuth X [ J [ [ J [
Yang et al. [44] OAuth [ ] [ ] [ ] [ ] X
Bansal et al. [23] OAuth X [} [ X X
Fett et al. [46] OAuth X [ ] [} [ ] X
Yang et al. [47] OAuth X [ ] [} [ ] X
Birrell et al. [21] Many X [ ] [ ] o [ ]
Mainka et al. [48] OAuth2.0 X [} o [ X
Werner et al. [49] OAuth2.0 X X Qo o X
This paper SGX-UAM O O o [J) [

' O: completely immune; @: partially immune; ®: completely vulnerable; x:
not mentioned.

2 Ref.: references.

3 Spec.: specified UAM implementations.

4 MITM: Man-in-the-middle attacks.

OpenID, OAuth and OAuth2.0 when it comes to the abil-
ity of resisting attacks, especially MITM attacks and phish-
ing attacks. This is in line with our simulation results
in Table 7.

VIIl. CONCLUSION

This paper aims to design a highly secure unified access
management system by using Intel SGX, we name it
“SGX-UAM”. It outperforms most UAM implementations
such as OpenID and OAuth2.0 in anti-attack abilities. Specif-
ically, it resists most client attacks, MITM attacks, phishing
attacks, most replay attacks and most DoS attacks to which
the generic UAM implementations are vulnerable, and we
confirmed this by experiments. SGX-UAM also differs from
generic UAM in that it assigns the burden of identity authenti-
cation to the users rather than the SPs, which not only relieves
the security concerns of SPs but also protects users’ privacy,
and the performance loss is acceptable to be worth the try,
in retrospect.

The simulation results show that SGX-UAM seems poor
somehow in relation to native OTP schemes such as TOTP
and HOTP, and we owe this inefficiency to the fact that
SGX itself does impose a performance penalty; but from
another perspective, we thus gain the benefit that we no longer
need an additional hardware because CPU-bound SGX can
guarantee the uniqueness of the device; in contrast, native
OTPs usually require the user to maintain a synchronizer or
event counter, which are often achieved via sepcial hardware.
SGX-UAM consumes almost the same time with OpenlD
and OAuth2.0 to complete one login request, and it achieves
a mid-level performance out of the three when handling
vast login requests. The memory usage and CPU utilized
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percentage of the IDP for SGX-UAM is innocuous, and that
of the client is acceptable.

Considering that Intel® SGX is essential for SGX-UAM,
the cost and overhead are bound to increase. Future studies
should target on further reducing the burden of the client.
Besides, more ideas about how to resist replay attacks and
DoS attacks should be presented.
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